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UNIQUENESS OF ENTIRE FUNCTIONS CONCERNING THE

SHIFT DIFFERENTIAL POLYNOMIALS

B. SAHA AND T. BISWAS

Abstract. In this paper we consider the uniqueness problem of the shift

differential polynomial (fn(z)(f(z) − 1)m
s∏

j=1

f(z + cj)
µj )(k), where f(z) is

a transcendental entire function of finite order, cj(j = 1, 2, ..., s) are distinct

finite complex numbers and n(≥ 1), m(≥ 1), k(≥ 0), s and µj(j = 1, 2, ..., s)
are integers. The results of the paper improve and extend some results given
by K. Zhang and H. X. Yi [Acta Mathematica Scientis Series Manuscript,
34B(3)(2014), 719-728] and P. Sahoo and the present first author [Applied

Mathematics E-Notes, 16(2016) 33-44].

1. Introduction, Definitions and Results

In this paper, a meromorphic function f(z) means meromorphic in the complex
plane. We shall adopt the standard notations in Nevanlinna’s value distribution
theory of meromorphic functions as explained in [6], [8] and [14]. For a nonconstant
meromorphic function h, we denote by T (r, h) the Nevanlinna characteristic of h
and by S(r, h) any quantity satisfying S(r, h) = o{T (r, h)} (r → ∞, r ̸∈ E).

Let f and g be two nonconstant meromorphic functions and a ∈ C ∪ {∞}. If
the zeros of f − a and g − a coincide in locations and multiplicity, we say that f
and g share the value a CM (counting multiplicities). On the other hand, if the
zeros of f − a and g − a coincide only in their locations, then we say that f and g
share the value a IM (ignoring multiplicities). For a positive integer p, we denote by
Np(r, a; f) the counting function of a-points of f , where an a-point of multiplicity
m is counted m times if m ≤ p and p times if m > p. A meromorphic function
α( ̸≡ 0,∞) is called a small function with respect to f , if T (r, α) = S(r, f).

Recently, the topic of difference equation and difference product in the complex
plane C has attracted many mathematicians, a large number of papers have focused
on value distribution of differences and differences operator analogues of Nevanlinna
theory (including [3], [4], [5], and [9]), and many people paid their attention to the
uniqueness of differences and difference polynomials of meromorphic function and
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obtained many interesting results. K. Liu and L.Z. Yang [10] also considered the
zeros of fn(z)f(z + c)− p(z) and fn∆cf, where p(z) is a nonzero polynomial and
obtain the following theorem.

Theorem A. Let f be a transcendental entire function of finite order and p(z) be
a polynomial. If n ≥ 2, then fn(z)f(z + c) − p(z) has infinitely many zeros. If f
is not a periodic function with period c and n ≥ 2, then ∆cf = f(z + c)− f(z) has
infinitely many zeros.

In 2010, X.G. Qi, L.Z. Yang and K. Liu [12] proved the following uniqueness
result which corresponded to Theorem A.

Theorem B. Let f and g be two transcendental entire functions of finite order,
and c be a nonzero complex constant, and let n ≥ 6 be an integer. If fn(z)f(z + c)
and gn(z)g(z + c) share the value 1 CM, then either fg = t1 or f = t2g for some
constants t1 and t2 satisfying tn+1

1 = tn+1
2 = 1.

In the same year J.L. Zhang [15] considered the zeros of one certain type of
difference polynomial and obtained the following result.

Theorem C. Let f be a transcendental entire function of finite order, α(z)(̸≡ 0)
be a small function with respect to f and c be a nonzero complex constant. If n ≥ 2
is an integer, then fn(z)(f(z)− 1)f(z + c)− α(z) has infinitely many zeros.

In the same paper the author also proved the following uniqueness result which
corresponds to Theorem C.

Theorem D. Let f and g be two transcendental entire functions of finite order,
and α(z)(̸≡ 0) be a small function with respect to both f and g. Suppose that c is a
nonzero complex constant and n ≥ 7 is an integer. If fn(z)(f(z)− 1)f(z + c) and
gn(z)(g(z)− 1)g(z + c) share α(z) CM, then f = g.

In 2012, M.R. Chen and Z.X. Chen [2] considered zeros of one certain type of
difference polynomials and obtain the following theorem.

Theorem E. Let f be transcendental entire function of finite order and α(z)(̸≡ 0)
be a small function with respect to f(z), cj(j = 1, 2, ..., s), n, m, s and µj(j =

1, 2, ..., s) be integers. If n ≥ 2 then fn(z)(fm(z) − 1)
s∏

j=1

f(z + cj)
µj − α(z) has

infinitely many zeros.

In the same paper the author also proved the following uniqueness result which
corresponds to Theorem E.

Theorem F. Let f and g be two transcendental entire functions of finite order,
α(z)(̸≡ 0) be a common small function with respect to f and g, c be nonzero finite

complex numbers. If n ≥ m + 8σ, n, m, s, µj(j = 1, 2, ..., s) and σ =

s∑
j=1

µj are

integers, and fn(z)(fm(z)− 1)
s∏

j=1

f(z+ cj)
µj and gn(z)(gm(z)− 1)

s∏
j=1

g(z+ cj)
µj

share α(z) CM, then f = tg where tm = tm+σ = 1.
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In 2014, K. Zhang and H.X. Yi [17] investigated the difference-differential poly-

nomial of the form (fn(z)(f(z)− 1)m
s∏

j=1

f(z+ cj)
µj )(k), where f is transcendental

entire function of finite order, cj(j = 1, 2, ..., s), n, m, s and µj(j = 1, 2, ..., s) are

nonnegative integers, and σ =

s∑
j=1

µj and obtained the following theorem.

Theorem G. Let f and g be transcendental entire functions of finite order, α(z)(̸≡
0) be a common small function with respect to f and g, cj (j = 1, 2, ..., s) be distinct
finite complex numbers and n, m, s, and µj(j = 1, 2, ..., s) are nonnegative integers.
If n ≥ 4k − m + σ + 9, and the differential-difference polynomial (fn(z)(f(z) −

1)m
s∏

j=1

f(z + cj)
µj )(k) and (gn(z)(g(z) − 1)m

s∏
j=1

g(z + cj)
µj )(k) share α(z) CM,

then f = g.

An increment to uniqueness theory has been to considering weighted sharing
instead of sharing IM or CM, this implies a gradual change from sharing IM to
sharing CM. This notion of weighted sharing has been introduced by I. Lahiri
around 2001, which measure how close a shared value is to being shared CM or to
being shared IM. The definition is as follows.

Definition 1.1. ([7]) Let k be a nonnegative integer or infinity. For a ∈ C ∪ {∞}
we denote by Ek(a; f) the set of all a-points of f where an a-point of multiplicity
m is counted m times if m ≤ k and k+1 times if m > k. If Ek(a; f) = Ek(a; g), we
say that f , g share the value a with weight k.

The definition implies that if f , g share a value a with weight k, then z0 is
an a-point of f with multiplicity m(≤ k) if and only if it is an a-point of g with
multiplicity m(≤ k) and z0 is an a-point of f with multiplicity m(> k) if and only
if it is an a-point of g with multiplicity n(> k), where m is not necessarily equal to
n.

We write f , g share (a, k) to mean that f , g share the value a with weight k.
Clearly if f , g share (a, k) then f , g share (a, p) for any integer p, 0 ≤ p < k. Also
we note that f , g share a value a IM or CM if and only if f , g share (a, 0) or (a,∞)
respectively.

If α is a small function of f and g, then f, g share α with weight k means that
f − α, g − α share the value 0 with weight k.
In 2016, P. Sahoo and the present author [13] proved the following theorems.

Theorem H. Let f and g be two transcendental entire functions of finite order
and α(z)(̸≡ 0) be a small function with respect to f and g. Suppose that c is
a nonzero complex constant, n(≥ 1), m(≥ 1) and k(≥ 0) are integers satisfying
n ≥ 2k + m + 6 when m ≤ k + 1 and n ≥ 4k − m + 10 when m > k + 1. If

(fn(z)(f(z)− 1)mf(z + c))
(k)

and (gn(z)(g(z)− 1)mg(z + c))
(k)

share (α, 2) then
either f = g or f and g satisfy the algebraic equation R(f, g) = 0 where R(f, g) is
given by

R(w1, w2) = wn
1 (w1 − 1)mw1(z + c)− wn

2 (w2 − 1)mw2(z + c)

Theorem I. Let f and g be two transcendental entire functions of finite order
and α(z)(̸≡ 0) be a small function with respect to f and g. Suppose that c is
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a nonzero complex constant, n(≥ 1), m(≥ 1) and k(≥ 0) are integers satisfying
n ≥ 5k + 4m + 12 when m ≤ k + 1 and n ≥ 10k − m + 19 when m > k + 1.

If (fn(z)(f(z)− 1)mf(z + c))
(k)

and (gn(z)(g(z)− 1)mg(z + c))
(k)

share α(z) IM,
then the conclusions of theorem H hold.

Now it is natural to ask the following questions which are the motivation of the
paper.

Question 1.1. Is it possible to relax in any way the nature of sharing the small
function in Theorem G keeping the lower bound of n fixed ?

Question 1.2. What can be said if we consider the difference-differential poly-

nomial (fn(z)(f(z) − 1)m
s∏

j=1

f(z + cj)
µj )(k), where f(z) is a transcendental en-

tire function of finite order, cj(j = 1, 2, ..., s), n(≥ 1), m(≥ 1), k(≥ 0), s and

µj(j = 1, 2, ..., s) are integers, σ =
s∑

j=1

µj in theorem H and theorem I ?

In the paper, our main concern is to find the possible answer of the above ques-
tions. The following are the main results of the paper.

Theorem 1.1. Let f and g be two transcendental entire functions of finite or-
der and α(z)(̸≡ 0) be a small function with respect to f and g. Suppose that cj
(j = 1, 2, ..., s) be distinct finite complex numbers and n(≥ 1), m(≥ 1), s, µj(j =
1, 2, ..., s) and k(≥ 0) are nonnegative integers satisfying n ≥ 2k +m+ σ + 5 when
m ≤ k+1 and n ≥ 4k−m+σ+9, when m > k+1. If the difference-differential poly-

nomial (fn(z)(f(z)−1)m
s∏

j=1

f(z+cj)
µj )(k) and (gn(z)(g(z)−1)m

s∏
j=1

g(z+cj)
µj )(k)

share (α, 2), then either f = g or f and g satisfy the algebraic equation R(f, g) = 0,
where R(f, g) is given by

R(w1, w2) = wn
1 (w1 − 1)m

s∏
j=1

w1(z + cj)
µj − wn

2 (w2 − 1)m
s∏

j=1

w2(z + cj)
µj

.

Remark 1.1. Theorem 1.1 improves Theorem G.

Remark 1.2. Theorem 1.1 extends Theorem H.

Theorem 1.2. Let f and g be two transcendental entire functions of finite or-
der and α(z)(̸≡ 0) be a small function with respect to f and g. Suppose that cj
(j = 1, 2, ..., s) be distinct finite complex numbers and n(≥ 1), m(≥ 1), s, µj(j =
1, 2, ..., s) and k(≥ 0) are nonnegative integers satisfying n ≥ 5k+4m+4σ+8 when
m ≤ k+1 and n ≥ 10k−m+4σ+15, when m > k+1. If the difference-differential

polynomial (fn(z)(f(z) − 1)m
s∏

j=1

f(z + cj)
µj )(k) and (gn(z)(g(z) − 1)m

s∏
j=1

g(z +

cj)
µj )(k) share α(z) IM, then the conclusions of Theorem 1.1 hold.

Remark 1.3. Theorem 1.2 extends Theorem I.
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2. Lemmas

Let F and G be two nonconstant meromorphic functions defined in the open
complex plane C. We denote by H the function as follows:

H =

(
F ′′

G′ − 2F ′

F − 1

)
−

(
G′′

G′ − 2G′

G− 1

)
.

Lemma 2.1. [11] Let f be a meromorphic function of finite order ρ and let c( ̸= 0)
be a fixed nonzero complex constant. Then

N(r, 1, f(z + c)) ≤ N(r, 1, f) + S(r, f),

outside a possible exceptional set of finite logarithmic measure.

Lemma 2.2. [17] Let f be an entire function of finite order and (fn(z)(f(z) −

1)m
s∏

j=1

f(z + cj)
µj )(k). Then

T (r, F ) = (n+m+ σ)T (r, f) + S(r, f).

Lemma 2.3. [16] Let f be a nonconstant meromorphic function, and p, k be two
positive integers. Then

Np

(
r, 0; f (k)

)
≤ T

(
r, f (k)

)
− T (r, f) +Np+k(r, 0; f) + S(r, f). (2.1)

and

Np

(
r, 0; f (k)

)
≤ kN(r,∞; f) +Np+k(r, 0; f) + S(r, f). (2.2)

Lemma 2.4. [7] Let f and g be two nonconstant meromorphic functions sharing
(1, 2). Then one of the following three cases hold:

(i) T (r) ≤ N2(r, 0; f) +N2(r, 0; g) +N2(r,∞; f) +N2(r,∞; g) + S(r),
(ii) f = g,
(iii) fg = 1,
Where T (r) = max{T (r, f), T (r, g)} and S(r) = o{T (r)}.

Lemma 2.5. [1] Let F and G be two nonconstant meromorphic functions sharing
the value 1 IM and H ̸≡ 0. Then

T (r, F ) ≤ N2(r, 0;F ) + N2(r, 0;G) + N2(r,∞;F ) + N2(r,∞;G) + 2N(r, 0;F ) +
N(r, 0;G) + 2N(r,∞;F ) +N(r,∞;G) + S(r, F ) + S(r,G),
and the same inequality holds for T (r,G).

Lemma 2.6. Let f and g be two entire functions and n(≥ 1), m(≥ 1), k(≥ 0),

be integers, and let F = (fn(z)(f(z) − 1)m
s∏

j=1

f(z + cj)
µj )(k), G = (gn(z)(g(z) −

1)m
s∏

j=1

g(z+cj)
µj )(k). If there exists nonzero constants c1 and c2 such that N(r, c1;F ) =

N(r; 0;G) and N(r, c2;G) = N(r, 0;F ), then n ≤ 2k + m + σ + 2 for m ≤ k + 1
and n ≤ 4k −m+ σ + 4 for m > k + 1.
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Proof. We put F1 = fn(z)(f(z)−1)m
s∏

j=1

f(z+cj)
µj , G1 = gn(z)(g(z)−1)m

s∏
j=1

g(z+

cj)
µj . By the second fundamental theorem of Nevanlinna we have

T (r, F ) ≤ N(r, 0;F ) +N(r, c1;F ) + S(r, F )

≤ N(r, 0;F ) +N(r, 0;G) + S(r, F ). (2.3)

Using (2.3), Lemmas 2.2 and 2.3, we obtain

(n+m+ σ)T (r, f) ≤ T (r, F )−N(r, 0;F ) +Nk+1(r, 0;F1) + S(r, f)

≤ N(r, 0;G) +Nk+1(r, 0;F1) + S(r, f)

≤ Nk+1(r, 0;F1) +Nk+1(r, 0;G1) + S(r, f) + S(r, g).(2.4)

If m ≤ k + 1, we deduce from (2.4) that

(n+m+ σ)T (r, f) ≤ (k +m+ σ + 1)(T (r, f) + T (r, g)) + S(r, f) + S(r, g). (2.5)

Similarly,

(n+m+ σ)T (r, g) ≤ (k +m+ σ + 1)(T (r, f) + T (r, g)) + S(r, f) + S(r, g). (2.6)

Combining (2.5) and (2.6) we obtain

(n− 2k −m− σ − 2)(T (r, f) + T (r, g)) ≤ S(r, f) + S(r, g),

which gives

n ≤ 2k +m+ σ + 2.

If m > k + 1, we deduce from (2.4) that

(n+m+ σ)T (r, f) ≤ (2k + σ + 2)(T (r, f) + T (r, g)) + S(r, f) + S(r, g). (2.7)

Similarly,

(n+m+ σ)T (r, g) ≤ (2k + σ + 2)(T (r, f) + T (r, g)) + S(r, f) + S(r, g). (2.8)

Combining (2.7) and (2.8) we obtain

(n− 4k +m− σ − 4)(T (r, f) + T (r, g)) ≤ S(r, f) + S(r, g),

which gives n ≤ 4k −m+ σ + 4. This proves the lemma. �

3. Proof of the Theorems

Proof of Theorem 1.1. Let F1 = fn(z)(f(z)−1)m
s∏

j=1

f(z+cj)
µj , G1 = gn(z)(g(z)−

1)m
s∏

j=1

g(z + cj)
µj , F =

F
(k)
1

α(z) and G =
G

(k)
1

α(z) . Then F and G are transcendental

meromorphic functions that share (1, 2) except the zeros and poles of α(z). Using
(2.1) and Lemma 2.2 we get

N2(r, 0;F ) ≤ N2(r, 0; (F1)
(k)) + S(r, f)

≤ T (r, (F1)
(k))− (n+m+ σ)T (r, f) +Nk+2(r, 0;F1) + S(r, f)

≤ T (r, F )− (n+m+ σ)T (r, f) +Nk+2(r, 0;F1) + S(r, f).

From this we get

(n+m+ σ)T (r, f) ≤ T (r, F ) +Nk+2(r, 0;F1)−N2(r, 0;F ) + S(r, f). (3.1)
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Again by (2.2) we have

N2(r, 0;F ) ≤ N2(r, 0;F
(k)
1 ) + S(r, f)

≤ Nk+2(r, 0;F1) + S(r, f). (3.2)

Suppose, if possible, that (i) of Lemma 2.4 holds. Then using (3.2) we obtain from
(3.1)

(n+m+ σ)T (r, f) ≤ N2(r, 0;G) +N2(r, 1;F ) +N2(r, 1;G) +Nk+2(r, 0;F1)

+S(r, f) + S(r, g)

≤ Nk+2(r, 0;F1) +Nk+2(r, 0;G1) + S(r, f) + S(r, g). (3.3)

If m ≤ k + 1 we deduce from (3.3) that

(n+m+ σ)T (r, f) ≤ (k +m+ σ + 2){T (r, f) + T (r, g)}+ S(r, f) + S(r, g). (3.4)

In a similar manner we obtain

(n+m+ σ)T (r, g) ≤ (k +m+ σ + 2){T (r, f) + T (r, g)}+ S(r, f) + S(r, g). (3.5)

(3.4) and (3.5) together give

(n− 2k −m− σ − 4){T (r, f) + T (r, g)} ≤ S(r, f) + S(r, g),

contradicting with the fact that

n ≤ 2k +m+ σ + 5.

If m > k + 1 we deduce from (3.3) that

(n+m+ σ)T (r, f) ≤ (2k + σ + 4){T (r, f) + T (r, g)}+ S(r, f) + S(r, g). (3.6)

In a similar manner we obtain

(n+m+ σ)T (r, g) ≤ (2k + σ + 4){T (r, f) + T (r, g)}+ S(r, f) + S(r, g). (3.7)

(3.6) and (3.7) together give

(n− 4k +m− σ − 8){T (r, f) + T (r, g)} ≤ S(r, f) + S(r, g),

contradicting with the fact that

n ≤ 4k −m+ σ + 9.

Therefore, by Lemma 2.4 we have either FG = 1 or F = G. Let FG = 1. Then

(fn(z)(f(z)− 1)m
s∏

j=1

f(z + cj)
µj )(k)

(gn(z)(g(z)− 1)m
s∏

j=1

g(z + cj)
µj )(k) = α2

It can be easily viewed from above thatN(r, 0; f) = S(r, f) andN(r, 1; f) = S(r, f).
Thus we obtain

δ(0, f) + δ(1, f) + δ(1, f) = 3,

which is not possible. Therefore, we must have F = G, and then

(fn(z)(f(z)− 1)m
s∏

j=1

f(z + cj)
µj )(k) = (gn(z)(g(z)− 1)m

s∏
j=1

g(z + cj)
µj )(k),

Integrating above we obtain
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(fn(z)(f(z)− 1)m
s∏

j=1

f(z + cj)
µj )(k−1) = (gn(z)(g(z)− 1)m

s∏
j=1

g(z + cj)
µj )(k−1) + ck−1,

where ck−1 is a constant. If ck−1 ̸= 0, using Lemma 2.6 it follows that n ≤
2k + m + σ + 2, when m ≤ k + 1 and n ≤ 4k − m + σ + 4 when n > k + 1, a
contradiction. Hence ck−1 = 0. Repeating the process k-times, we deduce that

fn(z)(f(z)− 1)m
s∏

j=1

f(z + cj)
µj = gn(z)(g(z)− 1)m

s∏
j=1

g(z + cj)
µj , (3.8)

Set h = f
g . If h is a constant, then substituting f = gh in (3.8), we deduce that

s∏
j=1

g(z + cj)
µj [gm(hn+m+σ − 1)−m C1g

m−1(hn+m+σ−1 − 1) + ...+ (−1)m(hn+σ − 1)] = 0.

Since g is a transcendental entire function, we have
s∏

j=1

g(z + cj)
µj ̸= 0. So from

above we obtain

gm(hn+m+σ − 1)−m C1g
m−1(hn+m+σ−1 − 1) + ...+ (−1)m(hn+σ − 1) = 0,

which implies h = 1 and hence f = g. If h is not a constant, then it follows from
(3.8) that f and g satisfy the algebraic equation R(f, g) = 0 where R(f, g) is given
by

R(w1, w2) = wn
1 (w1 − 1)m

s∏
j=1

w1(z + cj)
µj − wn

2 (w2 − 1)m
s∏

j=1

w2(z + cj)
µj .

This proves Theorem 1.1. �
Proof of Theorem 1.2. Let F, G, F1 and G1 be defined as in the proof of Theorem
1.1. Then F and G are transcendental meromorphic functions that share the value
1 IM except the zeros and poles of α(z). We assume, if possible, that H ̸≡ 0. Using
Lemma 2.5 and (3.2) we obtain from (3.1)

(n+m+ σ)T (r, f) ≤ N2(r, 0;G) +N2(r, 1;F ) +N2(r, 1;G) + 2N(r, 0;F ) +N(r, 0;G)

+Nk+2(r, 0;F1) + 2N(r,∞;F ) +N(r,∞;G) + S(r, f) + S(r, g)

≤ Nk+2(r, 0;F1) +Nk+2(r; 0;G1) + 2Nk+1(r, 0;F1)

+Nk+1(r, 0;G1) + S(r, f) + S(r, g) (3.9)

If m ≤ k + 1 we deduce from (3.9) that

(n+m+ σ)T (r, f) ≤ (3k + 3m+ 3σ + 4)T (r, f) + (2k + 2m+ 2σ + 3)T (r, g)

+S(r, f) + S(r, g)

≤ (5k + 5m+ 5σ + 7)T (r) + S(r). (3.10)

In a similar manner we obtain

(n+m+ σ)T (r, f) ≤ (5k + 5m+ 5σ + 7)T (r) + S(r). (3.11)

(3.10) and (3.11) together give

(n− 5k − 4m− 4σ − 7)T (r) ≤ S(r),
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contradicting with the fact that

n ≤ 5k + 4m+ 4σ + 8.

If m > k + 1 we deduce from (3.9) that

(n+m+ σ)T (r, f) ≤ (6k + 3σ + 8)T (r, f) + (4k + 2σ + 6)T (r, g) + S(r, f) + S(r, g)

≤ (10k + 5σ + 14)T (r) + S(r). (3.12)

In a similar manner we obtain

(n+m+ σ)T (r, f) ≤ (10k + 5σ + 14)T (r) + S(r). (3.13)

(3.12) and (3.13) together give

(n− 10k +m− 4σ − 14)T (r) ≤ S(r),

contradicting with the fact that

n ≤ 10k −m+ 4σ + 15.

We now assume that H ≡ 0. Then(
F ′′

F ′ − 2F ′

F − 1

)
−

(
G′′

G′ − 2G′

G− 1

)
= 0.

Integrating both sides of the above equality twice we get

1

F − 1
=

A

G− 1
+B, (3.14)

where A(̸= 0) and B are constants. From (3.14) it is obvious that F, G share the
value 1 CM and hence they share (1, 2). Therefore n ≥ 2k + m + σ + 5 when
m ≤ k + 1 and n ≥ 4k −m+ σ + 9 when m > k + 1. We now discuss the following
three cases separately.
Case 1. Suppose that B ̸= 0 and A = B. Then from (3.14) we obtain

1

F − 1
=

BG

G− 1
. (3.15)

If B = −1, then from (3.15) we obtain

FG = 1,

which is a contradiction as in the proof of Theorem 1.1.
If B ̸= −1, from (3.15), we have 1

F = BG
(1+B)G−1 and so N(r, 1

1+B ;G) = N(r, 0;F ).

Using (2.1), (2.2) and the second fundamental theorem of Nevanlinna, we deduce
that

T (r,G) ≤ N(r, 0;G) +N

(
r,

1

B + 1
;G

)
+N(r,∞;F ) + S(r,G)

≤ N(r, 0;F ) +N(r, 0;G) +N(r,∞;G) + S(r,G)

≤ Nk+1(r, 0;F1) + T (r,G) +Nk+1(r, 0;G1)

−(n+m+ σ)T (r, g) + S(r, g). (3.16)

If m ≤ k + 1 we deduce from (3.16) that

(n+m+ σ)T (r, g) ≤ (k +m+ σ + 1){T (r, f) + T (r, g)}+ S(r, g).

Thus we obtain

(n− 2k −m− σ − 2){T (r, f) + T (r, g)} ≤ S(r, f) + S(r, g),
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which is a contradiction as n ≥ 2k +m+ σ + 5.
If m > k + 1 we deduce from (3.16) that

(n+m+ σ)T (r, g) ≤ (2k + σ + 2){T (r, f) + T (r, g)}+ S(r, g).

Thus we obtain

(n− 4k +m− σ − 4){T (r, f) + T (r, g)} ≤ S(r, f) + S(r, g),

which is a contradiction as n ≥ 4k −m+ σ + 9.
Case 2. Let B ̸= 0 and A ̸= B. Then from (3.14) we get F = (B+1)G−(B−A+1)

BG(A−B)

and so N(r, B−A+1
B+1 ;G) = N(r, 0;F ). Proceeding in a manner similar to case 1 we

can arrive at a contradiction.
Case 3. Let B = 0 and A ̸= 0. Then from (3.14) we get F = G+A−1

A and

G = AF − (A− 1). If A ̸= 1, it follows that N(r, A−1
A ;F ) = N(r, 0;G) and N(r, 1−

A;G) = N(r, 0;F ). Now applying Lemma 6 it can be shown that n ≤ 2k+m+σ+2
for m ≤ k + 1 and n ≤ 4k − m + σ + 4 for m > k + 1, which is a contradiction.
Thus A = 1 and then F = G. Now the result follows from the proof of Theorem
1.1. This completes the proof of Theorem 1.2. �
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