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ON COMPOSITION OF ENTIRE FUNCTIONS WITH FINITE
ITERATED ORDER

C. GHOSH AND S. MONDAL

ABSTRACT. In this article we investigated growth of two composite entire func-
tions of finite iterated order. We introduced finite iterated order of an entire
function in terms of their maximum term. Also we proved some results on the
growth of composite entire functions of finite iterated order by using maximum
terms.

1. INTRODUCTION

Let f(z) = Yo7, a,2" be an entire function. The maximum term gy (r) of
the function f(z) on |z| = r is defined as py (r) = max |an|r™ and the maximum
n

modulus of f(z) on |z| = r is defined as M (r) = max |f(2)].

|z|=r

log T'og(r) _

For two transcendental entire functions f(z) and g(2) it is proved that lim ==L
r—00 £(r)

oo and lim % = 00 [1]. Many results have been proved on the composition
r—>00 9

of two entire functions with finite order ([1],[3],[4],[7],8],[13]). In 2009 [11] Tu et al.
introduced the notations of iterated order for entire functions of fast growth and
proved some theorems on the composition of entire functions with finite iterated
order.

In this paper we investigate some results of composite entire functions on finite
iterated order.

Now let f(z) be a meromorphic function, by Nevanlinna theory [2], the order
p(f) and lower order A(f) of f(z) are defined by

) log T'¢(r)
= 1 _—
pL) T Tlogr
A(f) = liminf log Ty (r) (r)
r—o0 ogr
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We use the notations exp,r = e”,exp,,;r = exp(exp;r) for 0 < r < oo and
i = 1,2,... Also for sufficiently large r, we use the notations log, r = logr,log, , 7 =
log (log; r) .

Definition 1 In [11], Tu et al. introduced the definition of iterated p order
pp(f) of an entire function f as

log,, 41 My (r log, T (r
pp(f):hmsupMZHmsupM

r—o00 log r r—o0 1

(peN). (1)
Similarly, the iterated p lower order A,(f) of an entire function f as
lo M log, T
Ap(f) = liminf logpa My (r) _ lim inf M(p € N). (2)

r—00 ogr r—00
Definition 2 [11] The finiteness degree of the order of an entire function f is
defined by

0 for f polynomial,
i(f) =< min{g € N:p,(f) < oo} for f transcendental for which some ¢ € N with p,(f) < co exists.
00 for f with p,(f) = oo for all p € N.

Then it is clear that i(f) and i(g) are positive integers.

2. SOME PRELIMINARY LEMMAS

In this scetion we shall present first the known lemmas.
Lemma 1 [10] Let that A (g) < oco. Then for any € > 0, we have for sufficiently
large r
Myog (r'*=) = My (My(r)) .
Lemma 2 [1] Let f(z) and g(z) be entire function with g(0) = 0. Let « satisfy
0<a<1andletc(a):%. Then for r > 0

Mjoq (r) = My (¢ (a) Mg (ar)). 3)

Further if g(z) is any entire function then with o = %, for sufficiently large values
of r,

1 T
> - —) - )
Myey (1) 2 1y (0, (3) = 900) (@
Also from the definition it is immediate consequence that
Myog (r) < My (Mgy(r)) (5)

Lemma 3 [12] Suppose that f(z) is a transcendental entire function of finite
order. Let r = I(u) be the inverse function of u = M¢(r). Then, given € > 0, there
exists a constant A(e) such that the equation f(z) = a has a root in the annulus

L(lal) < |2 < U(|al)"*
provided that |a| > A(e).
Lemma 4 [9] For 0 <r < R,
R
g () < My (1) < =0y (). ©

Using this result we get

1
pp(f) = lim sup O8p+1 HAT) Mf(r)
r—00 logr
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and

. Jogy g pg(r)
M) = lim it =50

Lemma 5 [9] Let f(z) and g(z) be entire functions, then for o« > 1, and
0<r<R,

(r) < -2 _aR (r)
Heg \T)= a—l'uf Rfrug ")
In particular taking = 2 and R = 2r,
fpog (1) < 2p5 (4pg (2r)) (7)
Lemma 6 [9] Let f(z) and g(z) be entire functions with g(0) = 0. Let « satisfy
O<a<1andletc(a):%.AlsoletO<5<lthen
figog (1) = (1= 0) puy (c() g (d7)) . (8)

And if g(z) is any entire function, then with o = § = %, for sufficiently large values
of r,

ugoa ()2 511s (0 () = 9000 ) 0

3. MAIN RESULTS

Using the previous lemmas and from[5], we can prove the following lemma.
Lemma 7 Suppose that f(z) and g(z) are entire functions of finite iterated
order and put

log, My(r) = (log ry?r ) (10)
Then, for any € > 0,
108,41 Myog (%) = log, (¢7 (M(r)) log (log My(r))) (11)
and
10g), 1 441 Moq (r) <logy (¢5 (Mg(r))log (log M, (r))) (12)

for all sufficiently large values of r.
Proof. From Lemma 3, given € > 0, there exists a constant A(e) such that the
equation g(z) = a has a root in the annulus

14¢
L(lal) < |2 < U(Jal)
provided that |a| > A(e). We choose g such that
MQ(TO) > A(€),
and we take p = py(r) = My(r) for any r > ro. Then, there exists an a, such that
lag| = p and
max | f(w)] = [£(a,)|
and such that the equation g(z) = a, has a root in the annulus
1+ €
7= (lag]) <zl < (Jag)) ™" =¥,
Thus, there exists a zg such that
|z0| < 7'7¢ and g(z0) = aq.
Therefore, we have

Mg (r'*°) = |(f 0 9) (z0)| = | f (ag)| = My (p)
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for all » > ry, where p = My(p). Hence we have
log, g Myog (%) > log,, My (p)
= log, (logp My (p))
= log, (log p)*’"”)
= 1 1 1 ¢5(p)
0g, 1 (log (log p)
= log, 1 (¢5 (p)log (log p))
= log, (95 (My(r))log (log My(r)))
and
108, 11 Miog (1) > log, (65 (M, (r)) log (log My (1))
for all r > rq.
Also, by the maximum modulus principle, we get

Mpog (r) < My (My(r)).
Then we have

1ng-&-q-i-l Mfog (7“)

IN

10gq+1 (Ing (Mf (Mg(r))))
log, 1 ((log M, ()" M+

= log, (¢ (My(r))log (log My(r)))
This proves the lemma.

Now we can proof the following theorems.
Theorem 1 If f and g are transcendental entire functions of finite iterated or-

der with i(f) = p, i(g) = ¢ also p,(f) =0 and 0 < py(g) < oo, then pyy,(fog) =
oo provided (a) Ay(g) > 0 and limsuplog, ¢;(r) = oo or (b) A,(g) = 0 and
T—00

_li_>m log, ¢5(r) = oo, where ¢(r) is defined by

log,, .1 My(r) = (logr)*" (13)

for sufficiently large values of r
Proof. By (11), for any ¢ > 0, we have

Jim sup logp+q+1 Mpog (7"1+6) > lim sup Ing ¢y (My(r)) 10gq+1 My(r)
r—00 1Og7"1+€ T rooo (1 +E) logv" '

(a) If Ay(g) > 0 and 1in;sup log,, ¢(r) = oo, then taking ¢ = )“ZT(Q),

we see
Aq(9)

log, My(r) >~z

for all sufficiently large values of r. Thus

Aq(9)
lim sup 10g,+g41 Mfog (r'*) > limsup log, ¢ (My(r))logr—=2
=00 logrl+6 a r—00 (1 +r *q2(9)> logr
Aq(9)

= —2 _ _limsuplo M,(r
1 + >\q2(g) r—}oop gp ¢f( 9( ))

= o

since M, (r) is increasing, continuous and unbounded in 7.
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b) A\;(¢9) =0 and lim log, ¢(r) = oo, then for any & > 0, it holds that
q pre p Pf

i 10g, 1 g4+1 Mfog (7"1+6 ) i log,, ¢y (Mg(r))log, 1 My(r)
1m sup e 111 sup 7
r—00 1Og7“ r—00 (1 +e€ ) 10g7‘

Y

o . log, 1 My(r)
A o
= +q€/ hgggflogp ¢5 (My(r)) = occ.

This proves the theorem.
Theorem 2 [9]Suppose that f and g are transcendental entire functions of
finite iterated order with i(f) = p, i(g9) = ¢ and py(g) > 0, pp(f) = 0. Let

limsup log, ¢ (r) = 7. (14)
T—00

If 7 < oo, then

Potq (f 0 9) < Tpg(9)- (15)
Furthermore, if Thﬁrglo log,, ¢f(r) = 7, then the equality in 15 holds.

Proof For given any ¢ > 0, and since g(z) is of order p,(g) and limsup log,, ¢ (r) =

T then we obtain e

log, My(r) < pPal9)te, (16)
for all sufficiently large values of r and

log, ¢¢(r) <7 +e. (17)

Now from (12),

10g), 4 41 Myog (1) <log, &5 (My (r))log (log M (r))

i.e
lim sup longqul Myog () < limsup log,, ¢ ¢ (M, (17”)) log, 14 My(r)
r—00 ogr r—00 ogr
1 pq(g)+e
< limsup (T +¢)logr
r—00 log T

= (7+¢)(pglg) +e)-

Since € > 0 is arbitrary, therefore we get

Pp+q (fog) < qu(g)'

Also it is clear that the equality is hold if lim log,, ¢5(r) = 7. Hence the theorem.

Theorem 3 If f and g are transcendental entire functions of finite iterated order
with i(f) = p, i(g) = gand if (i) A\y(g) = oo or (ii) A, (f) > 0 then A\p44 (f 0 g) = oc.
Proof. (i) Let A\;(g) = oo.
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From Lemma 2

lng-i-q Myogq (T)

Vv
<}
a2
=
+
I~}
=
7 N
| —
=
~
| 3
—
|
o
—
=2
~

10gp+q Mf (7") (
log, ()

log, 4 My (r)
log,, (1)
large for r, we get

Since is an increasing function of r for large r and 1My (3) — |g (0)] is

r
log,, 1, Myog (r) > log, M, (5)

for large r.
Hence

Ttog (r) > <log My

Vv
wl
—
@]
o
=
——
— ®i~
O =
=
—
=3
~—
N—
>
k]
=
|
o
——

Y

1
3 OXPp1 {cl exp, (027"’\‘1(9)_8) }

where ¢1 > pp(f),c2 > 1 are constants, not necessarily the same at each occurence.
Then we get

Y

log, 4 {01 exp, (czr)“I(g)_E) } +0(1)
= log (czr)‘q(g)*e) +0(1)
(Aq(g) —€)logr +O(1)

1ng+q Tfoq (7‘)

i.e
logp+q T'toq (r)
log r
Hence first part of Theorem 3 is proved.
(i) If Ap(f) > 0 and also let A\ (g) < oco.

> Aq(9)-

L dogy gy Myog (r'FF)
Avta (fog) = lim inf (1+¢e)logr
hm lnf 10gp+q+1 Mf (Mg (T)) log Mg (T)
log M, (r) (14+¢)logr /"

v

r—00
As g(z) is transcendental, for large number k > 0, then for r > 1
log, 1 M, (r)
(14+¢)logr
This shows that,
Aptq (fog) = Ap(f)-k.
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Since M, (r) is continuous, increasing and unbounded in r, we get

Aptq (f 0 g) = o0,
since Ap44(f) > 0. Hence proved the theorem.

Theorem 4 If f and ¢ are transcendental entire functions of finite iterated
order with i(f) = p, i(g) = ¢ and if \;(g) < oo and limsuplog, ¢; (r) = 7 < o0,
r—00

then
Aptq (fog) STA9) < pp+q(fog).
Furthermore, in the above result the first inequaity becomes equality if

Tlirgologp ¢5(r) =1 < o0.
Proof. We have from maximum modulus principle,
Myog(r) < My (Mg (r))

Hence,
. log Myoq (r)
Aptq (fog) = lim inf p+q'folgr g
1 My (M,
< liminf O8ptq+1Vf ( g (7"))
T—00 logr
< limsup 108pq41 My (8, (r) lim inf 710&1“ My ()
T S log, 1 My(r) r—00 log r
= T.\(9)

which proves the first inequality of (18) .
Again by Lemma 1, we have

10gp+q+1 Mfoy (r1+8>

Prralfog) TP (1+¢)logr
> limsup log,, 4 g1 My (M, (r)) log, 4 My(r)
T 5 log, 1 My(r) "(1+¢)logr
> 7 )‘q(g).
1+e¢

Letting € — 0, then we get

T Aq(9) < Pptq (fo9)-
This proves the second inequality of (18).
Finally, if the limit
lim log, ¢ (r) =7
exists, then we have

log My (Mg (1)) loggy 1 My(r)
A > liminf | —2reH 9. 2atl 9
ptq (fog) > min log, 41 My(r) (I14+¢)logr

A
- q(g)
1+¢

which gives
Aptq (fog) =72 (9)-
Hence the theorem is proved.

(18)

(19)
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Remark 1 If A, (g) = oo, then by Theorem 3, ppiq (f 0 9) = Apyq (f 0 g) = 00,
and the inequalities in (18) become trivial. If A\;(g) > 0 and 7 = oo, then by
Theorem 1, ppiq (f 0 g) = co. Hence the inequality are trivial.

Theorem 5 Suppose that A\,(f) = A\;(g) = 0 and that

log log M
liminf 28198 Mo(M) _ 6 e — 220 o

T—00 (log 7)™ r=o (loglog r)ﬁ
for any positive numbers ov and 8 with o« < 1and a (8 + 1) > 1. Then A (f o g) = oc.
Proof. Proof of this theorem is same as the previous theorem.
Theorem 6 Suppse that \,(f) = A\;(¢g) = 0 and that

1 M, 1
i inf 2Bt Mo(r) e 08k (97 ()

B2 log, (1) e L

for any positive integer k > ¢+1 and any positive numbers o and 8 with max («, a3) >
1. Then Apyq (f o g) = o0.
Proof. For 0 < ¢ < min (a,b)

10gp+q+1 Mpog (r1+8) > o5 (Mg (r) 10gp+q+1 Mg(r)

i.e,
. 10gp+q+l Myoq (7‘1+E) .. logp+q+1 My(r)
it e 2 liminf Pf (Mg (r) <1+>1g}
expy_y |(b— ) (a — ) (loge(r)™” ] 1og, [(a — 2) (log,(r))"]
>  liminf .
T—00 (I14+¢)logr

Putting log,(r) =z, (b—¢) (a — 5)ﬁ =d; and (a — €) = dg, thus we have

.. . eXDPp_1 (dlxaﬁ) logy, (da®)
Y >1 f -
pra (F 0 9) 2 liminf — oo

since max (o, o) > 1.

This completes the proof.

Theorem 7 Suppose that A\,(f) = A\;(g) = 0 and that one of the following
conditions (I) and (I7) is satisfied:

1 M 1
(/) liminf o1 My(r) _ a; < oo,limsupM

—=rre g 2 =b <0
roo (logy, )™ r—00 (IngH r) o

for any positive integer £ > ¢ 4+ 1 and for any positive numbers «; and (; with
o1 (ﬂl + 1) <1;

1 M 1
(I1) liminfM =az < oo,limsupm =by < 00

r—00 (IngJrl r) r—00 (1ng+1 7,) 2

for any positive numbers oy and o with asfs < 1.
Then Apiq (fog) =0.
Proof The proof of this theorem is also same as those in the previous theorem.
Theorem 8 Let f(z) and g(z) be two entire functions of finite iterated order

with i(f) = p, i(g9) = ¢ and py(g) < \p(f) < pp(f), then
lim sup 08 +q1 1700 (r) =
r—00 Ing Hf (r)
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Proof. From the definition of p,(f) and A,(f) we get

log, 117(r) < rPo(F)te (20)
for large r and
log,, ps(r) > rrelf)=e (21)
for large r.
From (7),

10gp+q+1 [2,uf (4:“9 (QT))]
log,, g1 [is (g (2r))] + O (1)

1ogp+q+1 Hfog (T)

IN A

Using (20) we have,

IA

log,.¢1 [{4y (2r)}" ] + 0 (1)

log, (pp(f) +€)log {4p, (2r)} + O (1)

og, (pp(f) + €)log {1y (2r)} + O (1)

log, (pp(f) + ) exp,_, (2r)7*9Fe. (22)

logp+q+1 Hpog (1)

IN A

IN

From (21) and (22) we get,

108,411 Hpog () _ log, (pp(f) + &) exp,_, (2r)Pa@)*e
log, 1y (r) B rAn(f)—e

Since pqy(g) < Ap(f), now we choose € > 0 such that
pal9) +2 < Mp(f) —<.

Therefore we have
lim sup 108 +q+1 109 (7) -
s 00 log,, pus (7)
Theorem 9 Let f(z) and g(z) be entire functions of finite iterated order p and

q respectively. If p, (g) > pp (f) then
lim sup 108441 Hreg (r) = 00.
r—c0 Ing Ky (r)

Proof. From Lemma 6 we get for large r

108, 4 g1 (Hfog (1) = log, g4 Bﬂf (;Mg (%) - Ig(O)I)]

ogy01 |1r (i (5) - la0) )| + 00

oo (;Mg (D),\p(f)e L o)
> log, Ol — 9)og (s (5)) +000)
> log, (A (f) —)log (1 () ) +0(1)

'r)pq(g)—s

> log, ((F) — &) exp,y (5

\

Y

Y

+0(1).
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Thus for sufficiently large 7, there exists a sequence r =,

Tn pq(g)—e
108,441 (Hgcg (7)) > 108, (/) — ) exp,y ()

Also for large 7,
log, 1 (1, f) < 1o+,

So for the sequence r = r,,, sufficiently large

rn \Pa(9)—
1081441 (Hyog (1)) _ 108, (Ap(f) — €) expy,y ()
log,, 1 (rn; f) rpr(te '

Since pq (9) > pp (f), we choose € > 0 such that p, (9) —e > p, (f) + €.
So we have

lo o (T
lim sup Bp+at1 1 g( ) =0
r—00 log,, iz (r)

+0(1).

139

(23)

Corollary 1 Let f(z) and g(z) be transcendental entire functions of finite
iterated order p and g respectively and let ps(g) > pp(f). Then f o g is of infinite

order.
Proof.

lo og \T' lo oo (1) loO r
lim sup B a1 Moy (7) lim sup Bptg+1 Hfog (T) . gp i ()
=00 logr r—00 log,, iy () log 7

10gp-i—q+1 Hfog (T)

Y

liminf

lim sup

since for any transcendental entire function,

lo r
lim inf —op 1) Hs (7) =00
r—o0 logr

From the previous theorem the result follows.

log,, iy (1)
r—00 log, puy (1) r—00 logr

Theorem 10 Let f(z) and g(z) be transcendental entire functions of finite

iterated order p and ¢ respectively with p, (g) > 0. Then

lo r
lim sup Sptqtl Hsog (7) =00

T—00 log 11 g (1)

Proof. For a sequence r = r,, sufficiently large, from (23),

Tn\ Pa (9)—¢
108, 4441 (170g (ra)) > log, (Ap(f) = ) exp, s ()

Also using the definition of p,(g) for the entire function g, we get

l0gq+1 pg(r) < (pe(g) +¢)logr

for large r.
Thus for a sequence r = r,,, sufficiently large, we obtain,

rp \Pa(9)—
10gp+q+1 Kfog (7“”) lqu ()‘P(f) B E) equ—l (Tn)p e
10gq+1 Hg (Tn) (pq (9) +¢)logry

since pq(g) > 0 and so we can choose € > 0 such that p,(g) —e > 0.
Hence

lo og (T
lim sup Eptat1 1S s (1) = 00.
r—c0 10gq+1 Hg (r)

+0(1).
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Remark 2 In particular, A\;(g) > 0, which implies that p,(g) > 0, therefore we
have

lo og (T
lim sup 8p+at1 Hfog (1) _
r—oo  108g4 1 Hg (1)
Theorem 11 Let f(z) and g(z) be transcendental entire function of finite
iterated order p and ¢ and let A,(g) > 0, then

(9)
(9)

lo og (T
lim sup \Brrar2 q(r)
r—00 10gq+1 Hg (r)

Proof. From (22) it easily follows that

<Pq
by

10gp+q+1 Hfog (r) < 10gq (,Dp(f) +e) exp,_; (QT)Pq(g)JrS

for large r.
So for sufficiently large r

10g,, 412 Hfog (r) < log, {log (pp(f) +€) + (pg(9) +€)logr} + O (1).
Again we have for sufficiently large r
logy 1 1g (1) > (Aq(g) — &) logr.

Hence

Jim sup 10gp+q+2 Hfog (T) < Pq (g) )
r—00 10gq+1 Hg (r) /\q(g)

Remark 3 Note that the result in Theorem 11 is sharp in the sense that there
exists transcendental entire functions f and g with finite iterated order p and ¢
such that

lim sup 10gp+q+2 Hfog (r) _ Pq (9) )
r—00 10gq+1 fig (T) Aq(9)

Theorem 12 Let h(z) and f(z) be two entire functions of finite iterated order

such that p, (h) < A, (f) then

lim 10gq+s Hhog (r)
r—c010g,, 4 4 fog ()

for any nonconstant entire function g(z) of finite iterated order pq (g) .
Proof. We have from Niino [6],

=0

ffog (1) >

Now, from the definition of A, (f) we get,
rre(f)=e < log,, My ()

for large  and also from the definition of ps (k) we have,
pps(h)te > log, Mj, (1)

for large r.
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Hence
1 -8
fifog (1) = AT Py log, Myog (r —17")
1 My (r—r=%) —[g(0)]
> ey oxpylog, by (e E IO o)
_ f)—e
1 M, (r =) = [g(0)| -
> 5 XDy ( 5200 D) —19(0)|
1 Mg (T—T_a) Ap(f)—e
Z A1 XPp 6r2(at1)
> exp, (M, (r, )" (24)

On the other hand, for large r,

Mhpogq (1)

My, (Mg (r))

exps logs Mh (Mg (T‘))

exp, (Mg (r))" <. (25)

Hhog (7")

AN A

Choose € > 0 such that ps(h) + & < A\p(f) — ¢, thus from (24) and (25) we get,

pihog (r) _ exp, (M, ()"
(r) Ap(H—e
Hfog exp,, (Mg (1))

Therefore
lim M -0
1= [ifog (1)

Theorem 13 Let f and g be entire functions of finite iterated order such that
0 < Ap(f) < o0 and 0 < A\j(g) < oco. If the entire functions h and k with finite
iterated order s and t respectively satisfy

0 < liminf 1084+ 150 (1) < lim sup log s tpon ()

< o0
r—oo 10gq+t Hgok r) r—o0o 10gq+t Hgok (r)

then
ps(h) = pe(k).

Proof. First suppose that ps(h) = pi(k).
Now for sufficiently large r, using (9) we obtain,

o810 31 (o () + 0 )]
> CMCj+w0Mm%+mn

v

log,, 4 [1fon (1)]

8 4
1 r )‘p(f)—s
> (guh (4)) +o().
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And so for a sequence r = r, with r,, > rq,

1 Tn Ap(f)—e
8y g ()] = e, (1o, (G () ) 0

s(h)—e
T")p . (26)

> exp, (A(F) —2) (F
On the other hand,

10gq+t [Mgok (7“)] < 1qu Mgok (T)
< logy My (My(r))
< [Mk(r)]Pq(g)JrE
< exp, log, [My(r))*

exp, (pq(g) +e) 0+ (27)

We choose € such that ps(h) —e < pi(k) 4+ €, then from (26) and (27) it follows
that as r — oo
log,, 4 s Hron (1)

log,y¢ fgok (T) B
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