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EXISTENCE OF SOLUTION AND CONVERGENCE OF

RESOLVENT ITERATIVE ALGORITHMS FOR A SYSTEM OF

NONLINEAR VARIATIONAL INCLUSION PROBLEM

S. SHAFI AND L. N. MISHRA

Abstract. In this paper, we introduce and study a system of variational

inclusions called system of nonlinear variational inclusion problem involving
A-monotone mappings in real Hilbert spaces. By means of resolvent opera-
tor technique, we suggest an resolvent iterative algorithm for finding the ap-
proximate solution of this system and discuss the convergence criteria of the

sequences generated by the resolvent iterative algorithm under some suitable
conditions.

1. Introduction

Variational inequality and variational inclusion problems are of fundamental im-
portance in a wide range of mathematical and applied sciences problems, such as
mathematical programming, traffic engineering, economics and equilibrium prob-
lems. The ideas and techniques of the variational inequalities are being applied in
a variety of diverse areas of sciences and are proved to be productive and inno-
vative. It has been shown that this theory provides a simple, natural and unified
framework for a general treatment of unrelated problems. The projection and its
invariant forms represent an important tool for finding the approximation solution
of various types of variational inequalities. For further details of the approximation
solvability of variational inclusions, we refer to [1-4,6-8,10-15,17].

It is known that the monotonicity of the underlying operator plays a prominent
role in solving different classes of variational inequality problems. In 2003, Fang
and Huang [5] introduced and studied a new class of variational inclusions involving
H-monotone operators in a Hilbert space. They have obtained a new algorithm
for solving the associated class of variational inclusions using resolvent operator
technique. A considerable research in approximation solvability and A-monotone
operators and H-η-accretive operators has been carried out by He et al. [9], Lan
et al. [15], Verma [19,21]. Fang et al. [6] have considered a class of variational
inclusions and discussed its solvability using H-η-accretive operators.
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Motivated and inspired by the work going on in this direction, in this paper we
give the existence and Lipschitz continuity of the resolvent operators. As an appli-
cation, we consider a system of nonlinear variational inclusion problem involving
A-monotone operator in Hilbert spaces. Further, using resolvent operator, we sug-
gest a resolvent iterative algorithm for approximating the solution of this system
and discuss the convergence analysis of the sequences generated by the resolvent
iterative algorithm.

2. Resolvent Operator and Formulation of Problem

We need the following definitions and results from the literature.
Let X be a real Hilbert space equipped with norm ∥.∥ and an inner product

< ., . >, respectively. Let 2X denote the family of all non-empty subsets of X.
Definition 2.1. Let A : X → X be a single-valued mapping. Then A is said to
be
(i) monotone if

⟨Au−Av, u− v⟩ ≥ 0, ∀u, v ∈ X;

(ii) strictly monotone if, A is monotone and

⟨Au−Av, u− v⟩ = 0,

if and only if u = v.
(iii) δ-strongly monotone if there is a constant δ > 0 such that

⟨Au−Av, u− v⟩ ≥ δ∥u− v∥2, ∀u, v ∈ X.

Definition 2.2. Let p, g : X → X S : X ×X → X be a single-valued mappings.
Then S is said to be
(i) p-monotone in the first argument, if

⟨S(p(u), z)− S(p(v), z), u− v⟩ ≥ 0, ∀u, v, z ∈ X;

(ii) g-monotone in the second argument, if

⟨S(z, g(u))− S(z, g(v)), u− v⟩ ≥ 0, ∀u, v, z ∈ X;

(iii) p-monotone with respect to A in the first argument, if

⟨S(p(u), z)− S(p(v), z), A(u)−A(v)⟩ ≥ 0, ∀u, v, z ∈ X;

(iv) g-monotone with respect to A in the second argument, if

⟨S(z, g(u))− S(z, g(v)), A(u)−A(v)⟩ ≥ 0, ∀u, v, z ∈ X;

Definition 2.3. Let A,H : X → X be single-valued mappings and M : X → 2X

be a multi-valued mapping. Then M is said to be
(i) monotone if

⟨x− y, u− v⟩ ≥ 0, ∀u, v ∈ X,x ∈ Mu, y ∈ Mv;

(ii) monotone with respect to A if

⟨x− y,Au−Av⟩ ≥ 0, ∀u, v ∈ X,x ∈ Mu, y ∈ Mv;
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(iii) ν-strongly monotone if there is a constant ν > 0 such that

⟨x− y, u− v⟩ ≥ ν∥u− v∥2, ∀u, v ∈ X,x ∈ Mu, y ∈ Mv;

(iv) maximal monotone, if M is monotone and (I + ρM)(X) = X ∀ρ > 0, where I
denotes the identity mapping on H;
(v) relaxed monotone if there exists a positive constant µ > 0 such that

⟨x− y, u− v⟩ ≥ −µ∥u− v∥2, ∀u, v ∈ X,x ∈ Mu, y ∈ Mv;

(vi) H-monotone, if M is monotone and (H + ρM)(X) = X ∀ρ > 0
(vii) strongly H-monotone, if M is strongly monotone and (H+ρM)(X) = X ∀ρ >
0
(viii) A-monotone, if M is relaxed monotone and (A+ ρM)(X) = X ∀ρ > 0.
The relation between A-monotone mapping, H-monotone mapping and strongly
H-monotone mapping can be denoted as

{A-monotone mapping} ⊃ {H-monotone mapping} ⊃ {strongly H-monotone map-
ping}.
Theorem 2.4. Let a single-valued mapping A : X → X be δ-strongly monotone.
Let M : X → 2X be A-monotone operator. If for all (v, y) ∈ Graph(M), ⟨x −
y, u− v⟩ ≥ 0 holds, where Graph(M) = {(a, b) ∈ X ×X : b ∈ M(a)}, then (u, x) ∈
Graph(M).

Proof. Since M is A-monotone, we know that (A+ ρM)X = X holds ∀ρ > 0 and
so there exists (u1, x1) ∈ Graph(M) such that

A(u) + ρx = A(u1) + ρx1.

Since A is δ-strongly monotone, we have

0 ≤ ρ⟨x− x1, u− u1⟩

= −⟨A(u)−A(u1), u− u1⟩

≤ −δ||u− u1||2 ≤ 0.

This implies that u = u1 and x = x1. Thus (u, x) = (u1, x1) ∈ Graph(M). This
completes the proof.
Theorem 2.5. Let a single-valued mapping A : X → X be δ-strongly monotone.
Let M : X → 2X be A-monotone operator. Then the operator (A + ρM)−1 is

single-valued for 0 < ρ <
δ

µ
, where δ, ρ and µ are positive constants.

Proof. For any given u⋆ ∈ X, let ∀u, v ∈ (A+ ρM)−1(u⋆). It follows that

−A(u) + u⋆ ∈ ρM(u) and −A(v) + u⋆ ∈ ρM(v).

Since A is δ-strongly monotone, M : X → 2X is an A-monotone operator, that is,
M is µ-relaxed monotone, we have

−µ||u− v||2 ≤ 1

ρ
⟨(−A(u) + u⋆)− (−A(v) + u⋆), u− v⟩



50 S. SHAFI AND L. N. MISHRA EJMAA-2021/9(2)

= −1

ρ
⟨A(u)−A(v), u− v⟩

≤ −1

ρ
δ||u− v||2

= − δ

ρ
||u− v||2.

This implies

µρ||u− v||2 ≥ δ||u− v||2.

If u ̸= v, then ρ ≥ δ

µ
contradicts with 0 < ρ <

δ

µ
. Thus u = v, that is, (A+ ρM)−1

is single-valued.
Definition 2.6[18]. Let A : X → X be a strictly monotone mapping andM : X →
2X be A-monotone mapping. The resolvent operator is defined by JM

ρ,A : X → X
is defined by

JM
ρ,A(u) = (A+ ρM)−1(u), ∀u ∈ X.

Definition 2.7[5]. Let H : X → X be a strictly monotone mapping and M : X →
2X be H-monotone mapping. The resolvent operator is defined by JM

ρ,H : X → X
is defined by

JM
ρ,H(u) = (H + ρM)−1(u), ∀u ∈ X.

Lemma 2.8. If A : X → X be δ-strongly monotone and M : X → 2X be

A-monotone. Then the resolvent operator JM
ρ,A : X → X is

1

δ − ρµ
-Lipschitz

continuous for 0 < ρ <
δ

µ
, where δ, ρ and µ are positive constants.

Proof. For any u, v ∈ X, we have

JM
ρ,A(u) = (A+ ρM)−1(u),

JM
ρ,A(v) = (A+ ρM)−1(v).

This implies that
1

ρ

(
u−A(JM

ρ,A(u))
)
∈ M(JM

ρ,A(u)),

1

ρ

(
v −A(JM

ρ,A(v))
)
∈ M(JM

ρ,A(v)).

M is A-monotone, implies, M is µ-relaxed monotone. Hence we have

1

ρ

⟨
(u−A(JM

ρ,A(u)))− (v −A(JM
ρ,A(v))), J

M
ρ,A(u)− JM

ρ,A(v)
⟩

=
1

ρ

⟨
u− v − (AJM

ρ,A(u)−AJM
ρ,A(v)), J

M
ρ,A(u)− JM

ρ,A(v)
⟩

≥ (−µ)||JM
ρ,A(u)− JM

ρ,A(v)||2.
Now we have

||u− v|| ||JM
ρ,A(u)− JM

ρ,A(v)|| ≥
⟨
u− v, JM

ρ,A(u)− JM
ρ,A(v)

⟩
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=
⟨
u− v − (AJM

ρ,A(u)−AJM
ρ,A(v)), J

M
ρ,A(u)− JM

ρ,A(v)
⟩

+
⟨
AJM

ρ,A(u)−AJM
ρ,A(v), J

M
ρ,A(u)− JM

ρ,A(v)
⟩

≥ −ρµ||JM
ρ,A(u)− JM

ρ,A(v)||2 + δ||JM
ρ,A(u)− JM

ρ,A(v)||2

= (δ − ρµ)||JM
ρ,A(u)− JM

ρ,A(v)||2.
This implies that

||u− v|| ≥ (δ − ρµ)||JM
ρ,A(u)− JM

ρ,A(v)||,

or,

||JM
ρ,A(u)− JM

ρ,A(v)|| ≤
1

δ − ρµ
||u− v||, 0 < ρ <

δ

µ
.

Taking A = I, the identity operator, we immediately have the following corollary:
Corollary 2.9. Let M : X → 2X be µ-relaxed monotone. Then the resolvent

operator JM
ρ,I = (I+ρM)−1 : X → X is

1

1− ρµ
-Lipschitz continuous for 0 < ρ <

1

µ
,

where ρ and µ are positive constants and I is the identity mapping.
Lemma 2.10[16]. Let C be a nonempty closed convex subset of X. Then

v = PC [t]

⇐⇒ ⟨v − t, u− v⟩ ≥ 0, ∀ t ∈ X and u ∈ C,

where, PC [t] denotes the projection of t onto C, that is, PC [t] is such that

∥z − PC [t]∥ = dist(t, C),

where dist(t, C) is defined by

dist(t, C) = inf z∈C∥t− z∥.
Now, we formulate our main problem.
Let X be a real Hilbert space with norm ∥.∥. Let p, g : X → X,S : X ×X → X
be single-valued mapping, let M : X → 2X be A-monotone mappings. We consider
the following system of nonlinear variational inclusion problem (in short, SNVP):
Find u, v ∈ X, such that

0 ∈ S(p(u), g(u)) +M(u), (2.1)

0 ∈ S(p(v), g(v)) +M(v). (2.2)

Some Special Cases:
I. For S ≡ 0, u = v, ∀u, v ∈ X. Then above problem SNVP(2.1)-(2.2) reduces to
the following problem:

0 ∈ M(u) (2.3)

Problem (2.3) is the general inclusion problem considered and studied by Verma
[20].
II. If S : X → X such that S(p(u), g(u)) = S(p(v), g(v)) = S(p(u))−S(g(u)) ∀u ∈
X and M(u) = M(v) = ∂φ(u) ∀u ∈ X where ∂φ denotes the subdifferential of
a proper, convex and lower semicontinuous function φ : X → R ∪ {+∞}. Then
problem SNVP(2.1)-(2.2) reduces to the following problem: Find u ∈ X and

⟨S(p(u))− S(g(u)), v − u⟩ ≥ φ(u)− φ(v), ∀v ∈ X. (2.4)
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Problem (2.4) is called a class of variational inclusions considered and studied by
Hassouni and Moudafi [8].

3. Resolvent Iterative Algorithm

Here we consider the following resolvent iterative algorithm for finding an ap-
proximate solution of SNVP (2.1)-(2.2) which consists of the following steps:
Resolvent Iterative Algorithm (RIA) 3.1.
Step 1. Initiation Step:
Select w0, t0 ∈ X and set n = 0.
Step 2. Resolvent Step:
Find wn, tn ∈ X such that

un = JM
ρn,A

{
A(wn)− ρnS(p(un), g(un))

}
. (3.1)

vn = JM
γn,A

{
A(tn)− γnS(p(vn), g(vn))

}
. (3.2)

where ρn, γn are such that

0 < ρn, γn <
δ

µ
. (3.3)

Step 3. Projection step:
Set

C =
{
w ∈ X :

⟨
A(wn)−A(un), w −A(un)

⟩
≤ 0

}
.

If A(wn) = A(un), then stop, otherwise, choose wn+1 such that

A(wn+1) = PC(A(w
n)). (3.4)

Again, set

C =
{
t ∈ X :

⟨
A(tn)−A(vn), t−A(vn)

⟩
≤ 0

}
.

If A(tn) = A(vn), then stop, otherwise, choose tn+1 such that

A(tn+1) = PC(A(t
n)). (3.5)

Step 4. Let n = n+ 1 and return to Step 1.
Remark 3.2.
From (3.1), (3.2), we can have

A(wn) ∈ A(un) + ρn(S(p(un), g(un)) +M(un)),

or,
1

ρn

(
A(wn)−A(un)

)
∈ (S(p(un), g(un)) +M(un)). (3.6)

Similarly, (3.2) implies that

A(tn) ∈ A(vn) + γn(S(p(vn), g(vn)) +M(vn)),

or,
1

γn

(
A(tn)−A(vn)

)
∈ (S(p(vn), g(vn)) +M(vn)). (3.7)
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4. Existence of Solution and Convergence Analysis

Now, we give the following theorem, which gives the existence of solution of
SNVP (2.1)-(2.2) and ensures the convergence of the sequences generated by the
resolvent iterative algorithm 3.1 for SNVP (2.1)-(2.2).
Theorem 4.1. LetX be a real Hilbert space. Let a single-valued map S : X×X →
X be continuous such that S is p-monotone and g-monotone with respect to A in the
first and second argument, respectively, and S is p-monotone and g-monotone in the
first and second argument, respectively. Suppose that a continuous single-valued
mapping A : X → X be δ-strongly monotone. Let an A-monotone mapping M :
X → 2X be monotone with respect to A. Then the iterative sequences {un},{vn}
generated by resolvent iterative algorithm 3.1 converges weakly to a solution of
SNVP (2.1)-(2.2).
Proof. Suppose u′ be a solution of (2.1). Therefore, we have

0 ∈ S(p(u′), g(u′)) +M(u′), (4.1)

Now, we can have∥∥∥A(u′)−A(wn+1)
∥∥∥2

=
∥∥∥A(u′)−A(wn)− (A(wn+1)−A(wn))

∥∥∥2
=

∥∥∥A(u′)−A(wn)
∥∥∥2 − 2

⟨
A(u′)−A(wn), A(wn+1)−A(wn)

⟩
+
∥∥∥A(wn+1)−A(wn)

∥∥∥2
=

∥∥∥A(u′)−A(wn)
∥∥∥2 − 2

⟨
A(wn+1)−A(wn), A(wn+1)−A(wn)

⟩
−2

⟨
A(u′)−A(wn+1), A(wn+1)−A(wn)

⟩
+

∥∥∥A(wn+1)−A(wn)
∥∥∥2

≤
∥∥∥A(u′)−A(wn)

∥∥∥2 − 2
⟨
A(u′)−A(wn+1), A(wn+1)−A(wn)

⟩
−
∥∥∥A(wn+1)−A(wn)

∥∥∥2.
This implies that∥∥∥A(u′)−A(wn+1)

∥∥∥2
≤

∥∥∥A(u′)−A(wn)
∥∥∥2 − 2

⟨
A(u′)−A(wn+1), A(wn+1)−A(wn)

⟩
−
∥∥∥A(wn+1)−A(wn)

∥∥∥2. (4.2)

Now, since S is p-monotone and g-monotone with respect to A in the first and
second argument, respectively, we have⟨

S(p(u′), g(u′))− S(p(un), g(un)), Au′ −Aun
⟩
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=
⟨
S(p(u′), g(u′))− S(p(un), g(u′)), Au′ −Aun

⟩
+
⟨
S(p(un), g(u′))− S(p(un), g(un)), Au′ −Aun

⟩
≥ 0.

This implies that⟨
S(p(u′), g(u′))− S(p(un), g(un)), Au′ −Aun

⟩
≥ 0. (4.3)

Also as M is monotone with respect to A, we have⟨
M(u′)−M(un), Au′ −Aun

⟩
≥ 0. (4.4)

On adding (4.3) and (4.4), we have⟨
S(p(u′), g(u′)) +M(u′)−

(
S(p(un), g(un)) +M(un)

)
, Au′ −Aun

⟩
≥ 0.

Using (3.6) and (4.1), it follows that⟨
0− 1

ρn

(
A(wn)−A(un)

)
, Au′ −Aun

⟩
≥ 0,

or, ⟨
A(wn)−A(un), Au′ −Aun

⟩
≤ 0. (4.5)

Therefore for A(u′) ∈ C = w ∈ X, (4.5) can be rewritten as

C =
{
w ∈ X :

⟨
A(wn)−A(un), w −Aun

⟩
≤ 0

}
. (4.6)

Since by resolvent iterative algorithm 3.1 A(wn+1) = PC(A(w
n)), it follows from

Lemma 2.10 that⟨
A(wn+1)−A(wn), A(u′)−A(wn+1)

⟩
≥ 0. (4.7)

Using (4.7) in (4.2), it follows that∥∥∥A(u′)−A(wn+1)
∥∥∥2

≤
∥∥∥A(u′)−A(wn)

∥∥∥2 − ∥∥∥A(wn+1)−A(wn)
∥∥∥2. (4.8)

Therefore, from (4.8) we have∥∥∥A(u′)−A(wn+1)
∥∥∥ ≤

∥∥∥A(u′)−A(wn)
∥∥∥, ∀n ≥ 0. (4.9)

From (4.9), it follows that
{∥∥∥A(u′)−A(wn)

∥∥∥} is a convergent sequence.

Again since A is δ-strongly monotone, we have⟨
A(u′)−A(wn), u′ − wn

⟩
≥ δ∥u′ − wn∥2,

or,

∥u′ − wn∥ ≤ 1

δ

∥∥∥A(u′)−A(wn)
∥∥∥. (4.10)

Thus it follows from (4.10) that {wn} is a bounded sequence.
From (4.8), it follows that

0 ≤
∥∥∥A(wn+1)−A(wn)

∥∥∥2
≤

∥∥∥A(u′)−A(wn)
∥∥∥2 − ∥∥∥A(u′)−A(wn+1)

∥∥∥2.
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Taking limits on both sides as n → ∞, we have

lim
n→∞

∥∥∥A(wn+1)−A(wn)
∥∥∥2

≤ lim
n→∞

{∥∥∥A(u′)−A(wn)
∥∥∥2 − ∥∥∥A(u′)−A(wn+1)

∥∥∥2} = 0.

Therefore, it follows that

lim
n→∞

∥∥∥A(wn+1)−A(wn)
∥∥∥ = 0.

Now, from A(wn+1) = PC(A(w
n)) ∈ C and A(un) ∈ C, we have⟨

A(wn)−A(un), A(wn+1)−A(un)
⟩
≤ 0,

and ∥∥∥A(un)−A(wn)
∥∥∥2 =

⟨
A(un)−A(wn), A(un)−A(wn)

⟩
≤

⟨
A(wn+1)−A(wn), A(un)−A(wn)

⟩
.

This implies that

lim
n→∞

∥∥∥A(wn)−A(un)
∥∥∥ = 0. (4.11)

Again, from the δ-strongly monotonicity of A, we have

∥A(un)−A(wn)∥ ∥un − wn∥ ≥
⟨
A(un)−A(wn), un − wn

⟩
≥ δ∥un − wn∥2.

This implies that lim
n→∞

∥wn−un∥ = 0, and hence lim
n→∞

(wn−un) = 0. Thus it follows

from the boundedness of {wn} that {un} is also a bounded sequence.
Thus, both the sequences {un} and {wn} have same weak limit points.
Now, by letting v′ to be a solution of (2.2), we can have

0 ∈ S(p(v′), g(v′)) +M(v′). (4.12)

Following the similar procedure as from (4.2) to (4.11), we can show that {tn} is
a bounded sequence and lim

n→∞
(tn − vn) = 0 and therefore from the boundedness

of {tn} it follows that {vn} is a bounded sequence and thus both the bounded
sequences have same weak limit points.
Next, we claim that each weak limit point of the sequences {un} and {vn} is a
solution of SNVP (2.1)-(2.2).

Let l be the weak limit point of {un}, that is, lim
n→∞

{un} = l (weakly).

This implies that lim
n→∞

{wn} = l (weakly).

Suppose for the fixed elements y, y′ ∈ X, we consider an arbitrary elements x, x′ ∈
X such that

x ∈ S(p(y), g(y)) +M(y). (4.13)

x′ ∈ S(p(y′), g(y′)) +M(y′). (4.14)

Therefore, we can find elements z ∈ M(y), z′ ∈ M(y′) such that

x = S(p(y), g(y)) + z. (4.15)

x′ = S(p(y′), g(y′)) + z′. (4.16)
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Since, S is p-monotone in the first argument and g-monotone in the second argu-
ment, we have⟨

un − y, S(p(un), g(un))− S(p(y), g(y))
⟩

=
⟨
un − y, S(p(un), g(un))− S(p(y), g(un))

⟩
+
⟨
un − y, S(p(y), g(un))− S(p(y), g(y))

⟩
≥ 0.

Therefore, we have⟨
un − y, S(p(un), g(un))− S(p(y), g(y))

⟩
≥ 0. (4.17)

Also, since M is A-monotone, implies, M is µ-relaxed monotone, we have⟨
un − y,M(un)−M(y)

⟩
≥ −µ∥un − y∥2.

Using (3.6) and as z ∈ M(y), it follows that⟨
un − y,

{ 1

ρn
(A(wn)−A(un))− S(p(un), g(un))

}
− z

⟩
≥ −µ∥un − y∥2. (4.18)

On adding (4.17), (4.18), we have⟨
un − y,

1

ρn
(A(wn)−A(un))− (S(p(y), g(y)) + z)

⟩
≥ −µ∥un − y∥2. (4.19)

Using (4.15) in (4.19), we have⟨
un − y,

1

ρn
(A(wn)−A(un))− x

⟩
≥ −µ∥un − y∥2,

or ⟨
un − y,−x

⟩
≥

⟨
un − y,

1

ρn
(A(wn)−A(un))

⟩
− µ∥un − y∥2. (4.20)

Using (4.11) and the boundedness of {un}, {ρn}, we can have⟨
un − y,

1

ρn
(A(wn)−A(un))

⟩
→ 0. (4.21)

Combining (4.20) and (4.21), we have⟨
un − y,−x

⟩
≥ −µ∥un − y∥2.

Therefore, by taking limits as n → ∞, we have⟨
l − y, 0− x

⟩
= lim

n→∞

⟨
un − y, 0− x

⟩
≥ −µ∥un − y∥2. (4.22)

Since by (4.13) (y, x) ∈ Graph(S(p(.), g(.)) + M(.)). Using Theorem 2.4, (4.22)
implies that (l, 0) ∈ Graph(S(p(.), g(.)) +M(.)), that is,

0 ∈ S(p(l), g(l)) +M(l).

This implies that l is a solution of (2.1).
Following the similar steps as in (4.13)-(4.22), we can show that for a weak limit
point l′ of {vn},

0 ∈ S(p(l′), g(l′)) +M(l′).

That is l′ is a solution of (2.2).
Lastly, we show that there is a unique weak limit point of {un} and {vn}.
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If possible let w1, w2 be two weak limit points of {wn} and {wnj},{wni} be two
subsequences of {wn} that converges weakly to w1, w2, respectively.
Then, it follows that {∥A(wn) − A(w1)∥2}, {∥A(wn) − A(w2)∥2} are convergent
sequences.
Suppose, that

α1 = lim
n→∞

∥A(wn)−A(w1)∥2, (4.23)

α2 = lim
n→∞

∥A(wn)−A(w2)∥2, (4.24)

α3 = lim
n→∞

∥A(w1)−A(w2)∥2. (4.25)

Therefore, we can have

∥A(wnj )−A(w2)∥2 = ∥A(wnj )−A(w1)∥2 + ∥A(w1)−A(w2)∥2

+2
⟨
A(wnj )−A(w1), A(w1)−A(w2)

⟩
. (4.26)

∥A(wni)−A(w1)∥2 = ∥A(wni)−A(w2)∥2 + ∥A(w1)−A(w2)∥2

+2
⟨
A(wni)−A(w2), A(w2)−A(w1)

⟩
. (4.27)

Letting j → ∞ in (4.26) and i → ∞ in (4.27), using the continuity of A and noting
that w1, w2 are two weak limit points of {wnj},{wni} , we can get the third term
on R.H.S of (4.26) and (4.27) converges to zero.
Now, from (4.23),(4.24) and (4.25), it follws that

α1 = α2 + α3,

or,

α1 − α2 = α3, (4.28)

and

α2 = α1 + α3,

or,

α2 − α1 = α3. (4.29)

On adding (4.28) and (4.29), we have α3 = 0. This in turn implies that A(w1) =
A(w2).
Again by using the δ-strongly monotonicity of A, we have

δ∥w1 − w2∥2 ≤
⟨
A(w1)−A(w2), w1 − w2

⟩
≤ ∥A(w1)−A(w2)∥ ∥w1 − w2∥ (4.30)

Since A(w1) = A(w2), (4.30) implies that w1 = w2.
Thus it follows that all the weak limit points of {wn} are equal. That is, {un} is
weakly convergent to a solution of (2.1).

Similarly, following the same procedure as in (4.23)-(4.30), for any two weak limit
points t1, t2 of {tn} we can show that t1 = t2. That is, {vn} is weakly convergent
to a solution of (2.2). This completes the proof.

Similar results can be obtained for H-monotone operators. For the sake of
completeness, we state the following result for H-monotone operators.
Corollary 4.2. LetX be a real Hilbert space. Let a single-valued map S : X×X →
X be continuous such that S is p-monotone and g-monotone with respect to H in
the first and second argument, respectively, and S is p-monotone and g-monotone
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in the first and second argument, respectively. Suppose that a continuous single-
valued mapping H : X → X be δ-strongly monotone. Let an H-monotone mapping
M : X → 2X be monotone with respect to H. If the iterative sequences {un},{vn}
are generated by the following resolvent iterative algorithm
Step 1. Initiation Step:
Select w0, t0 ∈ X and set n = 0.
Step 2. Resolvent Step:
Find wn, tn ∈ X such that

un = JM
ρn,H

{
H(wn)− ρnS(p(un), g(un))

}
. (4.31)

vn = JM
γn,H

{
H(tn)− γnS(p(vn), g(vn))

}
. (4.32)

where ρn, γn are such that

infn≥0ρ
n, γn > 0. (4.33)

Step 3. Projection step:
Set

C =
{
w ∈ X :

⟨
H(wn)−H(un), w −H(un)

⟩
≤ 0

}
.

If H(wn) = H(un), then stop, otherwise, choose wn+1 such that

H(wn+1) = PC(H(wn)). (4.34)

Again, set

C =
{
t ∈ X :

⟨
H(tn)−H(vn), t−H(vn)

⟩
≤ 0

}
.

If H(tn) = H(vn), then stop, otherwise, choose tn+1 such that

H(tn+1) = PC(H(tn)). (4.35)

Step 4. Let n = n+ 1 and return to Step 1.
then the sequences converges weakly to a solution of SNVP (2.1)-(2.2).

5. Conclusion

A system of nonlinear variational inclusion problem involving A-monotone map-
pings has been introduced in real Hilbert spaces. Using A-monotone mappings, a
resolvent iterative algorithm has been constructed to solve the proposed system, and
the convergence analysis of the resolvent iterative algorithm has been investigated.
Moreover the obtained results are generalized to solve the system of variational
inclusions involving A-monotone mappings. The obtained results generalize most
of the results investigated in the literature, and offer a wide range of applications
to future research on the sensitivity analysis, variational inclusion problems, vari-
ational inequality problems in Banach spaces. Researchers can use the proposed
work in the future for research work. Proposed system of nonlinear variational in-
clusion problem in real Hilbert spaces finds and also will find greater applicability
in various fields of real life in the future.
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