UNIQUENESS PROBLEM FOR DIFFERENTIAL POLYNOMIALS OF FERMAT-WARING TYPE

RAJESHWARI S., HUSNA V. AND NAVEEN KUMAR S.H

Abstract

In this paper, we discuss the uniqueness problem for differential polynomials $\left(P^{n}(f)\right)^{(k)},\left(Q^{n}(g)\right)^{(k)}$ sharing the same values, where $P=$ $f^{d}+a_{1} f^{d-m}+b_{1} f^{d-m+1}+c_{1}$ and $Q=g^{d}+a_{2} g^{d-m}+b_{2} g^{d-m+1}+c_{2}$ are polynomials of Fermat-Waring type. On non-Archimedian field, f and g are meromorphic functions.

1. Introduction, Notation and Main results

Let \mathbb{H} be an algebraically closed field of characteristic zero, complete for a nonArchimedean absolute value. We denote by $A(\mathbb{H})$ the ring of entire functions in \mathbb{H}, by $M(\mathbb{H})$ the field of meromorphic functions, i.e., the field of fractions of $A(\mathbb{H})$, and $\widehat{\mathbb{H}}=\mathbb{H} \cup\{\infty\}$. We assume that the reader is familiar with the notations in the nonArchimedean Nevanlinna theory (see [10]]). Let f be a non-constant meromorphic function on \mathbb{H}. For every $a \in \mathbb{H}$, define the function $d_{f}^{a}: \mathbb{H} \longrightarrow \mathbb{N}$ by

$$
d_{f}^{a}(z)=\left\{\begin{array}{ll}
0 & \text { if } f(z) \neq a \\
m & \text { if } f(z)=a
\end{array} \text { with multiplicity } m\right.
$$

and set $d_{f}^{\infty}=d_{\frac{1}{f}}^{0}$. For $f \in M(\mathbb{H})$ and $S \subset \mathbb{H} \cup\{\infty\}$, we define

$$
E_{f}(S)=\cup_{a \in S}\left\{\left(z, d_{f}^{a}(z)\right): z \in \mathbb{H}\right\}
$$

In this paper, we consider the differential operator $\left(P^{n}(f)\right)^{(k)}$ and $\left(Q^{n}(g)\right)^{(k)}$ sharing the same value where P and Q are Fermat-Waring type polynomials. Then we establish an uniqueness theorem for non-archimedian meromorphic functions and their differential polynomials.

Now let us describe main results of the paper. Let $d, m, n, k \in N^{*}$ and $a_{1}, b_{1}, c_{1}, a_{2}$, $b_{2}, c_{2}, k \in \mathbb{H}$; where \mathbb{H} be an algebraically closed field of characteristic zero, complete for a non-Archimedean absolute value. $a_{1}, b_{1}, c_{1}, a_{2}, b_{2}, c_{2} \neq 0$. We will let
$P(z)=z^{d}+a_{1} z^{d-m}+b_{1} z^{d-m+1}+c_{1}$ and $Q(z)=z^{d}+a_{2} z^{d-m}+b_{2} z^{d-m+1}+c_{2}$,

2010 Mathematics Subject Classification. Primary 30D35.
Key words and phrases. Nevanlinna theory, non-archimedean meromorphic functions, FermatWaring polynomial.

Submitted April 30, 2020. Revised Nov. 27, 2020.
be a polynomials of degree d of Fermat-Waring type in $\mathbb{H}[z]$ without multiple zeros. We shall prove the following theorems.

Theorem I. Let f and g be two non-constant meromorphic functions on \mathbb{H} and let $P(z), Q(z)$ be defined in (1.1). Assume that $n \geq 3 k+5, d \geq 2 m+10$ and either $m \geq 2$ or $(d, m+1)=1$ and $m \geq 1$. If $\left(P^{n}(f)\right)^{(k)}$ and $\left(Q^{n}(g)\right)^{(k)}$ share 1 CM, then $g=h f$ and for a constant h such that $h^{d}=\frac{c_{2}}{c_{1}}, h^{n d}=1, h^{m}=\frac{b_{2}}{b_{1}}, h^{m+1}=\frac{a_{2}}{a_{1}}$.
Theorem II. Let f and g be two non-constant meromorphic functions on \mathbb{H} and let $P(z), Q(z)$ be defined in (1.1). Assume that $d \geq 2 m+10$ and either $m \geq 2$ or $(d, m+1)=1$ and $m \geq 1$. If $(P(f)$ and $Q(f)$ share $0 C M$, then $g=h f$ and for a constant h such that $h^{d}=\frac{c_{2}}{c_{1}}, h^{m}=\frac{b_{2}}{b_{1}}, h^{m+1}=\frac{a_{2}}{a_{1}}$.

2. Preliminaries

In order to prove our results, we need the following Lemmas.
Lemma 2.1. ([10]) Let f be a non-constant meromorphic function on \mathbb{H} and let $a_{1}, a_{2}, \ldots, a_{q}$, be distinct points of $\mathbb{H} \cup\{\infty\}$. Then

$$
(q-2) T(r, f) \leq \sum_{i=1}^{q} N_{1}\left(r, \frac{1}{f-a_{i}}\right)-\log r+O(1)
$$

Lemma 2.2. ([10]) Let f be a non-constant meromorphic function on \mathbb{H} and let $a_{1}, a_{2}, \ldots, a_{q}$, be distinct points of $\mathbb{H} \bigcup\{\infty\}$. Suppose either $f-a_{i}$ has no zeros, or $f-a_{i}$ has zeros, in which case all the zeros of the functions $f-a_{i}$ have multiplicity at least $m_{i}, i=1, \ldots, q$. Then

$$
\sum_{i=1}^{q}\left(1-\frac{1}{m_{i}}\right)<2
$$

Lemma 2.3. ([8]) Let f and g be non-constant meromorphic functions on \mathbb{H}. If $E_{f}(1)=E_{g}(1)$, then one of the following three cases holds:
$1 T(r, f) \leq N_{2}(r, f)+N_{2}\left(r, \frac{1}{f}\right)+N_{2}(r, f)+N_{2}\left(r, \frac{1}{g}\right)-\log r+O(1)$, and the same inequality holds for $T(r, g)$;
$2 f g=1$;
$3 f=g$.
Lemma 2.4. ([1]) Let f be a non-constant meromorphic function on \mathbb{H} and n, k be positive integers, $n>k$ and a be a pole of f. Then
$1\left(f^{n}\right)^{(k)}=\frac{\varphi_{k}}{(z-a)^{n p+k}}$, where $p=d_{f}^{\infty}, \varphi_{k}(a) \neq 0$.
$2 \frac{\left(f^{n}\right)^{(k)}}{f^{n-k}}=\frac{h_{k}}{(z-a)^{p k+k}}$, where $p=d_{f}^{\infty}, h_{k}(a) \neq 0$.
Lemma 2.5. ([1]) Let f be a non-constant meromorphic function on \mathbb{H} and n, k be positive integers, $n>2 k$, and let $P(z)$ be a polynomial of degree $d>0$. Then

$$
\begin{array}{rl}
1 & (n-2 k) d T(r, f)+k N(r, P(f))+N\left(r, \frac{1}{\frac{\left((P(f))^{n}\right)^{(k)}}{(P(f))^{n-k}}}\right) \leq T\left(r,\left((P(f))^{n}\right)^{(k)}\right)+O(1) \\
& \leq(k+1) n d T(r, f)+O(1) \\
2 & N\left(r, \frac{1}{\frac{\left((P(f))^{n}\right)^{(k)}}{(P(f))^{n-k}}}\right) \leq k d T(r, f)+N_{1}(r, P(f))+O(1) \\
& =k d T(r, f)+k N_{1}(r, f)+O(1) \leq k(d+1) T(r, f)+O(1)
\end{array}
$$

Lemma 2.6. Let $d \geq 2 m+5$ and either $m \geq 2$ or $(d, m+1)=1$ and $m \geq 1, k \neq 0$, and let $P(z), Q(z)$ be defined by (1.1). Assume that the equation $P(f)=k Q(g)$ has a non-constant meromorphic solution (f, g). Then $g=h f$ for a constant h such that $h^{d}=\frac{1}{k}=\frac{c_{2}}{c_{1}}, h^{m}=\frac{b_{2}}{b_{1}}, h^{m+1}=\frac{a_{2}}{a_{1}}$.

Proof. Consider $P(f)=Q(g)$ we get $f^{d}+a_{1} f^{d-m}+b_{1} f^{d-m+1}+c_{1}=k\left(g^{d}+\right.$ $\left.a_{2} g^{d-m}+b_{2} g^{d-m+1}+c_{2}\right)$ $d T(r, f)+O(1)=d T(r, g)$,

$$
\begin{equation*}
T(r, f)+O(1)=T(r, g) \tag{2.1}
\end{equation*}
$$

Equation (2.1) can be rewritten as $f_{1}+f_{2}=k c_{2}-c_{1}$, where

$$
\begin{gathered}
f_{1}=f^{d-m}\left(a_{1}+b_{1} f+f^{m}\right) \\
f_{2}=-k g^{d-m}\left(a_{2}+b_{2} g+g^{m}\right)
\end{gathered}
$$

If $k c_{2}-c_{1} \neq 0$, then by Lemma 2.1, we have

$$
\begin{aligned}
T\left(r, f_{1}\right) & \leq N_{1}\left(r, f_{1}\right)+N_{1}\left(r, \frac{1}{f_{1}}\right)+N_{1}\left(r, \frac{1}{f_{1}-\left(k c_{2}-c_{1}\right)}\right)-\log r+O(1) \\
d T(r, f) & \leq N_{1}(r, f)+N_{1}\left(r, \frac{1}{f}\right)+N_{1}\left(r, \frac{1}{f^{m}+b_{1} f+a_{1}}\right)+N_{1}\left(r, \frac{1}{g}\right) \\
& +N_{1}\left(r, \frac{1}{g^{m}+b_{1} g+a_{1}}\right)-\log r+O(1) \\
d T(r, f) & \leq(2 m+5) T(r, f)-\log r+O(1) \\
(d-2 m-5) T(r, f) & \leq-\log r+O(1)
\end{aligned}
$$

which contradicts to $d \geq 2 m+5$. Hence $k c_{2}-c_{1}=0$. Thus, (2.1) becomes

$$
\begin{equation*}
f^{d}+a_{1} f^{d-m}+b_{1} f^{d-m+1}=k g^{d}+k a_{1} g^{d-m}+k b_{1} g^{d-m+1} \tag{2.2}
\end{equation*}
$$

For simplicity, set $h=g / f$, and $\alpha=1 / k \neq 0, \beta_{1}=\frac{b_{1}}{k b_{2}} \neq 0, \beta_{2}=\frac{a_{1}}{k a_{2}} \neq 0$. Then we obtain

$$
\begin{gather*}
f^{m+1}\left(k h^{d}-1\right)=-\left(k a_{2} h^{d-m}-a_{1}\right)-\left(k b_{2} h^{d-m+1}-b_{1}\right) \\
f^{m+1}=\frac{-a_{2}\left(h^{d-m}-\beta_{1}\right)-b_{2}\left(h^{d-m+1}-\beta_{2}\right)}{h^{d}-\alpha} \tag{2.3}
\end{gather*}
$$

Assume that h is not a constant. Consider the following possible cases:
CASE 1. $m \geq 1,(m+1, d)=1$. If $h^{d}-\alpha, h^{d-m}-\beta_{1}$ and $h^{d-m+1}-\beta_{2}$ have no common zeros, then all zeros of $h^{d}-\alpha$ have multiplicity $\geq m+1$. Then

$$
N_{1}\left(r, \frac{1}{h^{d}-\alpha}\right) \leq \frac{1}{m+1} N\left(r, \frac{1}{h^{d}-\alpha}\right)
$$

By Lemma 2.1 we obtain

$$
\begin{aligned}
T\left(r, h^{d}\right) & \leq N_{1}\left(r, h^{d}\right)+N_{1}\left(r, \frac{1}{h^{d}}\right)+N_{1}\left(r, \frac{1}{h^{d}-\alpha}\right)-\log r+O(1) \\
d T(r, h) & \leq 2 T(r, h)+\frac{1}{m+1} N\left(r, \frac{1}{h^{d}-\alpha}\right)-\log r+O(1) \\
& \leq\left(2+\frac{d}{m+1}\right) T(r, h)-\log r+O(1) \\
\left(d-2-\frac{d}{m+1}\right) T(r, h) & \leq-\log r+O(1)
\end{aligned}
$$

which leads to $d m<2(m+1)$, a contradiction to the condition $d \geq 2 m+5$.

If $h^{d}-\alpha$ and $h^{d-m}-\beta_{1}, h^{d-m-1}-\beta_{2}$ have common zeros, then there exists z_{0} such that $h^{d}\left(z_{0}\right)=\alpha, h^{d-m}\left(z_{0}\right)=\beta_{1}$ and $h^{d-m-1}-\beta_{2}$.
From (2.3) we get

$$
\alpha f^{m+1}\left(\left(\frac{h}{h\left(z_{0}\right)}\right)^{d}-1\right)=-\beta_{1} a_{2}\left(\left(\frac{h}{h\left(z_{0}\right)}\right)^{d-m}-1\right)-\beta_{2} b_{2}\left(\left(\frac{h}{h\left(z_{0}\right)}\right)^{d-m+1}-1\right)
$$

Since $(m+1, d)=0$, the equations $z^{d}-1=0, z^{d-m}-1=0$ and $z^{d-m+1}=0$ have different roots, except for $z=1$. Let $r_{i}, i=1, \ldots, 3 d-2 m-3$, be all the roots of them. Then all zeros of $\frac{h}{h\left(z_{0}\right)}-r_{i}$ have multiplicities $\geq m+1$. Therefore, by Lemma 2.2, we obtain

$$
\left(1-\frac{1}{m+1}\right)(3 d-2 m-3)<2,3 d m<2 m^{2}+6 m+3
$$

which contradicts $d \geq 2 m+5, m \geq 1$. Thus, h is a constant.
CASE 2. $m \geq 2$. Note that equation $z^{d}-\alpha=0$ has d simple zeros, equation $z^{d-m}-\beta_{1}=0$ has $d-m$ simple zeros, and equation $z^{d-m+1}-\beta_{2}=0$ has $d-m+1$ common simple zeros. Therefore, the equation $z^{d}-\alpha$ has atleast m distinct roots, which are not roots of $z^{d-m}-\beta_{1}$ and $z^{d-m+1}-\beta_{2}=0$. Let $r_{1}, r_{2}, \ldots, r_{m}$ be all these roots. Then all zeros of $h-r_{j}, j=1, \ldots, m$, have multiplicities $\geq m+1$. By Lemma 2.2, we have $(m+1)\left(1-\frac{1}{m+1}\right)<2$. Therefore, $m<2$. From $m \geq 2$, we obtain a contradiction. Thus h is a constant.

3. Proof of Theorem I

We have

$$
\begin{aligned}
P(f) & =\left(f-e_{1}\right) \ldots\left(f-e_{d}\right), e_{j} \neq 0 \in \mathbb{H} \\
(P(f))^{n} & =\left(f-e_{1}\right)^{n} \ldots\left(f-e_{d}\right)^{n}, \\
Q(g) & =\left(g-k_{1}\right) \ldots\left(g-k_{d}\right), k_{i} \neq 0 \in \mathbb{H} \\
(Q(g))^{n} & =\left(g-k_{1}\right)^{n} \ldots\left(g-k_{d}\right)^{n}
\end{aligned}
$$

Set

$$
\begin{gathered}
X_{1}=\left(P^{n}(f)\right)^{(k)}, \quad X_{2}=\left(Q^{n}(g)\right)^{(k)}, \quad Y_{1}=P(f), \\
Y_{2}=Q(g), \quad F=\frac{X_{1}}{Y_{1}^{n-k}}, \quad G=\frac{X_{2}}{Y_{2}^{n-k}}
\end{gathered}
$$

Then

$$
\begin{aligned}
Y_{1} & =\left(f-e_{1}\right) \ldots\left(f-e_{d}\right), \quad Y_{2}=\left(g-k_{1}\right) \ldots\left(g-k_{d}\right) \\
X_{1} & =\left(Y_{1}^{n}\right)^{(k)}=F Y_{1}^{n-k}, \quad X_{2}=\left(Y_{2}^{n}\right)^{(k)}=G Y_{2}^{n-k}
\end{aligned}
$$

Applying Lemma 2.3 to $\left(Y_{1}^{n}\right)^{(k)},\left(Y_{2}^{n}\right)^{(k)}$ we have one of the following possibilities:
CASE 1.

$$
\begin{aligned}
& T\left(r, X_{1}\right) \leq N_{2}\left(r, X_{1}\right)+N_{2}\left(r, \frac{1}{X_{1}}\right)+N_{2}\left(r, \frac{1}{X_{2}}\right)+N_{2}\left(r, X_{2}\right)-\log r+O(1) \\
& T\left(r, X_{2}\right) \leq N_{2}\left(r, X_{1}\right)+N_{2}\left(r, \frac{1}{X_{1}}\right)+N_{2}\left(r, \frac{1}{X_{2}}\right)+N_{2}\left(r, X_{2}\right)-\log r+O(1)
\end{aligned}
$$

We see that, if a is a pole of X_{1}, then $Y_{1}(a)=\infty$ with $\nu_{X_{1}}^{\infty}(a) \geq n+k \geq 2$. Therefore

$$
\begin{aligned}
N_{1}\left(r, Y_{1}\right) & =N_{1}\left(r,\left(f-e_{1}\right) \ldots\left(f-e_{d}\right)\right)=N_{1}(r, f) \leq T(r, f)+O(1) \\
N_{1}\left(r, \frac{1}{Y_{1}}\right) & =\Sigma_{i=1}^{d} N_{1}\left(r, \frac{1}{f-e_{i}}\right) \leq d T(r, f)+O(1) \\
N_{2}\left(r, X_{1}\right) & =2 N_{1}\left(r, Y_{1}\right) \leq 2 T(r, f)+O(1) \\
N_{2}\left(r, \frac{1}{X_{1}}\right) & \leq N_{2}\left(r, \frac{1}{Y_{1}^{n-k}}\right)+N_{1}\left(r, \frac{1}{F}\right)=2 N_{1}\left(r, \frac{1}{Y_{1}}\right)+N_{1}\left(r, \frac{1}{F}\right) \\
& \leq 2 d T(r, f)+N\left(r, \frac{1}{F}\right) \leq 2 d T(r, f)+k N_{1}\left(r, Y_{1}\right) \\
& +k d T(r, f)+O(1)=d(k+2) T(r, f)+k N_{1}\left(r, Y_{1}\right)+O(1)
\end{aligned}
$$

Similarly

$$
\begin{aligned}
N_{2}\left(r, X_{2}\right) & \leq 2 T(r, g)+O(1) \\
N_{2}\left(r, \frac{1}{X_{2}}\right) & \leq 2 d T(r, g)+N\left(r, \frac{1}{G}\right) \\
& =d(k+2) T(r, g)+k N_{1}\left(r, Y_{2}\right)+O(1)
\end{aligned}
$$

Combining the above two inequalities, we get

$$
\begin{aligned}
T\left(r, X_{1}\right) & \leq(2+2 d+k d) T(r, f)+(2+2 d) T(r, g)+k N_{1}\left(r, Y_{1}\right)+N\left(r, \frac{1}{G}\right)-\operatorname{logr}+O(1), \\
T\left(r, X_{2}\right) & \leq(2+2 d+k d) T(r, g)+(2+2 d) T(r, f)+k N_{1}\left(r, Y_{2}\right)+N\left(r, \frac{1}{F}\right)-\log r+O(1), \\
T\left(r, X_{1}\right)+T\left(r, X_{2}\right) & \leq(4+4 d+k d)(T(r, f)+T(r, g))+K N_{1}\left(r, Y_{1}\right)+N\left(r, \frac{1}{G}\right) \\
& +k N_{1}\left(r, Y_{2}\right)+N\left(r, \frac{1}{F}\right)-2 \log r+O(1)
\end{aligned}
$$

By Lemma 2.5, we obtain

$$
\begin{aligned}
& (n-2 k) d T(r, f)+k N\left(r, Y_{1}\right)+N\left(r, \frac{1}{F}\right) \leq T\left(r, X_{1}\right)+O(1) \\
& (n-2 k) d T(r, g)+k N\left(r, Y_{2}\right)+N\left(r, \frac{1}{G}\right) \leq T\left(r, X_{2}\right)+O(1)
\end{aligned}
$$

Thus

$$
\begin{aligned}
(n-2 k) d[T(r, f)+T(r, g)] & +k N\left(r, Y_{1}\right)+N\left(r, \frac{1}{F}\right)+k N\left(r, Y_{2}\right)+N\left(r, \frac{1}{G}\right) \\
& \leq T\left(r, X_{1}\right)+T\left(r, X_{2}\right)+O(1) \\
(n-2 k) d[T(r, f)+T(r, g)] & +k N\left(r, Y_{1}\right)+N\left(r, \frac{1}{F}\right)+k N\left(r, Y_{2}\right)+N\left(r, \frac{1}{G}\right) \\
& \leq(4+4 d+k d)[T(r, f)+T(r, g)]+k N_{1}\left(r, Y_{1}\right) \\
& +N\left(r, \frac{1}{G}\right)+k N_{1}\left(r, Y_{2}\right)+N\left(r, \frac{1}{F}\right)-2 \log r+O(1) .
\end{aligned}
$$

Therefore

$$
(n-2 k) d[T(r, f)+T(r, g)] \leq(4+4 d+k d)(T(r, f)+T(r, g))-2 l o g r+O(1)
$$

$((n-2 k) d-4-4 d-k d)(T(r, f)+T(r, g)) \leq-2 l o g r+O(1)$.
Since $n \geq 3 k+5>2 k+\frac{4+4 d+k d}{d}$, we obtain a contradiction.
CASE 2. $\left(P(f)^{n}\right)^{(k)}\left(Q(g)^{n}\right)^{(k)}=1$. Then we have $Y_{1}=P(f)=\left(f-e_{1}\right) \ldots\left(f-e_{d}\right)$.
$Y_{1}=Y_{1}^{n-k} F, Y_{2}=G(g)$. Therefore

$$
\left(f-e_{1}\right)^{n-k} \ldots\left(f-e_{d}\right)^{n-k} \cdot X_{1}\left(Y_{2}^{n}\right)^{(k)}=\left(Y_{1}^{n}\right)^{(k)}\left(Y_{2}^{n}\right)^{(k)}=1
$$

Because $n \geq 3 k+5$ we see that, if z_{0} is a zero of $f-e_{i}$ with $1 \leq i \leq d$, then z_{0} is a zero of Y_{1}, and therefore, z_{0} is a zero of $\left(Y_{p}^{n}\right)^{(k)}$ and then z_{0} is a pole of $\left(Y_{2}^{n}\right)^{(k)}$ and $v_{\left(Y_{2}^{n}\right)^{(k)}}^{\infty}\left(z_{0}\right)=(n-k) v_{f}^{e_{i}}\left(z_{0}\right)$. Thus, z_{0} is a pole of g and by Lemma 2.4 we get

$$
v_{\left(Y_{2}^{n}\right)^{(k)}}^{\infty}\left(z_{0}\right)=n d v_{g}^{\infty}\left(z_{0}\right)+k \geq n d+k
$$

So, $v_{f}^{e_{i}}\left(z_{0}\right)=\frac{n d v_{g}^{\infty}\left(z_{0}\right)+k}{n-k} \geq \frac{n d+k}{n-k}, i=1,2, \ldots d$. Applying Lemma 2.2, we obtain

$$
\sum_{i=1}^{d}\left(1-\frac{n-k}{n d+k}\right)<2
$$

From this we have $n\left(d^{2}-3 d\right)<2 k(1-d)$, and so we obtain a contradiction to $d \geq 12$.
CASE 3. $\left(P(f)^{n}\right)^{(k)}=\left(Q(g)^{n}\right)^{(k)}$. Then $(P(f))^{n}-s=(Q(g))^{n}$, where s is a polynomial of degree $<k$. We prove $s \equiv 0$. If it is not the case, then

$$
\begin{gathered}
\frac{\left(P(f)^{n}\right)}{s}-1=\frac{\left(g-k_{1}\right)^{n} \ldots\left(g-k_{d}\right)^{n}}{s} \\
\frac{\left(g-k_{1}\right)^{n} \ldots\left(g-k_{d}\right)^{n}}{s}+1=\frac{\left(f-k_{1}\right)^{n} \ldots\left(f-k_{2}\right)^{n}}{s}
\end{gathered}
$$

Set $I=\frac{Y_{1}^{n}}{s}, J=\frac{Y_{2}^{n}}{s}$. Since f, g are not constants, and so are $Y_{1}, Y_{2}, Y_{1}^{n}, Y_{2}^{n}, I, J$. Applying Lemma 2.1 to I with values $\infty, 0,1$, we get

$$
T(r, I) \leq N_{1}(r, I)+N_{1}\left(r, \frac{1}{I}\right)+N_{1}\left(r, \frac{1}{I-1}\right)-\log r+O(1)
$$

On the other hand,

$$
\begin{aligned}
T\left(r, Y_{1}^{n}\right) & =n T\left(r, Y_{1}\right)+O(1) \leq T(r, I)+T(r, s) \leq T(r, I)+(k-1) \log r+O(1) \\
n T\left(r, Y_{1}\right)-(k-1) \log r & \leq T(r, I)+O(1), n d T(r, f)-(k-1) \log r \leq T(r, I)+O(1) \\
N_{1}(r, I) & \leq N_{1}\left(r, Y_{1}^{n}\right)+N_{1}\left(r, \frac{1}{s}\right) \leq N_{1}(r, f)+(k-1) \log r \leq T(r, f)+(k-1) \log r \\
N_{1}\left(r, \frac{1}{I}\right) & \leq N_{1}\left(r, \frac{1}{Y_{1}^{n}}\right)=N_{1}\left(r, \frac{1}{Y_{1}}\right) \leq T\left(r, Y_{1}\right)+O(1)=d T(r, f)+O(1), \\
N_{1}\left(r, \frac{1}{I-1}\right) & =N_{1}\left(r, \frac{1}{J}\right) \leq N_{1}\left(r, \frac{1}{Y_{2}^{n}}\right)=N_{1}\left(r, \frac{1}{Y_{2}}\right) \leq T\left(r, Y_{2}\right)+O(1)=d T(r, g)+O(1), \\
n d T(r, f)-(k-1) \log r & \leq T(r, f)+(k-1) \log r+d(T(r, f)+T(r, g))+O(1)
\end{aligned}
$$

From this, and noting that logr $\leq T(r, f)$, we get

$$
(n d-2(k-1)) T(r, f) \leq T(r, f)+d(T(r, f)+T(r, g))+O(1)
$$

Applying Lemma 2.1 to J with values $\infty, 0,-1$, and noting that $\operatorname{logr} \leq T(r, g)$, we obtain

$$
T(r, J) \leq N_{1}(r, J)+N_{1}\left(r, \frac{1}{J}\right)+N_{1}\left(r, \frac{1}{J+1}\right)-\log r+O(1)
$$

we get

$$
(n d-2(k-1)) T(r, g) \leq T(r, g)+d(T(r, f)+T(r, g))-\log r+O(1)
$$

So

$$
(n d-2(k-1))(T(r, f)+T(r, g)) \leq T(r, f)+T(r, g)+2 d(T(r, f)+T(r, g))-2 \log r+O(1)
$$

$$
(n d-2 d-2 k+1)(T(r, f)+T(r, g))+2 l o g r \leq O(1)
$$

We obtain a contradiction to $n \geq 3 k+5>\frac{2 d+2 k-1}{d}$. So $s=0$. Then $(P(f))^{n}=$ $(Q(g))^{n}$. Therefore $P(f)=k Q(g), k^{n}=1$. From this and by Lemma 2.6, we obtain the conclusion of Theorem I.
Proof of Theorem II. Set

$$
\begin{gathered}
Y_{1}=P(f)=f^{d}+a_{1} f^{d-m}+b_{1} f^{d-m+1}+c_{1} \\
Y_{2}=Q(g)=g^{d}+a_{2} g^{d-m}+b_{2} g^{d-m+1}+c_{2} \\
U=-\frac{f^{d-m}\left(f^{m}+b_{1} f+a_{1}\right)}{c_{1}}, V=-\frac{g^{d-m}\left(g^{m}+b_{2} g+a_{1}\right)}{c_{2}}
\end{gathered}
$$

Since $P(f)$ and $Q(g)$ share 0 CM . we get $E_{U}(1)=E_{V}(1)$. Applying Lemma 2.3 to U, V, we have one of the following possibilities.

CASE 1.

$$
\begin{aligned}
& T(r, U) \leq N_{2}(r, U)+N_{2}\left(r, \frac{1}{U}\right)+N_{2}(r, V)+N_{2}\left(r, \frac{1}{V}\right)-\text { log } r+O(1) \\
& T(r, V) \leq N_{2}(r, V)+N_{2}\left(r, \frac{1}{V}\right)+N_{2}(r, U)+N_{2}\left(r, \frac{1}{U}\right)-\text { logr }+O(1)
\end{aligned}
$$

More over

$$
\begin{gathered}
T(r, U)=d T(r, f)+O(1) \\
N_{1}(r, U)=N_{1}(r, f) \leq T(r, f)+O(1), \\
N_{2}(r, U)=2 N_{1}(r, f) \leq 2 T(r, f)+O(1) \\
N_{2}\left(r, \frac{1}{U}\right) \leq 2 N_{1}\left(r, \frac{1}{f}\right)+N_{2}\left(r, \frac{1}{f^{m}+b_{1} f+a_{1}}\right) \leq 2 T(r, f)+(m+1) T(r, f)+O(1) \\
\text { Similarly } N_{2}(r, V) \leq 2 T(r, g)+O(1), N_{2}\left(r, \frac{1}{V}\right) \leq 2 T(r, g)+(m+1) T(r, g)+O(1)
\end{gathered}
$$

Therefore
$T(r, V)=d T(r, f)+O(1) \leq 4(T(r, f)+T(r, g))+(m+1)(T(r, f)+T(r, g))-\log r+O(1)$.
Similarly
$T(r, V)=d T(r, g)+O(1) \leq 4(T(r, f)+T(r, g))+(m+1)(T(r, f)+T(r, g))-l o g r+O(1)$
Combining the above inequalities we get

$$
\begin{aligned}
& d(T(r, f)+T(r, g)) \leq 8(T(r, f)+T(r, g))+(2 m+2)(T(r, f)+T(r, g))-2 \log r+O(1) \\
& \quad(d-2 m-10)(T(r, f)+T(r, g))+2 \log r \leq O(1)
\end{aligned}
$$

We obtain a contradiction to $d \geq 2 m+10$.
CASE 2. $U V=1$. i.e., $f^{d-m}\left(f^{m}+b_{1} f+a_{1}\right) g^{d-m}\left(g^{m}+b_{2} g+a_{2}\right)=\frac{c_{1}}{c_{2}}$.
Note that equation $z^{m}+b_{1} z+a_{1}=0$ has $(\mathrm{m}+1)$ simple zeros. Let $r_{1}, r_{2}, \ldots r_{m}$ be all these roots. Therefore

$$
\begin{equation*}
f^{d-m}\left(f^{m}+b_{1} f+a_{1}\right) g^{d-m}\left(g^{m}+b_{2} g+a_{2}\right)=\frac{c_{1}}{c_{2}} \tag{3.1}
\end{equation*}
$$

From (3.1) it follows that all zeros of $f-r_{j}, j=1,2, \ldots m$, has multiplicities $\geq d$, and all zeros of f have multiplicities $\geq \frac{d}{d-m+1}$. By Lemma 2.2 we have $1-\frac{d-m+1}{d}+$ $(m+1)\left(1-\frac{1}{d}\right)<2$. Then $m<2$. Since $m \geq 1$, we obtain a contradiction.
CASE 3. $U=V$, i.e., $\frac{f^{d-m}\left(f^{m}+b_{1} f+a_{1}\right)}{c_{1}}=\frac{g^{d-m}\left(g^{m}+b_{2} g+a_{1}\right)}{c_{2}}$ then

$$
\begin{equation*}
f^{d}+a_{1} f^{d-m}+b_{1} f^{d-m+1}+C_{1}=\frac{C_{1}}{C_{2}} g^{d}+a_{1} g^{d-m}+b_{1} g^{d-m+1}+C_{2} \tag{3.2}
\end{equation*}
$$

Applying Lemma 2.6 to (3.2), we obtain the conclusion of Theorem II.

References

[1] An, Vu Hoai and Hoa, Pham Ngoc On the uniqueness problem of non-archimedean meromorphic functions and theire diffeential polynomials. Annales Univ. Sci. Budapest., Sect. Comp. 46(2017) 289-302.
[2] An, Vu Hoai; Hoa, Pham Ngoc; Ha Huy Khoai. Value sharing problems for differential and difference polynomials of meromorphic functions in a non-Archimedean field. p-Adic Numbers Ultrametric Anal. Appl. 9 (2017), no. 1, 1-14.
[3] Boutabaa, Abdelbaki. Thorie de Nevanlinna p-adique. (French) [[p-adic Nevanlinna theory]] Manuscripta Math. 67 (1990), no. 3, 251-269.
[4] Boussaf, Kamal; Escassut, Alain; Ojeda, Jacqueline. p-adic meromorphic functions $f^{\prime} P^{\prime}(f)$, $g^{\prime} P^{\prime}(g)$ sharing a small function. Bull. Sci. Math. 136 (2012), no. 2, 172-200.
[5] Cherry, William; Yang, Chung-Chun. Uniqueness of non-Archimedean entire functions sharing sets of values counting multiplicity. Proc. Amer. Math. Soc. 127 (1999), no. 4, 967-971.
[6] Ha Huy Khoai; Vu Hoai An. Value distribution for p-adic hypersurfaces. Taiwanese J. Math. 7 (2003), no. 1, 51-67.
[7] Ha Huy Khoai; Ta Thi Hoai An. On uniqueness polynomials and bi-URs for p-adic meromorphic functions. J. Number Theory 87 (2001), no. 2, 211-221.
[8] Ha Huy Khoai;Vu Hoai An and Nguyen Xuan Lai. Value sharing problem and iniqueness for p-adic meromorphic functions, Annales Univ. Sci. Budapet., Sect. Comp. 38(2012), 71-92.
[9] Hu, Pei-Chu; Yang, Chung-Chun. A unique range set of p-adic meromorphic functions with 10 elements. Acta Math. Vietnam. 24 (1999), no. 1, 95-108.
[10] Hu, Pei-Chu; Yang, Chung-Chun. Meromorphic functions over non-Archimedean fields. Mathematics and its Applications, 522. Kluwer Academic Publishers, Dordrecht, 2000. viii+295 pp. ISBN: 0-7923-6532-1.
[11] Meng, Chao; Li, Xu. On unicity of meromorphic functions and their derivatives. J. Anal. 28 (2020), no. 3, 879-894.
[12] Pakovich, Fedor. On polynomials sharing preimages of compact sets, and related questions. Geom. Funct. Anal. 18 (2008), no. 1, 163-183.
[13] Yang, Chung-Chun. Proceedings of the S.U.N.Y. Brockport Conference on Complex Function Theory held at the State University College, Brockport, N.Y., June 79, 1976. Edited by Sanford S. Miller. Lecture Notes in Pure and Applied Mathematics, Vol. 36. Marcel Dekker, Inc., New York-Basel, 1978. xii+177 pp. ISBN: 0-8247-6725-X

RAJESHWARI S.
Assistant Professor, School of Engineering, Presidency University, Itagalpura, Rajanakunte, Yelahanka, Bangalore-560 064, INDIA

E-mail address: <rajeshwari.s@presidencyuniversity.in, rajeshwaripreetham@gmail.com>
HUSNA V.
Assistant Professor, School of Engineering, Presidency University, Itagalpura, Rajanakunte, Yelahanka, Bangalore-560 064, INDIA

E-mail address: <husna@presidencyuniversity.in, husnav43@gmail.com>
NAVEEN KUMAR S.H.
Department of Mathematics, Gitam School of Technology, Gitam Bangalore-562163, INDIA

E-mail address: naveenkumarsh.220@gmail.com

