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GENERAL INTEGRAL TYPE CONTRACTION MAPPING IN

METRIC SPACE ENDOWED WITH A GRAPH

SHANTANU BHAUMIK

Abstract. The subject under discussion of this paper is to find out the

condition for which a function satisfying general integral type contraction

defined on a metric space endowed with a graph will be Picard operator.
With appropriate examples we demonstrate that our result is more general

than that of Banach G-contraction, Branciari and G-Ciric-Reich-Rus opera-

tor.

1. Introduction

In 2002, Branciari [2] gave a different version of the Banach contraction principle
which is mainly integral type inequality for a single valued mapping and showed
the following famous fixed point theorem.

Theorem 1 Let (X, d) be a complete metric space, a ∈ (0, 1), and let f : X →
X be a mapping such that for each x, y ∈ X,∫ d(fx,fy)

0

ϕ(t)dt ≤ a
∫ d(x,y)

0

ϕ(t)dt, (1)

where ϕ : [0,∞) → [0,∞) is a Lebesgue-integrable mapping which is summable
on each compact subset of [0,∞), nonnegative, and such that

∀ ε > 0,

∫ ε

0

ϕ(t)dt > 0.

Then, f admits a unique fixed point p ∈ X such that for each x ∈ X, lim
n→∞

fnx =
p.
Theorem 1 is a generalization of the Banach-Caccioppoli principle [3].
In 2007, Jachymski [9] gave another version of the Banach contraction principle
which is mainly known as Banach G-contraction. The main aim of this paper
is to find the condition for which a function will be Picard operator. The first
result in this direction was given by Ran and Reurings [17]. In this paper they
shows that if a function f is continuous, monotone and defined on a complete
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metric space (X, d) endowed with partial ordering, it must be Picard operator if
it satisfies Banach contraction principle and the additional condition: there exists
x0 ∈ X with x0 � f(x0) or f(x0) � x0. This particular direction was more gen-
eralized by Nieto and Rodriguez-Lopez [15] then by Petrusel and Rus [16] and so
on.
Jachymski in his paper, instead of using the concept of partial order on complete
metric space, used the concept of graph theory and obtained more general fixed
point results. In this paper we further generalized these results with the help of
general integral type contraction mapping in metric space endowed with a graph
and obtained some progressively broad fixed point results.

2. Basic concept and mathematical preliminary

Definition 1 Let (X, d) be a metric space and f be a selfmapping on X. Then
f is said to be a Picard operator (abbr., PO) if f has a unique fixed point x∗ and
limn→∞ fn(x) = x∗ for all x ∈ X and f is said to be weakly Picard operator
(abbr., WPO) if for any x ∈ X, limn→∞ fn(x) exists (it may depend on x) and is
a fixed point of f .

Definition 2 ([9]). Let (X, d) be a metric space and ∆ = {(x, x) : x ∈ X}. Con-
sider a graph G such that its vertex set V (G) coincide with X and the edge set
E(G) contains all loops i.e ∆ ⊆ E(G). Assume that G has no parallel edges so,
we can identify G with the pair G(V (G), E(G)).
By G−1 we denote the conversion of a graph G, that is the graph obtained from
G by reversing the direction of the edges. Thus we have

V (G−1) = V (G)

E(G−1) = {(x, y) ∈ X ×X : (y, x) ∈ E(G)}
By G̃ we denote the undirected graph obtained from G by ignoring the direc-
tion of edges. Actually, it will be more convenient for us to treat G̃ as a directed
graph for which the set of edges is symmetric. Under this convention,

E(G̃) = E(G) ∪ E(G−1)

We call (V ′, E′) a subgraph of G if V ′ ⊆ V (G), E′ ⊆ E(G) and for any edges
(x, y) ∈ E′, x, y ∈ V ′
If x and y are vertices of G, then a path in G from x to y of length k ∈ N is a
finite sequence {xn} (n ∈ {0, 1, 2, · · · , k}) of vertices such that x0 = x, xk = y and
(xi−1, xi) ∈ E(G) for i = {1, 2, · · · , k}.
A graph G is connected if there is a path between any two vertices. G is weakly
connected if G̃ is connected. If G is such that E(G) is symmetric and x is a ver-
tex in G, then the subgraph Gx consisting of all edges and vertices which are con-
tained in some path beginning at x is called the component of G containing x.
In this case V (Gx) = [x]G, where [x]G is the equivalence class of the following
relation R defined on V (G) by the rule

yRz if there is a path in G from y to z.
Clearly Gx is connected.

Definition 3 ([9]). A mapping f : X → X is called orbitally continuous if for
all x ∈ X and any sequence (kn)n∈N of positive integers, fknx → y ∈ X implies
f(fknx)→ fy as n→∞.
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Definition 4 ([9]). A mapping f : X → X is called G-continuous if for given
x ∈ X and a sequence (xn)n∈N, xn → x and (xn, xn+1) ∈ E(G) for n ∈ N implies
f(xn)→ f(x).

Definition 5 ([9]). A mapping f : X → X is called orbitally G-continuous if
for given x, y ∈ X and a sequence (kn)n∈N of positive integers, fknx → y and
(fknx, fkn+1x) ∈ E(G) for n ∈ N implies f(fknx)→ fy.

Definition 6 ([5]). A mapping f : X → X is called a Banach G-contraction if:

(a) ∀ x, y ∈ X
(

(x, y) ∈ E(G) ⇒ (fx, fy) ∈ E(G)
)

;

(b) there exits α ∈ (0, 1) such that for each (x, y) ∈ E(G), we have

d(fx, fy) ≤ αd(x, y).

Definition 7 ([5]). Let (X, d) be a metric space. The operator f : X → X is
called a G-Ciric-Reich-Rus operator if:

(a) f is edge preserving, i.e. ∀ x, y ∈ X
(

(x, y) ∈ E(G) ⇒ (fx, fy) ∈ E(G)
)

;

(b) there exist α, β, γ ∈ (0, 1) with α + β + γ < 1 such that for each (x, y) ∈
E(G), the following inequality holds:

d(fx, fy) ≤ αd(x, y) + βd(x, fx) + γd(y, fy).

3. Main Results

Throughout this section, we assume that (X, d) is a metric space, and G denotes
the set of all directed graph G such that V (G) = X, ∆ ⊆ E(G) and the graph
G has no parallel edges. The set of all fixed points of a mapping f is denoted
by Fixf . Instead of writing general integral type G-contraction we will write GT
contraction.

Definition 8 A mapping f : X → X is called a general integral type G-
contraction (abbr. GT -contraction) if:

(a) f is edge preserving, i.e. ∀ x, y ∈ X
(

(x, y) ∈ E(G) ⇒ (fx, fy) ∈ E(G)
)

;

(b) there exist α, β, γ ∈ (0, 1) with α + 2β + 2γ < 1 such that for each (x, y) ∈
E(G), the following inequality holds:∫ d(fx,fy)

0

φ(t)dt ≤ α
∫ d(x,y)

0

φ(t)dt+ β

∫ d(x,fy)

0

φ(t)dt+ γ

∫ d(y,fx)

0

φ(t)dt, (2)

where φ : [0,∞)→ [0,∞) is a Lebesgue-integrable mapping which is summable on
each compact subset of [0,∞), nonnegative, and such that ∀ ε > 0,

∫ ε
0
φ(t)dt > 0.

Remark 1 It follows from (a) of Definition 8 that (f(V (G)), (f × f)(E(G))) is a
subgraph of G where (f × f)(x, y) = (fx, fy) for all x, y ∈ X.

Remark 2 Taking all other conditions of the Definition 8 as same if we put β =
γ = 0 and φ(t) = 1 then from inequality (2) we only get

d(fx, fy) ≤ αd(x, y). (3)

Which is Banach G-contraction.
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Remark 3 Taking all other conditions of the Definition 8 as same if we only put
β = γ = 0 then from (2) we get∫ d(fx,fy)

0

φ(t)dt ≤ α
∫ d(x,y)

0

φ(t)dt. (4)

Which we call Branciari G-contraction. (2) is more general than that of (3) and
(4) because (3) and (4) are derived from (2).

Example 1 As ∆ ⊆ E(G) so any constant function f : X → X is a GT -
contraction for every G ∈ G .

Example 2 Let X = {0, 1, 2, 3, 4, 5, 6} and d(x, y) = |x − y| and the function
f : X → X is defined by

fx =


x− 4 if x ∈ {5, 6},
x− 2 if x ∈ {3, 4},
x− 1 if x = 2,

x if x ∈ {0, 1}.

Define the graph G by V (G) = X and E(G) = ∆ ∪ {(1, 2), (3, 5), (5, 6)}. It is easy
to see that f preserves edges. Now d(f3, f5) = 0, d(f1, f2) = 0, d(f5, f6) =
1, d(5, f6) = 3, and d(6, f5) = 5.

Since d(f5, f6) = 1 = d(5, 6) so f is not a Banach G-contraction. Now the func-
tion φ : [0,∞) → [0,∞) is defined by φ(t) = t, then it is easily verified that f is a
GT -contraction with constant α = 1

2 , β = 1
8 and γ = 1

16 but f is not a Branciari.

Lemma 1 Let (X, d) be a metric space endowed with a graph G and f : X → X
be a GT -contraction. If x ∈ X satisfies the condition (x, fx) ∈ E(G) then we
have ∫ d(fnx,fn+1x)

0

φ(t)dt ≤ rn
∫ d(x,fx)

0

φ(t)dt, (5)

where r := (α+β)
(1−β) < 1.

Proof. Let x ∈ X with (x, fx) ∈ E(G). An easy induction shows that
(fnx, fn+1x) ∈ E(G) for all n ∈ N. For n ∈ N

∫ d(fnx,fn+1x)

0

φ(t)dt ≤ α

∫ d(fn−1x,fnx)

0

φ(t)dt+ β

∫ d(fn−1x,fn+1x)

0

φ(t)dt

+ γ

∫ d(fnx,fnx)

0

φ(t)dt

≤ (α+ β)

∫ d(fn−1x,fnx)

0

φ(t)dt+ β

∫ d(fnx,fn+1x)

0

φ(t)dt.

Hence

∫ d(fnx,fn+1x)

0

φ(t)dt ≤ (α+ β)

(1− β)

∫ d(fn−1x,fnx)

0

φ(t)dt ≤ r

∫ d(fn−1x,fnx)

0

φ(t)dt,
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where r := (α+β)
(1−β) < 1. So we get∫ d(fnx,fn+1x)

0

φ(t)dt ≤ rn
∫ d(x,fx)

0

φ(t)dt.

Definition 9 Let (X, d) be a metric space endowed with a graph G and f :
X → X be a mapping. We say that the graph G is f -connected if for all ver-
tices x, y of G with (x, y) /∈ E(G) there exists a path in G, (xi)

N
i=0 from x to y

such that x0 = x, xN = y and (xi, fxi) ∈ E(G) for all i = 1, · · · , N − 1. A graph

G is weakly connected if G̃ is f -connected.

Lemma 2 Let (X, d) be a metric space endowed with a graph G and f : X →
X be a GT -contraction such that the graph G is f -connected. If x ∈ X with
(x, fx) /∈ E(G) satisfies the condition (xi, fxi) ∈ E(G) for all i = 1, · · · , N − 1
then we have ∫ d(fnx,fn+1x)

0

φ(t)dt ≤ pnq(x) + npn−1s(x), (6)

where p := (α+β+2γ)
(1−β) and q(x) :=

N∑
i=1

∫ d(xi−1,xi)

0
φ(t)dt and

s(x) := (β+γ)
(1−β)

N∑
i=2

∫ d(xi−1,fxi−1)

0
φ(t)dt.

Proof. Since (x, fx) /∈ E(G), there exists a path in G, (xi)
N
i=0 from x to fx

such that x0 = x, xN = fx with (xi−1, xi) ∈ E(G) for all i = 1, · · · , N and
(xi, fxi) ∈ E(G) for all i = 1, · · · , N − 1. Then by the triangle inequality and (2)
we get

∫ d(fnx,fn+1x)

0

φ(t)dt ≤
N∑
i=1

∫ d(fnxi−1,f
nxi)

0

φ(t)dt

≤ α
N∑
i=1

∫ d(fn−1xi−1,f
n−1xi)

0

φ(t)dt

+ β

N∑
i=1

∫ d(fn−1xi−1,f
nxi)

0

φ(t)dt

+ γ

N∑
i=1

∫ d(fn−1xi,f
nxi−1)

0

φ(t)dt

≤ (α+ β + γ)

N∑
i=1

∫ d(fn−1xi−1,f
n−1xi)

0

φ(t)dt

+β

N∑
i=1

∫ d(fn−1xi,f
nxi)

0

φ(t)dt+γ

N∑
i=1

∫ d(fn−1xi−1,f
nxi−1)

0

φ(t)dt

≤ (α+ β + γ)

N∑
i=1

∫ d(fn−1xi−1,f
n−1xi)

0

φ(t)dt

+ β

∫ d(fnx,fn+1x)

0

φ(t)dt+ β

N−1∑
i=1

∫ d(fn−1xi,f
nxi)

0

φ(t)dt
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+ γ

∫ d(fn−1x,fnx)

0

φ(t)dt+ γ

N∑
i=2

∫ d(fn−1xi−1,f
nxi−1)

0

φ(t)dt

≤ (α+ β + 2γ)

N∑
i=1

∫ d(fn−1xi−1,f
n−1xi)

0

φ(t)dt

+β

∫ d(fnx,fn+1x)

0

φ(t)dt+(β+γ)rn−1
N∑
i=2

∫ d(xi−1,fxi−1)

0

φ(t)dt.

Hence

∫ d(fnx,fn+1x)

0

φ(t)dt ≤
N∑
i=1

∫ d(fnxi−1,f
nxi)

0

φ(t)dt

≤ (α+ β + 2γ)

(1− β)

N∑
i=1

∫ d(fn−1xi−1,f
n−1xi)

0

φ(t)dt

+
(β + γ)

(1− β)
rn−1

N∑
i=2

∫ d(xi−1,fxi−1)

0

φ(t)dt.

Since 0 < r = (α+β)
(1−β) <

(α+β+2γ)
(1−β) = p < 1, so from above we get∫ d(fnx,fn+1x)

0

φ(t)dt ≤
N∑
i=1

∫ d(fnxi−1,f
nxi)

0

φ(t)dt

≤ p
N∑
i=1

∫ d(fn−1xi−1,f
n−1xi)

0

φ(t)dt

+
(β + γ)

(1− β)
pn−1

N∑
i=2

∫ d(xi−1,fxi−1)

0

φ(t)dt

≤ p2
N∑
i=1

∫ d(fn−2xi−1,f
n−2xi)

0

φ(t)dt

+ 2
(β + γ)

(1− β)
pn−1

N∑
i=2

∫ d(xi−1,fxi−1)

0

φ(t)dt

· · · · · · · · ·

≤ pn
N∑
i=1

∫ d(xi−1,xi)

0

φ(t)dt

+ n
(β + γ)

(1− β)
pn−1

N∑
i=2

∫ d(xi−1,fxi−1)

0

φ(t)dt.

Hence∫ d(fnx,fn+1x)

0

φ(t)dt ≤ pnq(x) + npn−1s(x), (7)

where p := (α+β+2γ)
(1−β) , q(x) :=

N∑
i=1

∫ d(xi−1,xi)

0
φ(t)dt and
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s(x) := (β+γ)
(1−β)

N∑
i=2

∫ d(xi−1,fxi−1)

0
φ(t)dt.

Lemma 3 Let (X, d) be a metric space endowed with a graph G and f : X → X
be a GT -contraction. For all x ∈ X the sequence (fnx)n∈N is a Cauchy sequence.

Proof. Let x ∈ X is fixed. We discuss two cases.

Case 1. If (x, fx) ∈ E(G) then by Lemma 1 we get∫ d(fnx,fn+1x)

0

φ(t)dt ≤ rn
∫ d(x,fx)

0

φ(t)dt, (8)

for all n ∈ N, where r := (α+β)
(1−β) < 1.

Let m,n ∈ N, n > m. Then using triangular inequality we get

d(fmx, fnx) ≤
n−1∑
i=m

d(f ix, f i+1x). (9)

Therefore∫ d(fmx,fnx)

0

φ(t)dt ≤
n−1∑
i=m

∫ d(fix,fi+1x)

0

φ(t)dt

≤ (rm + rm+1 + · · ·+ rn−1)

∫ d(x,fx)

0

φ(t)dt

= rm(1 + r + · · ·+ rn−m−1)

∫ d(x,fx)

0

φ(t)dt

≤ rm

1− r

∫ d(x,fx)

0

φ(t)dt.

Letting m → ∞ on both sides of the above inequality and using the property
that,

∫ ε
0
φ(t)dt > 0, ∀ ε > 0, it follows that the sequence (fnx)n∈N is a Cauchy

sequence.

Case 2. (x, fx) /∈ E(G) then by Lemma 2 we get∫ d(fnx,fn+1x)

0

φ(t)dt ≤ pnq(x) + npn−1s(x), (10)

where p := (α+β+2γ)
(1−β) , q(x) :=

N∑
i=1

∫ d(xi−1,xi)

0
φ(t)dt and

s(x) := (β+γ)
(1−β)

N∑
i=2

∫ d(xi−1,fxi−1)

0
φ(t)dt.

Since 0 < p < 1, so from (10) we get

∞∑
n=0

∫ d(fnx,fn+1x)

0

φ(t)dt ≤ q(x)

∞∑
n=0

pn + s(x)

∞∑
n=0

npn−1 ≤ q(x)

(1− p)
+

s(x)

(1− p)2
<∞,

and a standard argument shows that the sequence (fnx)n∈N is a Cauchy sequence.
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The main result of this paper is given by the following theorem.

Theorem 2 Let (X, d) be a complete metric space endowed with a graph G and
f : X → X be a GT -contraction. We suppose that

(i) G is f -connected;

(ii) for any sequence (xn)n∈N in X, if xn → x and (xn, xn+1) ∈ E(G) for all
n ∈ N then there is a subsequence (xkn)n∈N with (xkn , x) ∈ E(G) for all
n ∈ N.

Then f is a PO.

Proof. Since the sequence (fnx)n≥0 is a Cauchy sequence for all x ∈ X accord-
ing to Lemma 3, so the sequence (fnx)n≥0 is convergent.
Let x, y ∈ X then (fnx)n≥0 → x∗ and (fny)n≥0 → y∗, as n→∞.
Now we consider the following two cases

Case 1. If (x, y) ∈ E(G), we have (fnx, fny) ∈ E(G) for all n ∈ N, then∫ d(fnx,fny)

0

φ(t)dt ≤ α

∫ d(fn−1x,fn−1y)

0

φ(t)dt+ β

∫ d(fn−1x,fny)

0

φ(t)dt

+ γ

∫ d(fn−1y,fnx)

0

φ(t)dt,

for all n ∈ N. Taking n→∞ on both sides of the above inequality we get∫ d(x∗,y∗)

0

φ(t)dt ≤ α

∫ d(x∗,y∗)

0

φ(t)dt+ β

∫ d(x∗,y∗)

0

φ(t)dt+ γ

∫ d(y∗,x∗)

0

φ(t)dt,

or

(1− α− β − γ)

∫ d(x∗,y∗)

0

φ(t)dt ≤ 0.

Since 0 < (1− α− β − γ) < 1 and ∀ ε > 0,
∫ ε
0
φ(t)dt > 0 so we obtain x∗ = y∗.

Case 2. If (x, y) /∈ E(G), then there is a path in G, (xi)
N
i=0 from x to y such

that x0 = x, xN = y with (xi−1, xi) ∈ E(G) for all i = 1, · · · , N and (xi, fxi) ∈
E(G) for all i = 1, · · · , N − 1. Then (fnxi−1, f

nxi) ∈ E(G) for all n ∈ N and
i = 1, · · · , N and by triangle inequality we get

∫ d(fnx,fny)

0

φ(t)dt ≤
N∑
i=1

∫ d(fnxi−1,f
nxi)

0

φ(t)dt

≤ α
N∑
i=1

∫ d(fn−1xi−1,f
n−1xi)

0

φ(t)dt+ β

N∑
i=1

∫ d(fn−1xi−1,f
nxi)

0

φ(t)dt

+ γ

N∑
i=1

∫ d(fn−1xi,f
nxi−1)

0

φ(t)dt

≤ (α+ β + γ)

N∑
i=1

∫ d(fn−1xi−1,f
n−1xi)

0

φ(t)dt

+ β

N∑
i=1

∫ d(fn−1xi,f
nxi)

0

φ(t)dt+ γ

N∑
i=1

∫ d(fn−1xi−1,f
nxi−1)

0

φ(t)dt.
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By Lemma 3 we have, the sequence (fnxi)n≥0 is convergent and using the conti-
nuity of distance we have, the sequence (d(fnxi−1, f

nxi))n∈N is convergent and

let limn→∞
∫ d(fnxi−1,f

nxi)

0
φ(t)dt = ti for all i = 1, · · · , N . Taking n → ∞

on both sides of the above inequality we get ti = 0 for all i = 1, · · · , N that is
d(x∗, y∗) ≤ 0, hence x∗ = y∗.

Therefore, for all x ∈ X there exists a unique x∗ ∈ X such that

lim
n→∞

fnx = x∗.

Now we will prove that x∗ ∈ Fixf . Since the graph G is f -connected, so there
is at least one x0 ∈ X such that (x0, fx0) ∈ E(G) so (fnx0, f

n+1x0) ∈ E(G)
for all n ∈ N. Since limn→∞ fnx0 = x∗, therefore by (ii) of Theorem 2 there is
a subsequence (fknx0)n∈N with (fknx0, x

∗) ∈ E(G) for all n ∈ N. Then for all
n ∈ N we get

∫ d(x∗,fx∗)

0

φ(t)dt ≤
∫ d(x∗,fkn+1x0)

0

φ(t)dt+

∫ d(fkn+1x0,fx
∗)

0

φ(t)dt

≤
∫ d(x∗,fkn+1x0)

0

φ(t)dt+ α

∫ d(fknx0,x
∗)

0

φ(t)dt

+ β

∫ d(fknx0,fx
∗)

0

φ(t)dt+ γ

∫ d(x∗,fkn+1x∗)

0

φ(t)dt.

Now, letting n→∞ on both sides of the above inequality we get

∫ d(x∗,fx∗)

0

φ(t)dt ≤ β

∫ d(x∗,fx∗)

0

φ(t)dt,

or

(1− β)

∫ d(x∗,fx∗)

0

φ(t)dt ≤ 0.

Since 0 < (1− β) < 1 and ∀ ε > 0,
∫ ε
0
φ(t)dt > 0, so fx∗ = x∗, that is, x∗ ∈ Fixf .

For uniqueness, if we have fy = y for some y ∈ X, then from above, we must
have fny = x∗ as n→∞, so y = x∗ and therefore, f is a PO.

Corollary 1 Let (X, d) be a complete metric space endowed with a graph G
and f : X → X be a mapping satisfies the following conditions

(i) G is f -connected;

(ii) for any sequence (xn)n∈N in X, if xn → x and (xn, xn+1) ∈ E(G) for all
n ∈ N then there is a subsequence (xkn)n∈N with (xkn , x) ∈ E(G) for all
n ∈ N;

(iii) there exist α, β ∈ (0, 1) with α + 2β < 1 such that for each (x, y) ∈ E(G),
the following inequality holds:∫ d(fx,fy)

0

φ(t)dt ≤ α

∫ d(x,y)

0

φ(t)dt+ β

∫ d(x,fy)

0

φ(t)dt,

where φ : [0,∞)→ [0,∞) is a Lebesgue-integrable mapping which is summable on
each compact subset of [0,∞), nonnegative, and such that ∀ ε > 0,

∫ ε
0
φ(t)dt > 0.

Then f is a PO.
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Proof. It is clear that f is a GT -contraction with constant γ = 0, so by Theo-
rem 2 it is proved that f is a PO.

Corollary 2 Let (X, d) be a complete metric space endowed with a graph G
and f : X → X be a mapping satisfies the following conditions

(i) G is f -connected;

(ii) for any sequence (xn)n∈N in X, if xn → x and (xn, xn+1) ∈ E(G) for all
n ∈ N then there is a subsequence (xkn)n∈N with (xkn , x) ∈ E(G) for all
n ∈ N;

(iii) there exist α, γ ∈ (0, 1) with α + 2γ < 1 such that for each (x, y) ∈ E(G),
the following inequality holds:∫ d(fx,fy)

0

φ(t)dt ≤ α

∫ d(x,y)

0

φ(t)dt+ γ

∫ d(y,fx)

0

φ(t)dt,

where φ : [0,∞)→ [0,∞) is a Lebesgue-integrable mapping which is summable on
each compact subset of [0,∞), nonnegative, and such that ∀ ε > 0,

∫ ε
0
φ(t)dt > 0.

Then f is a PO.

Proof. It is clear that f is a GT -contraction with constant β = 0, so the conclu-
sion is obtained by Theorem 2 that f is a PO.

4. Example

Example 3 Let X = [0, 1] be endowed with the Euclidean metric d(x, y) = |x −
y|. Define the graph G by V (G) = X and E(G) = {(x, y) ∈ [0, 1)× [0, 1)|x ≥ y}∪
{(1, 1)} and the function f : X → X is defined by fx = x

4 for all x ∈ (0, 1] and

f0 = 1
3 then (X, d) is a complete metric space and G is weakly f -connected and

the function φ : [0,∞)→ [0,∞) is defined by φ(t) = t.

Now ∫ d(fx,fy)

0

φ(t)dt =
(x− y)2

32
,

and ∫ d(x,y)

0

φ(t)dt =
(x− y)2

2
,

∫ d(x,fy)

0

φ(t)dt =
(4x− y)2

32
,

∫ d(y,fx)

0

φ(t)dt =
(4y − x)2

32
.

So f is a GT -contraction with constant α = 1
8 , β = 1

12 , γ = 1
6 , but the condition

(ii) of the Theorem 2 is not satisfied. Clearly, lim
n→∞

fnx = 0 for all x ∈ X, but f

has no fixed point.

Example 4 Let X = {0, 2, 4, 8, 16} be endowed with the Euclidean metric
d(x, y) = |x − y| then (X, d) is a complete metric space. Define the graph G
by V (G) = X and E(G) = ∆ ∪ {(0, 2), (2, 4), (4, 8), (8, 16)} and the function
f : X → X is defined by

fx =

{
x
2 if x ∈ {4, 8, 16},
0 if x = {0, 2}.
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It is easy to see that f preserves edges and G is weakly f -connected.
Now the function φ : [0,∞)→ [0,∞) is defined by φ(t) = t.

Then ∫ d(f2,f4)

0

φ(t)dt = 2,

and ∫ d(2,4)

0

φ(t)dt = 2,

∫ d(2,f4)

0

φ(t)dt = 0,

∫ d(4,f2)

0

φ(t)dt = 8.

So f is a GT -contraction with constant α = 1
2 , β = 1

16 , γ = 1
6 . As d(f2, f4) =

d(2, 4) = d(2, f2) = d(4, f4) = 2 so f is neither a Banach G-contraction nor
a G-Ciric-Reich-Rus operator. Now it can be easily verified that all the condi-
tions of the Theorem 2 are satisfied. Clearly, 0 is the only fixed point of f and
lim
n→∞

fnx = 0 for all x ∈ X. So f is a PO.
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