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ON COMPOSITION OF ENTIRE FUNCTIONS WITH FINITE

ITERATED ORDER

C. GHOSH AND S. MONDAL

Abstract. In this article we investigated growth of two composite entire func-
tions of finite iterated order. We introduced finite iterated order of an entire
function in terms of their maximum term. Also we proved some results on the

growth of composite entire functions of finite iterated order by using maximum
terms.

1. Introduction

Let f(z) =
∑∞

n=0 anz
n be an entire function. The maximum term µf (r) of

the function f(z) on |z| = r is defined as µf (r) = max
n≥0

|an|rn and the maximum

modulus of f(z) on |z| = r is defined as Mf (r) = max
|z|=r

|f(z)|.

For two transcendental entire functions f(z) and g(z) it is proved that lim
r→∞

log Tf◦g(r)
Tf (r)

=

∞ and lim
r→∞

log Tf◦g(r)
Tg(r)

= ∞ [1]. Many results have been proved on the composition

of two entire functions with finite order ([1],[3],[4],[7],[8],[13]). In 2009 [11] Tu et al.
introduced the notations of iterated order for entire functions of fast growth and
proved some theorems on the composition of entire functions with finite iterated
order.

In this paper we investigate some results of composite entire functions on finite
iterated order.

Now let f(z) be a meromorphic function, by Nevanlinna theory [2], the order
ρ(f) and lower order λ(f) of f(z) are defined by

ρ(f) = lim sup
r→∞

log Tf (r)

log r

λ(f) = lim inf
r→∞

log Tf (r)

log r
.
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We use the notations exp1 r = er, expi+1 r = exp (expi r) for 0 ≤ r < ∞ and
i = 1, 2, ... Also for sufficiently large r, we use the notations log1 r = log r, logi+1 r =
log (logi r) .

Definition 1 In [11], Tu et al. introduced the definition of iterated p order
ρp(f) of an entire function f as

ρp(f) = lim sup
r→∞

logp+1 Mf (r)

log r
= lim sup

r→∞

logp Tf (r)

log r
(p ∈ N). (1)

Similarly, the iterated p lower order λp(f) of an entire function f as

λp(f) = lim inf
r→∞

logp+1 Mf (r)

log r
= lim inf

r→∞

logp Tf (r)

log r
(p ∈ N). (2)

Definition 2 [11] The finiteness degree of the order of an entire function f is
defined by

i(f) =

 0 for f polynomial,
min {q ∈ N : ρp(f) < ∞} for f transcendental for which some q ∈ N with ρq(f) < ∞ exists.

∞ for f with ρp(f) = ∞ for all p ∈ N.

Then it is clear that i(f) and i(g) are positive integers.

2. Some preliminary lemmas

In this scetion we shall present first the known lemmas.
Lemma 1 [10] Let that λ (g) < ∞. Then for any ε > 0, we have for sufficiently

large r

Mf◦g
(
r1+ε

)
≥ Mf (Mg(r)) .

Lemma 2 [1] Let f(z) and g(z) be entire function with g(0) = 0. Let α satisfy

0 < α < 1 and let c (α) = (1−α)2

4α . Then for r > 0

Mf◦g (r) ≥ Mf (c (α)Mg (αr)) . (3)

Further if g(z) is any entire function then with α = 1
2 , for sufficiently large values

of r,

Mf◦g (r) ≥ Mf

(
1

8
Mg

(r
2

)
− |g(0)|

)
. (4)

Also from the definition it is immediate consequence that

Mf◦g (r) ≤ Mf (Mg(r)) (5)

Lemma 3 [12] Suppose that f(z) is a transcendental entire function of finite
order. Let r = l(u) be the inverse function of u = Mf (r). Then, given ε > 0, there
exists a constant A(ε) such that the equation f(z) = a has a root in the annulus

l (|a|) ≤ |z| ≤ l (|a|)1+ε

provided that |a| > A(ε).
Lemma 4 [9] For 0 ≤ r < R,

µf (r) ≤ Mf (r) ≤
R

R− r
µf (R) . (6)

Using this result we get

ρp(f) = lim sup
r→∞

logp+1 µf (r)

log r
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and

λp(f) = lim inf
r→∞

logp+1 µf (r)

log r
.

Lemma 5 [9] Let f(z) and g(z) be entire functions, then for α > 1, and
0 < r < R,

µf◦g (r) ≤
α

α− 1
µf

(
αR

R− r
µg (r)

)
.

In particular taking α = 2 and R = 2r,

µf◦g (r) ≤ 2µf (4µg (2r)) (7)

Lemma 6 [9] Let f(z) and g(z) be entire functions with g(0) = 0. Let α satisfy

0 < α < 1 and let c (α) = (1−α)2

4α . Also let 0 < δ < 1 then

µf◦g (r) ≥ (1− δ)µf (c(α)µg (αδr)) . (8)

And if g(z) is any entire function, then with α = δ = 1
2 , for sufficiently large values

of r,

µf◦g (r) ≥
1

2
µf

(
1

8
µg

(r
4

)
− |g(0)|

)
. (9)

3. Main results

Using the previous lemmas and from[5], we can prove the following lemma.
Lemma 7 Suppose that f(z) and g(z) are entire functions of finite iterated

order and put

logp Mf (r) ≡ (log r)
ϕf (r) . (10)

Then, for any ε > 0,

logp+q+1 Mf◦g
(
r1+ε

)
≥ logq (ϕf (Mg(r)) log (logMg(r))) (11)

and
logp+q+1 Mf◦g (r) ≤ logq (ϕf (Mg(r)) log (logMg(r))) (12)

for all sufficiently large values of r.
Proof. From Lemma 3, given ε > 0, there exists a constant A(ε) such that the

equation g(z) = a has a root in the annulus

l (|a|) ≤ |z| ≤ l (|a|)1+ε

provided that |a| > A(ε). We choose r0 such that

Mg(r0) > A(ε),

and we take ρ = ρg(r) = Mg(r) for any r ≥ r0. Then, there exists an aq such that
|aq| = ρ and

max
|ω|=ρ

|f(ω)| = |f(aq)|

and such that the equation g(z) = aq has a root in the annulus

r = (|aq|) ≤ |z| ≤ (|aq|)1+ε
= r1+ε.

Thus, there exists a z0 such that

|z0| ≤ r1+ε and g(z0) = aq.

Therefore, we have

Mf◦g
(
r1+ε

)
≥ |(f ◦ g) (z0)| = |f (aq)| = Mf (ρ)
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for all r ≥ r0, where ρ = Mg(ρ). Hence we have

logp+q Mf◦g
(
r1+ε

)
≥ logp+q Mf (ρ)

= logq
(
logp Mf (ρ)

)
= logq (log ρ)

ϕf (ρ)

= logq−1

(
log (log ρ)

ϕf (ρ)
)

= logq−1 (ϕf (ρ) log (log ρ))

= logq−1 (ϕf (Mg(r)) log (logMg(r)))

and
logp+q+1 Mf◦g

(
r1+ε

)
≥ logq (ϕf (Mg(r)) log (logMg(r)))

for all r ≥ r0.
Also, by the maximum modulus principle, we get

Mf◦g (r) ≤ Mf (Mg(r)) .

Then we have

logp+q+1 Mf◦g (r) ≤ logq+1

(
logp (Mf (Mg(r)))

)
= logq+1

(
(logMg(r))

ϕf (Mg(r))
)

= logq (ϕf (Mg(r)) log (logMg(r)))

This proves the lemma.
Now we can proof the following theorems.
Theorem 1 If f and g are transcendental entire functions of finite iterated or-

der with i(f) = p, i(g) = q also ρp(f) = 0 and 0 < ρq(g) < ∞, then ρp+q (f ◦ g) =
∞ provided (a) λq(g) > 0 and lim sup

r→∞
logp ϕf (r) = ∞ or (b) λq(g) = 0 and

lim
r→∞

logp ϕf (r) = ∞, where ϕf (r) is defined by

logp+1 Mf (r) = (log r)
ϕ(r)

(13)

for sufficiently large values of r
Proof. By (11), for any ε > 0, we have

lim sup
r→∞

logp+q+1 Mf◦g
(
r1+ε

)
log r1+ε

≥ lim sup
r→∞

logp ϕf (Mg(r)) logq+1 Mg(r)

(1 + ε) log r
.

(a) If λq(g) > 0 and lim sup
r→∞

logp ϕ(r) = ∞, then taking ε =
λq(g)

2 ,

we see

logq Mg(r) > r
λq(g)

2

for all sufficiently large values of r. Thus

lim sup
r→∞

logp+q+1 Mf◦g
(
r1+ε

)
log r1+ε

≥ lim sup
r→∞

logp ϕf (Mg(r)) log r
λq(g)

2(
1 + r

λq(g)

2

)
log r

=
λq(g)

2

1 +
λq(g)

2

lim sup
r→∞

logp ϕf (Mg(r))

= ∞
since Mg(r) is increasing, continuous and unbounded in r.
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(b) λq(g) = 0 and lim
r→∞

logp ϕf (r) = ∞, then for any ε′ > 0, it holds that

lim sup
r→∞

logp+q+1 Mf◦g

(
r1+ε′

)
log r1+ε′

≥ lim sup
r→∞

logp ϕf (Mg(r)) logq+1 Mg(r)

(1 + ε′) log r

≥ lim inf
r→∞

logp ϕf (Mg(r)) . lim sup
r→∞

logq+1 Mg(r)

(1 + ε′) log r

=
λq

1 + ε′
lim inf
r→∞

logp ϕf (Mg(r)) = ∞.

This proves the theorem.
Theorem 2 [9]Suppose that f and g are transcendental entire functions of

finite iterated order with i(f) = p, i(g) = q and ρq(g) > 0, ρp(f) = 0. Let

lim sup
r→∞

logp ϕf (r) = τ. (14)

If τ < ∞, then

ρp+q (f ◦ g) ≤ τρq(g). (15)

Furthermore, if lim
r→∞

logp ϕf (r) = τ , then the equality in 15 holds.

Proof For given any ε > 0, and since g(z) is of order ρq(g) and lim sup
r→∞

logp ϕf (r) =

τ then we obtain

logq Mg(r) < rρq(g)+ε, (16)

for all sufficiently large values of r and

logp ϕf (r) < τ + ε. (17)

Now from (12),

logp+q+1 Mf◦g (r) ≤ logp ϕf (Mf (r)) log (logMf (r))

i.e

lim sup
r→∞

logp+q+1 Mf◦g (r)

log r
≤ lim sup

r→∞

logp ϕf (Mg (r)) logq+1 Mg(r)

log r

≤ lim sup
r→∞

(τ + ε) log rρq(g)+ε

log r

= (τ + ε) (ρq(g) + ε) .

Since ε > 0 is arbitrary, therefore we get

ρp+q (f ◦ g) ≤ τρq(g).

Also it is clear that the equality is hold if lim
r→∞

logp ϕf (r) = τ . Hence the theorem.

Theorem 3 If f and g are transcendental entire functions of finite iterated order
with i(f) = p, i(g) = q and if (i) λq(g) = ∞ or (ii) λp(f) > 0 then λp+q (f ◦ g) = ∞.

Proof. (i) Let λq(g) = ∞.
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From Lemma 2

logp+q Mf◦g (r) ≥ logp+q Mf

(
1

8
Mg

(r
2

)
− |g (0)|

)
≥

logp+q Mf

(
1
8Mg

(
r
2

)
− |g (0)|

)
logq

(
1
8Mg

(
r
2

)
− |g (0)|

) . logq

(
1

8
Mg

(r
2

)
− |g (0)|

)
≥

logp+q Mf (r)

logq (r)
.
(
logq Mg

(r
2

)
+O(1)

)
.

Since
logp+q Mf (r)

logq(r)
is an increasing function of r for large r and 1

8Mg

(
r
2

)
− |g (0)| is

large for r, we get

logp+q Mf◦g (r) ≥ logq Mg

(r
2

)
for large r.

Hence

λp+q (f ◦ g) ≥ λq(g) = ∞.

Tf◦g (r) ≥ 1

3
logMf

(
1

8
Mg

(r
4

))
≥ 1

3
logMf

{(
1

9
Mg

(r
4

))λp(f)−ε
}

≥ 1

3
expp−1

{
c1 expq

(
c2r

λq(g)−ε
)}

where c1 > ρp(f), c2 ≥ 1 are constants, not necessarily the same at each occurence.
Then we get

logp+q Tf◦g (r) ≥ logq+1

{
c1 expq

(
c2r

λq(g)−ε
)}

+O(1)

= log
(
c2r

λq(g)−ε
)
+O(1)

= (λq(g)− ε) log r +O(1)

i.e
logp+q Tf◦g (r)

log r
≥ λq(g).

Hence first part of Theorem 3 is proved.
(ii) If λp(f) > 0 and also let λq(g) < ∞.

λp+q (f ◦ g) = lim inf
r→∞

logp+q+1 Mf◦g
(
r1+ε

)
(1 + ε) log r

≥ lim inf
r→∞

(
logp+q+1 Mf (Mg(r))

logMg (r)

logMg (r)

(1 + ε) log r

)
.

As g(z) is transcendental, for large number k > 0, then for r ≥ r0

logq+1 Mg (r)

(1 + ε) log r
> k.

This shows that,

λp+q (f ◦ g) ≥ λp(f).k.
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Since Mg (r) is continuous, increasing and unbounded in r, we get

λp+q (f ◦ g) = ∞,

since λp+q(f) > 0. Hence proved the theorem.
Theorem 4 If f and g are transcendental entire functions of finite iterated

order with i(f) = p, i(g) = q and if λq(g) < ∞ and lim sup
r→∞

logp ϕf (r) = τ < ∞,

then
λp+q (f ◦ g) ≤ τ.λ(g) ≤ ρp+q (f ◦ g) . (18)

Furthermore, in the above result the first inequaity becomes equality if

lim
r→∞

logp ϕf (r) = τ < ∞.

Proof. We have from maximum modulus principle,

Mf◦g(r) ≤ Mf (Mg (r)) (19)

Hence,

λp+q (f ◦ g) = lim inf
r→∞

logp+q+1 Mf◦g (r)

log r

≤ lim inf
r→∞

logp+q+1 Mf (Mg (r))

log r

≤ lim sup
r→∞

logp+q+1 Mf (Mg (r))

logq+1 Mg(r)
lim inf
r→∞

logq+1 Mg(r)

log r

= τ.λq(g)

which proves the first inequality of (18) .
Again by Lemma 1, we have

ρp+q (f ◦ g) = lim sup
r→∞

logp+q+1 Mf◦g
(
r1+ε

)
(1 + ε) log r

≥ lim sup
r→∞

[
logp+q+1 Mf (Mg (r))

logq+1 Mg(r)
.
logq+1 Mg(r)

(1 + ε) log r

]
≥ τ.

λq(g)

1 + ε
.

Letting ε → 0, then we get

τ.λq(g) ≤ ρp+q (f ◦ g) .
This proves the second inequality of (18).

Finally, if the limit
lim
r→∞

logp ϕf (r) = τ

exists, then we have

λp+q (f ◦ g) ≥ lim inf
r→∞

[
logp+q+1 Mf (Mg (r))

logq+1 Mg(r)
.
logq+1 Mg(r)

(1 + ε) log r

]
= τ

λq(g)

1 + ε

which gives
λp+q (f ◦ g) = τ.λq (g) .

Hence the theorem is proved.
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Remark 1 If λq (g) = ∞, then by Theorem 3, ρp+q (f ◦ g) = λp+q (f ◦ g) = ∞,
and the inequalities in (18) become trivial. If λq (g) > 0 and τ = ∞, then by
Theorem 1, ρp+q (f ◦ g) = ∞. Hence the inequality are trivial.

Theorem 5 Suppose that λp(f) = λq(g) = 0 and that

lim inf
r→∞

log logMg(r)

(log r)
α = a > 0, lim inf

r→∞

ϕf (r)

(log log r)
β
= b > 0

for any positive numbers α and β with α < 1 and α (β + 1) > 1. Then λ (f ◦ g) = ∞.
Proof. Proof of this theorem is same as the previous theorem.
Theorem 6 Suppse that λp(f) = λq(g) = 0 and that

lim inf
r→∞

logk+1 Mg(r)

[logk(r)]
α = a > 0, lim inf

r→∞

logk−1 (ϕf (r))[
logk+1 (r)

]β = b > 0

for any positive integer k ≥ q+1 and any positive numbers α and β with max (α, αβ) >
1. Then λp+q (f ◦ g) = ∞.

Proof. For 0 < ε < min (a, b)

logp+q+1 Mf◦g
(
r1+ε

)
≥ ϕf (Mg (r)) logp+q+1 Mg(r)

i.e,

lim inf
r→∞

logp+q+1 Mf◦g
(
r1+ε

)
log r1+ε

≥ lim inf
r→∞

[
ϕf (Mg (r))

logp+q+1 Mg(r)

(1 + ε) log r

]

≥ lim inf
r→∞

expk−1

[
(b− ε) (a− ε)

β
(logk(r))

αβ
]
logq [(a− ε) (logk(r))

α
]

(1 + ε) log r
.

Putting logk(r) = x, (b− ε) (a− ε)
β
= d1 and (a− ε) = d2, thus we have

λp+q (f ◦ g) ≥ lim inf
r→∞

expk−1

(
d1x

αβ
)
. logk (d2x

α)

(1 + ε) expk−1(x)
= ∞,

since max (α, αβ) > 1.
This completes the proof.
Theorem 7 Suppose that λp(f) = λq(g) = 0 and that one of the following

conditions (I) and (II) is satisfied:

(I) lim inf
r→∞

logk+1 Mg(r)

(logk r)
α1

= a1 < ∞, lim sup
r→∞

logk−1 ϕ(r)(
logk+1 r

)β1
= b1 < ∞

for any positive integer k ≥ q + 1 and for any positive numbers α1 and β1 with
α1 (β1 + 1) < 1;

(II) lim inf
r→∞

logk+1 Mg(r)(
logk+1 r

)α2
= a2 < ∞, lim sup

r→∞

logk ϕ(r)(
logk+1 r

)β2
= b2 < ∞

for any positive numbers α2 and β2 with α2β2 < 1.
Then λp+q (f ◦ g) = 0.
Proof The proof of this theorem is also same as those in the previous theorem.
Theorem 8 Let f(z) and g(z) be two entire functions of finite iterated order

with i(f) = p, i(g) = q and ρq(g) < λp(f) < ρp(f), then

lim sup
r→∞

logp+q+1 µf◦g (r)

logp µf (r)
= 0.
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Proof. From the definition of ρp(f) and λp(f) we get

logp µf (r) < rρp(f)+ε (20)

for large r and

logp µf (r) > rλp(f)−ε (21)

for large r.
From (7),

logp+q+1 µf◦g (r) ≤ logp+q+1 [2µf (4µg (2r))]

≤ logp+q+1 [µf (4µg (2r))] +O (1) .

Using (20) we have,

logp+q+1 µf◦g (r) ≤ logq+1

[
{4µg (2r)}ρp(f)+ε

]
+O (1)

≤ logq (ρp(f) + ε) log {4µg (2r)}+O (1)

≤ logq (ρp(f) + ε) log {µg (2r)}+O (1)

≤ logq (ρp(f) + ε) expq−1 (2r)
ρq(g)+ε

. (22)

From (21) and (22) we get,

logp+q+1 µf◦g (r)

logp µf (r)
≤

logq (ρp(f) + ε) expq−1 (2r)
ρq(g)+ε

rλp(f)−ε

Since ρq(g) < λp(f), now we choose ε > 0 such that

ρq(g) + ε < λp(f)− ε.

Therefore we have

lim sup
r→∞

logp+q+1 µf◦g (r)

logp µf (r)
= 0.

Theorem 9 Let f(z) and g(z) be entire functions of finite iterated order p and
q respectively. If ρq (g) > ρp (f) then

lim sup
r→∞

logp+q+1 µf◦g (r)

logp µf (r)
= ∞.

Proof. From Lemma 6 we get for large r

logp+q+1 (µf◦g (r)) ≥ logp+q+1

[
1

2
µf

(
1

8
µg

(r
4

)
− |g(0)|

)]
≥ logp+q+1

[
µf

(
1

8
µg

(r
4

)
− |g(0)|

)]
+O(1)

≥ logq+1

(
1

8
µg

(r
4

))λp(f)−ε

+O(1)

> logq (λp(f)− ε) log

(
1

8
µg

(r
4

))
+O(1)

> logq (λp(f)− ε) log
(
µg

(r
4

))
+O(1)

> logq (λp(f)− ε) expq−1

(r
4

)ρq(g)−ε

+O(1).
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Thus for sufficiently large r, there exists a sequence r = rn

logp+q+1 (µf◦g (rn)) > logq (λp(f)− ε) expq−1

(rn
4

)ρq(g)−ε

+O(1). (23)

Also for large r,

logp µ (r, f) < rρp(f)+ε.

So for the sequence r = rn, sufficiently large

logp+q+1 (µf◦g (rn))

logp µ (rn, f)
>

logq (λp(f)− ε) expq−1

(
rn
4

)ρq(g)−ε

r
ρp(f)+ε
n

.

Since ρq (g) > ρp (f), we choose ε > 0 such that ρq (g)− ε > ρp (f) + ε.
So we have

lim sup
r→∞

logp+q+1 µf◦g (r)

logp µf (r)
= ∞.

Corollary 1 Let f(z) and g(z) be transcendental entire functions of finite
iterated order p and q respectively and let ρq(g) > ρp(f). Then f ◦ g is of infinite
order.

Proof.

lim sup
r→∞

logp+q+1 µf◦g (r)

log r
= lim sup

r→∞

[
logp+q+1 µf◦g (r)

logp µf (r)
.
logp µf (r)

log r

]
≥ lim sup

r→∞

logp+q+1 µf◦g (r)

logp µf (r)
. lim inf

r→∞

logp µf (r)

log r

since for any transcendental entire function,

lim inf
r→∞

logp µf (r)

log r
= ∞.

From the previous theorem the result follows.
Theorem 10 Let f(z) and g(z) be transcendental entire functions of finite

iterated order p and q respectively with ρq (g) > 0. Then

lim sup
r→∞

logp+q+1 µf◦g (r)

logq+1 µg (r)
= ∞.

Proof. For a sequence r = rn, sufficiently large, from (23) ,

logp+q+1 (µf◦g (rn)) > logq (λp(f)− ε) expq−1

(rn
4

)ρq(g)−ε

+O(1).

Also using the definition of ρq(g) for the entire function g, we get

logq+1 µg(r) < (ρq(g) + ε) log r

for large r.
Thus for a sequence r = rn, sufficiently large, we obtain,

logp+q+1 µf◦g (rn)

logq+1 µg(rn)
>

logq (λp(f)− ε) expq−1

(
rn
4

)ρq(g)−ε

(ρq(g) + ε) log rn

since ρq(g) > 0 and so we can choose ε > 0 such that ρq(g)− ε > 0.
Hence

lim sup
r→∞

logp+q+1 µf◦g (r)

logq+1 µg (r)
= ∞.
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Remark 2 In particular, λq(g) > 0, which implies that ρq(g) > 0, therefore we
have

lim sup
r→∞

logp+q+1 µf◦g (r)

logq+1 µg (r)
= ∞.

Theorem 11 Let f(z) and g(z) be transcendental entire function of finite
iterated order p and q and let λq(g) > 0, then

lim sup
r→∞

logp+q+2 µf◦g (r)

logq+1 µg (r)
≤ ρq(g)

λq(g)
.

Proof. From (22) it easily follows that

logp+q+1 µf◦g (r) ≤ logq (ρp(f) + ε) expq−1 (2r)
ρq(g)+ε

for large r.
So for sufficiently large r

logp+q+2 µf◦g (r) ≤ logq {log (ρp(f) + ε) + (ρq(g) + ε) log r}+O (1) .

Again we have for sufficiently large r

logq+1 µg (r) > (λq(g)− ε) log r.

Hence

lim sup
r→∞

logp+q+2 µf◦g (r)

logq+1 µg (r)
≤ ρq(g)

λq(g)
.

Remark 3 Note that the result in Theorem 11 is sharp in the sense that there
exists transcendental entire functions f and g with finite iterated order p and q
such that

lim sup
r→∞

logp+q+2 µf◦g (r)

logq+1 µg (r)
=

ρq(g)

λq(g)
.

Theorem 12 Let h(z) and f(z) be two entire functions of finite iterated order
such that ρs (h) < λp (f) then

lim
r→∞

logq+s µh◦g (r)

logp+q µf◦g (r)
= 0

for any nonconstant entire function g(z) of finite iterated order ρq (g) .
Proof. We have from Niino [6],

µf◦g (r) ≥ r − r′

r
Mf◦g (r

′)

=
r − r + r−β

r
Mf◦g

(
r − r−β

)
=

1

rβ+1
Mf◦g

(
r − r−β

)
.

Now, from the definition of λp (f) we get,

rλp(f)−ε < logp Mf (r)

for large r and also from the definition of ρs (h) we have,

rρs(h)+ε ≥ logs Mh (r)

for large r.
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Hence

µf◦g (r) ≥ 1

rβ+1
expp logp Mf◦g

(
r − r−β

)
≥ 1

rβ+1
expp logp Mf

(
Mg (r − r−α)− |g(0)|

5r2(α+1)
− |g(0)|

)
>

1

rβ+1
expp

(
Mg (r − r−α)− |g(0)|

5r2(α+1)
− |g(0)|

)λp(f)−ε

>
1

rβ+1
expp

(
Mg (r − r−α)

6r2(α+1)

)λp(f)−ε

> expp (Mg (r, g))
λp(f)−ε

. (24)

On the other hand, for large r,

µh◦g (r) ≤ Mh◦g (r)

≤ Mh (Mg (r))

= exps logs Mh (Mg (r))

= exps (Mg (r))
ρs(h)+ε

. (25)

Choose ε > 0 such that ρs(h) + ε < λp(f)− ε, thus from (24) and (25) we get,

µh◦g (r)

µf◦g (r)
<

exps (Mg (r))
ρs(h)+ε

expp (Mg (r))
λp(f)−ε

.

Therefore

lim
r→∞

µh◦g (r)

µf◦g (r)
= 0.

Theorem 13 Let f and g be entire functions of finite iterated order such that
0 < λp(f) < ∞ and 0 < λq(g) < ∞. If the entire functions h and k with finite
iterated order s and t respectively satisfy

0 < lim inf
r→∞

logp+s µf◦h (r)

logq+t µg◦k (r)
≤ lim sup

r→∞

logp+s µf◦h (r)

logq+t µg◦k (r)
< ∞

then

ρs(h) = ρt(k).

Proof. First suppose that ρs(h) = ρt(k).
Now for sufficiently large r, using (9) we obtain,

logp+s [µf◦h (r)] ≥ logp+s

[
1

2
µf

(
1

8
µh

(r
4

)
+O(1)

)]
≥

(
1

8
µh

(r
4

)
+ ◦(1)

)λp(f)−ε

+O(1)

≥
(
1

9
µh

(r
4

))λp(f)−ε

+O(1).



142 C. GHOSH AND S. MONDAL EJMAA-2021/9(2)

And so for a sequence r = rn with rn ≥ r0,

logp+s [µf◦h (rn)] ≥ exps

(
logs

(
1

9
µh

(rn
4

))λp(f)−ε
)

+O(1)

≥ exps (λp(f)− ε)
(rn
4

)ρs(h)−ε

. (26)

On the other hand,

logq+t [µg◦k (r)] ≤ logq Mg◦k (r)

≤ logq Mg (Mk(r))

≤ [Mk(r)]
ρq(g)+ε

≤ expt logt [Mk(r)]
ρq(g)+ε

= expt (ρq(g) + ε) rρt(k)+ε (27)

We choose ε such that ρs(h) − ε < ρt(k) + ε , then from (26) and (27) it follows
that as r → ∞

logp+s µf◦h (r)

logq+t µg◦k (r)
= ∞.
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