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OPTIMAL CONTROLS FOR STOCHASTIC FUNCTIONAL
INTEGRODIFFERENTIAL EQUATIONS

M. A. DIOP, P. D. A. GUINDO, M. FALL, AND A. DIAKHABY

ABSTRACT. The aim of this work is to investigate a class of stochastic functional
integrodifferential equations(SFIDEs) in a Hilbert space. We first study the exis-
tence of mild solutions of these equations by means of stochastic analysis theory
and theory of resolvent operator in the sense of Grimmer. Further, the existence
of optimal pairs for the corresponding Lagrange control systems is investigated.
Finally, an example is presented to illustrate our obtained results.

1. INTRODUCTION

In the last decades stochastic differential equations have attracted considerable
attention. These equations have been studied extensively since they are abstract
formulations for many problems arising from economics, finance, physics, me-
chanics, electricity and control engineering, etc. (see [10, 15, 25]). There is much
current interest in studying qualitative properties for SPDEs (see, e.g., [1, 2, 5, 26,
27]). In recent years, much attention has been paid to the qualitative properties
of mild solutions to various stochastic integrodifferential equations by using the
resolvent operator theory for integral equations and the fixed point technique see
e.g., [14, 20, 28] and the references therein.

On the other hand the optimal control is one of the important concepts in con-
trol theory and plays a vital role in control systems. For an optimal control prob-
lem, the minimization of a criterion function of the states and control inputs of
the system over a set of admissible control functions are necessary. The system
is subject to constrained dynamics and control variables, among which additional
constraints such as final time constraints can be considered. The optimal control
theory has been successfully applied in biology, engineering, economy, physics,
etc. (see [12]). In recent years, many efforts have been made to investigated the
existence of optimal controls for various types of stochastic nonlinear functional
differential equations in infinite dimensional spaces(see [21, 25]). Bonaccorsi et al.
[17] investigated the optimal control problem for stochastic differential equations
with dynamical boundary conditions. Zhou and Liu [11] studied the existence of
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optimal control for stochastic evolution equations in Hilbert spaces. Ren and Wu
[22] discussed the optimal control problem associated with multivalued stochas-
tic differential equations with Levy jumps by using Yosida approximation theory.
Rajivganthi et al. [18] presented the optimal control results of fractional stochas-
tic neutral differential equations in Hilbert spaces. Very recently in [6], the authors
obtained necessary conditions of optimality for some stochastic integrodifferential
of neutral type. Dhayal et al. [13] studied the optimal control problem for non-
instantaneous impulsive stochastic neutral integrodifferential equations driven by
fractional Brownian motion by using the theory of the resolvent operator and a
fixed point technique.

Motivated by the above discussion, in this work, we study the stochastic func-
tional integrodifferential equations of the following form


dx(t) =

[
Ax(t) +

∫ t

0
B(t− s)x(s)ds + C(t)u(t)

+σ(t, xt)

]
dt + f (t, xt)dω(t) for t ∈ [0, T],

x(0) =ϕ ∈ B,

(1)

where the state x(t) takes values in a separable real Hilbert space H with in-
ner product < ·, · >H and norm ‖ · ‖H. A is the infinitesimal generator of C0-
semigroup (T(t))t≥0 on H with domain D(A). Let K be another separable Hilbert
space with inner product < ·, · >K and norm ‖ · ‖K. Here (B(t))t≥0 is is closed lin-
ear operator on H with domain D(B) ⊂ D(A) which is independent of t. Suppose
{ω(t); t ≥ 0} is a given K-valued Wiener process with covariance operator Q > 0
defined on a complete probability space (Ω,F ,P, {Ft}t≥0), were {Ft}t≥0 is a nor-
mal filtration generated by the Wiener process ω. u takes values from separable,
reflexive Hilbert space Y and C is a linear operator from Y into H. The time history
xt : (−∞, 0] → H given by xt(θ) = x(t +θ) belongs to some abstract phase space
B defined axiomatically; f : [0, T] × B → Lb(K,H) and σ : [0, T] × B → H. f
and σ are appropriate functions and Lb(K,H) is the space of bounded functions
from K into H. The initial data {ϕ(t) : t ∈ (−∞, 0]} is an F0-adapted, B-valued
random variable independent of the Wiener processω with finite second moment
and x0 is an F0-adapted, H valued random variable independent ofω.

Our objective in this work is to investigate the existence of mild solutions and
optimal control for system (1) by using the Krasnoselskii-Shaefer fixed point the-
orem combined with the resolvent operator theory. Furthermore, to the best of
our knowledge, the optimal controls for stochastic partial functional integrodif-
ferential equations (1) with infinite delay are untreated in the literature, and this
fact motivates us to extend the existing ones and make new development of the
present work on this issue.

The remainder of this work is structured accordingly. We introduce some basic
notations and required preliminaries in Section 2. In Section 3, we prove the exis-
tence of mild solutions for system (1). Section 4 displays the outcomes for optimal
pairs of system governed by stochastic control system (1). Finally, an example is
given in Section 5 to illustrate the obtained results.
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2. PRELIMINARIES

Let H, K be two real separable Hilbert spaces and we denote by < ·, · >H
, < ·, · >K their inner products and by ‖ · ‖H, ‖ · ‖K their corresponding vector
norms respectively. Let L(K,H) be the space of linear operators mapping K into
H equipped with the usual norm ‖ · ‖H, and Lb(H) denotes the Hilbert space of
bounded linear operators from H to H.

Let {w(t) : t ≥ 0} denote an K-valued Wiener process defined on the prob-
ability space (Ω,F ,P) with covariance operator Q, that is E < w(t), x >K<
w(t), y >K= t ∧ s < Qx, y >H, for all x, y ∈ H, where Q is a positive, self-adjoint,
trace class operator on K. In particular, we denote w(t) an K-valued Q-Wiener
process with respect to {Ft}t≥0.

In order to define stochastic integrals with respect to the Q-Wiener process w(t),
we introduce the subspace K0 = Q

1
2 (K) of K which is endowed with the inner

product < ũ, ṽ >K0=< Q−
1
2 ũ, Q−

1
2 ṽ >K is a Hilbert space. We assume that

there exists a complete orthonormal system {en}n≥1 in K, a bounded sequence
of non-negative real numbers {λn}n≥1 such that Qen = λnen and a sequence βn of
independent Brownian motions such that

< w(t), e >=
∞
∑

n=1

√
λn < en, e > βn(t), e ∈ K, t ∈ J,

and Ft = Fw
t , where Fw

t is the σ-algebra generated by {w(s) : 0 ≤ s ≤ t}.
Let L0

2 = L2(K0,H) be the space of all Hilbert-Schmidt operators from K0 to H
with the norm ‖ψ‖2

L2
0
= Tr((ψQ

1
2 )(ψQ

1
2 )∗) for any ψ ∈ L0

2. Obviously, for any

bounded operator ψ ∈ Lb(K,H) this norm reduces to ‖ψ‖2
L2

0
= Tr(ψQψ∗). Let

Lp(FT ,H) be the Banach space of all FT-measurable pth power integral random
variables with values in the Hilbert space H. Let C([0, T]; Lp(F ,H)) be the Ba-
nach space of continuous maps from [0, T] into Lp(F ,H) satisfying the condition
supt∈J E‖x(t)‖

p
H < ∞. In particular, we introduce the space C(J,H) denoting the

closed subspace of C([0, T]; Lp(F ,H)) consisting of measurable and FT-adapted
H-valued stochastic processes x ∈ C([0, T]; Lp(F ,H)) endowed with the norm

‖x‖C = (sup0≤t≤T E‖x(t)‖p
H)

1
p . Then (C , ‖.‖C) is a Banach space. The notation

Br(x,H) stands for the closed ball with center x and radius r > 0 in H.

In the following, let Y be a separable reflexive Hilbert space from which the
controls u take values. The operator C ∈ L∞(J, L(Y,H)), ‖C‖∞ stands for the
norm of operator C on Banach space L∞(J, L(Y,H)), where L∞(J, L(Y,H)) de-
notes the space of operator valued functions which are measurable in the strong
operator topology and uniformly bounded on the interval J. Let Lp

F (J,Y) be the
closed subspace of Lp

F (J × Ω,Y), consisting of all measurable and Ft-adapted,
Y-valued stochastic processes satisfying the condition E

∫ T
0 ‖u(t)‖

p
Ydt < ∞, and

endowed with te norm ‖u‖Lp
F (J,Y) = (E

∫ T
0 ‖u(t)‖

p
Ydt)

1
p . Let U be a non-empty

closed bounded convex subset of Y. Now, we define the admissible control set as
follows:

Uad = {v(·) ∈ Lp
F (J,Y); v(t) ∈ U a.e. t ∈ J}.
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Then Cu ∈ Lp(J,H) for all u ∈ Uad.
In this work, we will use an axiomatic definition for the (B, ‖ · ‖B) phase space,

which is a seminormed linear space of F0-measurable functions mapping (−∞, 0]
into H and satisfying the understanding fundamental axioms due to Hale and
Kato (see e.g. in [7]).

(A): If x : (−∞, σ̃ + T] → H, T > 0 such that x|[σ̃ ,σ̃+T] ∈ C([σ̃ , σ̃ + T],H)

and xσ̃ ∈ B, then for every t ∈ [σ̃ , σ̃ + T] the following conditions hold:
(1): xt in B;
(2): ‖x(t)‖H ≤ H̃‖xt‖B ;
(3): ‖xt‖B ≤ K(t − σ̃) sup{‖x(s)‖H : σ̃ ≤ s ≤ t} + M(t − σ̃)‖xσ‖B ,

where H̃ ≥ 0 is a constant; K, M : [0, ∞) → [1, ∞), K is continuous
and M is locally bounded; H̃, K, M are independent of x(·).

(B): For the function x(·) in (A), the function t → xt is continuous from
[σ̃ , σ̃ + T] into B.

(C): The space B is complete.

Next, to be able to prove the existence of the mild solutions for (1), we need to
introduce partial integrodifferential equations and resolvent operators that will be
used to develop the main results of this work.

Let X be Banach space. We denote by L(X,Y) the Banach space of bounded
linear operators from X into Y endowed with operator norm and we abbreviate
this notation to L(X)when X = Y.

In what follows, A and B(t) are closed linear operators on X. Y represents the
Banach space D(A) equipped with the graph norm defined by

|y|Y := ‖Ay‖X + ‖y‖X for y ∈ Y.

The notations C([0,+∞);Y), L(Y, X) stand for the space of all continuous func-
tions from [0,+∞) into Y, the set of all bounded linear operators from Y into X,
respectively.

Assume that

(R1) A is the infinitesimal generator of a C0-semigroup
(
T(t)

)
t≥0 in X.

(R2) For all t ≥ 0, B(t) is a closed linear operator from D(A) to X and B(t) ∈
L(Y, X). For any y ∈ Y, the map t → B(t)y is bounded uniformly contin-
uous, differentiable and the derivative t → B′(t)y is bounded uniformly
continuous on R+.

We consider the following integrodifferential abstract Cauchy problem:x′(t) = Ax(t) +
∫ t

0
B(t− s)x(s)ds for t ≥ 0

x(0) = x0 ∈ X.
(2)

Definition 2.1. [24] We call resolvent operator for the system (2), a bounded linear oper-
ator valued function

R : [0,+∞)→ L(X)
satisfying the following properties:
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(i) R(0) = I (identity operator on X) and ‖R(t)‖ ≤ Neβt for some constants N > 0
and β.

(ii) For each x ∈ X, R(t)x is strongly continuous for t ≥ 0.
(iii) R(t) ∈ L(Y) for t ≥ 0. For x ∈ Y, R(·)x ∈ C1([0,+∞), X) ∩ C([0,+∞),Y)

and

R′(t)x = AR(t)x +
∫ t

0
B(t− s)R(s)xds

= R(t)Ax +
∫ t

0
R(t− s)K(s)xds for t ≥ 0.

Theorem 2.1. [9] Assume that (R1) and (R2) are satisfied. Then, there exists a unique
resolvent operator for Eq. (2).

Now, we give the definition of mild solution for Eq. (1).

Definition 2.2. An Ft-adapted stochastic process x : (−∞, T] → H is called a mild
solution of the system (1) with respect to u on (−∞, T], if x0 = ϕ ∈ B, x|J ∈ C(J,H)
for every u ∈ Uad there exists a T = T(u) > 0 and

(i): x(t) is measurable and adapted to Ft, t ≥ 0.
(ii): x(t) ∈ H has càdlàg paths on t ∈ J a.s. and for each t ∈ J, x(t) satisfies

x(t) = R(t)ϕ(0) +
∫ t

0
R(t− s)C(s)u(s)ds

+
∫ t

0
R(t− s)σ(s, xs)ds

+
∫ t

0
R(t− s) f (s, xs)dw(s), t ∈ J. (3)

The following result is a consequence of the phase space axioms.

Lemma 2.2. [23] Let x : (−∞, T]→ H be an Ft-adapted measurable process such that
the F0-adapted process x0 =ϕ(t) ∈ L0

2(Ω,B) and x|J ∈ C(J, H), then

‖xs‖B ≤ MTE‖ϕ‖B + sup
0≤s≤T

KTE‖x(s)‖H,

where MT = supt∈J M(t) and KT = supt∈J K(t).

The following fundamental lemma plays an important role in the existence of
mild solutions and the existence of stochastic optimal controls.

Lemma 2.3. [19] For any p ≥ 1 and for arbitrary L0
2(K,H)-valued predictable process

φ(·) such that

sup
s∈[0,t]

E
∥∥∥∥∫ s

0
φ(v)dw(v)

∥∥∥∥2p

H
≤ (p(2p− 1))p

(∫ t

0
(E‖φ(s)‖2p

L0
2
)1/pds

)p
, t ≥ 0.

In the rest of this paper, we denote by Cp = (p(2p− 1))p.

Lemma 2.4 (Bochner’s Theorem [16]). A measurable function V : J → H is Bochner
integrable, if ‖V‖H is Lebesgue integrable.

Next, we present the Krasnoleiskii-Schaefer-type fixed point theorem appeared
in [4].
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Lemma 2.5 (Krasnoleiskii-Schaefer-type fixed point theorem [4]). Letφ1, φ2 be two
operators such that

(i): φ1 is a contraction, and
(ii): φ2 is completely continuous. Then either

(*): the operator equationφ1x +φ2x = x has a solution, or
(**): the set G = {x ∈ H : αφ1(

x
α ) +αφ2x} is unbounded forα ∈ (0, 1).

3. EXISTENCE OF MILD SOLUTIONS FOR STOCHASTIC INTEGRODIFFERENTIAL
SYSTEM

In this section, we prove the existence outcomes for stochastic system (1). Let
us introduce the subsequent hypotheses.

(A1): The resolvent operator is compact and there exists a constant M ≥ 1
such that ‖R(t)‖ ≤ M.

(A2): The function σ(t, ·) : B → H is continuous for each t ∈ J, and for
everyφ ∈ B, the function t→ σ(t,φ) is strongly measurable.

(A3): There exist a function mσ (·) ∈ L1(J,R+) and continuous nondecreas-
ing function Θσ : R+ → R∗+ such that

E‖σ(t,ψ)‖p
H ≤ mσ (t)Θσ (‖ψ‖p

B)

with ∫ ∞
1

1
Θσ (s)

ds = ∞.

(A4): The function σ : J ×B → H is compact.
(A5): The function f : J × B → Lb(K,H) is continuous and there exists a

constant L f > 0 such that

E‖ f (t,φ1)− f (t,φ2)‖
p
H ≤ L fE‖φ1 −φ2‖

p
B , t ∈ J, φ1,φ2 ∈ B.

Theorem 3.1. Assume that assumptions (R1), (R2) and (A1)− (A5) hold. Then, for
each u ∈ Uad, Eq. (1) has at least one mild solution on J with respect to u, provided that

16p−1CpKp
T MpTp/2L f < 1.

Proof. Consider the space BC = {x(t) : (−∞, T] → H; x(0) = ϕ(0), x(t)|J ∈
C(J,H)} endowed with the uniform convergence topology and define the opera-
tor Ψ : BC → BC by

(Ψx)(t) =


ϕ(t), t ∈ [−∞, 0],

R(t)ϕ(0) +
∫ t

0
R(t− s)C(s)u(s)ds

+
∫ t

0
R(t− s)σ(s, x̄s)ds +

∫ t

0
R(t− s) f (s, x̄s)dw(s), t ∈ J,

where x̄(t) : (−∞, T] → H is given such that x̄(0) = ϕ and x̄ = x on J. Using
Hölder’s inequality, we have

E
∥∥∥∥∫ t

0
R(t− s)C(s)u(s)ds

∥∥∥∥p

H
≤ MpTp−1‖C‖p∞E

∫ t

0
‖u(s)‖p

Yds

≤ MpTp−1‖C‖p∞‖u‖p
Lp
F (J,Y)

,
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where ‖C‖∞ is the norm of operator in Banach space L∞(J, L(Y,H)).
From Lemma 2.4, it follows that R(t − s)C(s)u(s) is Bochner integrable with re-
spect to s ∈ [0, t] for all t ∈ J. Hence, we conclude that Ψ is defined from BC into
BC.
Let ϕ̃ : (−∞, 0) → H be the extension ofϕ to (−∞, 0] such that ϕ̃(0) = ϕ(0)on
J. Now, we decompose Ψ as Ψ1 and Ψ2 i.e. Ψ = Ψ1 + Ψ2 where

(Ψ1x)(t) = R(t)ϕ(0) +
∫ t

0
R(t− s) f (s, x̄s)dw(s), t ∈ J,

(Ψ2x)(t) =
∫ t

0
R(t− s)C(s)u(s)ds +

∫ t

0
R(t− s)σ(s, x̄s)ds, t ∈ J.

In order to apply Lemma 2.5, we will verify that Ψ1 is a contraction while Ψ2 is a
completely continuous operator. The proof is splitted into six steps.

Step 1. Ψ1 is a contraction on BC.
Let t ∈ [0, T] and v1, v2 ∈ BC. From (A5) and Lemma 2.2, we have

E‖(Ψ1v1)(t)− (Ψ2v2)(t)‖p
H

= E
∥∥∥∥∫ t

0
R(t− s)[ f (s, v1s)− f (s, v2s)]dw(s)

∥∥∥∥p

H

≤ Cp

[∫ t

0

[
‖R(t− s)‖p

HE‖ f (s, v1s)− f (s, v2s)‖p
H

]2/p
ds
]p/2

≤ Cp Mp
[∫ t

0

[
E‖ f (s, v1s)− f (s, v2s)‖p

H

]2/p
ds
]p/2

≤ Cp MpTp/2−1L f

∫ t

0
‖v1s − v2s‖p

Bds

≤ 2P−1Cp MpTp/2L f sup
s∈[0,T]

E‖v1(s)− v2(s)‖p
H

= 2P−1Cp MpTp/2L f sup
s∈[0,T]

E‖v1(s)− v2(s)‖p
H

since v̄(s) = v(s) on J

= 2P−1Cp MpTp/2L f ‖v1 − v2‖p
C .

Taking the supremum over t, we get that

‖Ψ1v1 − Ψ1v2‖p
C ≤ θ0‖v1 − v2‖p

C ,

where θ0 = 2P−1Cp MpTp/2L f < 1. Therefore, Ψ1 is a contraction on BC.

Step 2. Ψ2 maps bounded sets into bounded sets in BC.
Indeed, it is enough to show that there exists a positive constant κ such that for

each x ∈ Br(0,BC) one has ‖Ψ2x‖p
C ≤ κ. If x ∈ Br(0,BC), by Lemma 2.2, it follows

that

‖x̄s‖p
B ≤ 2P−1(MT‖ϕ‖B)p + 2P−1Kp

Tr := r1.
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By (A1)− (A5), we have for t ∈ J

E‖(Ψ2x)(t)‖p
H ≤ 2p−1E

∥∥∥∥∫ t

0
R(t− s)C(s)u(s)ds

∥∥∥∥p

H

+2p−1E
∥∥∥∥∫ t

0
R(t− s)σ(s, x̄s)ds

∥∥∥∥p

H

≤ 2P−1 MpTp−1E
∫ t

0
‖C(s)u(s)‖p

Hds

+2P−1 MpTp−1
∫ t

0
E‖σ(s, x̄s)‖p

Hds

≤ 2p−1 MpTp−1‖C‖p∞E
∫ t

0
‖u(s)‖p

Yds

+2p−1 MpTp−1
∫ t

0
mσ (s)Θσ (‖x̄s‖p

B)ds

≤ 2p−1 MpTp−1‖C‖p∞‖u‖p
Lp
F (J,Y)

+2p−1 MpTp−1Θσ (r1)
∫ t

0
mσ (s)ds := κ.

Hence, for each x ∈ Br(0,BC), we have ‖Ψ2x‖p
C ≤ κ.

Step 3. Ψ2 maps Br(0,BC) into a relatively compact set in H.
It follows from the strong continuity of (R(t))t≥0 and condition (A4) that, the set
{R(t− s)σ(s,φ); t, s ∈ [0, T], ‖ψ‖p

B ≤ r∗} is relatively compact in H. Moreover
for x ∈ Br(0,BC), from the mean value theorem for the Bochner integral, we can
infer that

(Ψ2x)(t) ∈ co{R(t− s)σ(s,φ); t, s ∈ [0, T], ‖ψ‖p
B ≤ r∗}

for all t ∈ J; co denotes the convex hull. As a result, we conclude that {(Ψ2x)(t) :
x ∈ Br(0,BC)} is the relatively compact set in H for every t ∈ J.

Step 4. Ψ2 maps bounded sets into equicontinuous sets of BC.
Letε be a positive number such that 0 < ε < t < T. From step 3, (Ψ2Br(0,BC))(t)

is relatively compact for each t and by the strong continuity of R(t), we can choose
0 < δ < T− t with

‖R(t + l)x− R(t)x‖H ≤ ε



214 M. A. DIOP, P. D. A. GUINDO, M. FALL, AND A. DIAKHABY EJMAA-2021/9(2)

for x ∈ (Ψ2Br(0,BC))(t) when 0 < l < δ.
For any x ∈ Br(0,BC). Using (A1)− (A5), we obtain

E‖(Ψ2x)(t + l)− (Ψ2x)(t)‖p
H

≤ 6p−1E
∥∥∥∥∫ t−ε

0
[R(t + l − s)− R(t− s)]C(s)u(s)ds

∥∥∥∥p

H

+6p−1E
∥∥∥∥∫ t

t−ε
[R(t + l − s)− R(t− s)]C(s)u(s)ds

∥∥∥∥p

H

+6p−1E
∥∥∥∥∫ t+l

t
R(t + l − s)C(s)u(s)ds

∥∥∥∥p

H

+6p−1E
∥∥∥∥∫ t−ε

0
[R(t + l − s)− R(t− s)]σ(s, x̄s)ds

∥∥∥∥p

H

+6p−1E
∥∥∥∥∫ t

t−ε
[R(t + l − s)− R(t− s)]σ(s, x̄s)ds

∥∥∥∥p

H

+6p−1E
∥∥∥∥∫ t+l

t
R(t + l − s)σ(s, x̄s)ds

∥∥∥∥p

H
:= P1 + P2 + P3 + P4 + P5 + P6. (4)

By Hölder’s inequality, we have the following estimates

P1 ≤ 6p−1‖C‖p∞
(∫ t−ε

0
‖R(t + l − s)− R(t− s)‖

p
p−1
H

)p−1

×E
∫ t−ε

0
‖u(s)‖p

Yds

≤ 6p−1‖C‖p∞
(∫ t−ε

0
‖R(t + l − s)− R(t− s)‖

p
p−1
H

)p−1

×E
∫ t−ε

0
‖u(s)‖p

Yds

≤ 6p−1‖C‖p∞εp(t−ε)p−1E
∫ t−ε

0
‖u(s)‖p

Yds,

(5)

P2 ≤ 6p−1‖C‖p∞εp−1E
∫ t

t−ε
‖R(t + l − s)− R(t− s)‖p

H‖u(s)‖
p
Yds

≤ 12p−1 Mpεp−1E
∫ t

t−ε
‖u(s)‖p

Yds
(6)

and

P3 ≤ 6p−1‖C‖p∞lp−1E
∫ t+l

t
‖R(t + l − s)‖p

H‖u(s)‖
p
Yds

≤ 6p−1‖C‖p∞lp−1 MpE
∫ t+l

t
‖u(s)‖p

Yds.
(7)

On the other hand, we obtain from Hölder inequality in view of assumptions (A3)
and (A4)

P4 ≤ 6p−1(t−ε)p−1
∫ t−ε

0
E‖[R(t + l − s)− R(t− s)]σ(s, x̄s)‖p

Hds

≤ 6p−1(t−ε)p−1
∫ t−ε

0
E‖[R(t + l − s)− R(t− s)]σ(s, x̄s)‖p

Hds

≤ 6p−1εp(t−ε)p−1.

(8)
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According to (A1) and (A5) and the Hölder’s inequality, we have

P5 ≤ 6p−1εp−1
∫ t

t−ε
‖R(t + l − s)− R(t− s)‖p

HE‖σ(s, x̄s)‖p
Hds

≤ 12p−1 Mpεp−1
∫ t

t−ε
mσ (s)Θσ (‖x̄s‖p

B)ds

≤ 12p−1 Mpεp−1Θσ (r1)
∫ t

t−ε
mσ (s)ds,

(9)

and

P6 ≤ 6p−1lp−1
∫ t+l

t
‖R(t + l − s)‖p

HE‖σ(s, x̄s)‖p
Hds

≤ 6p−1lp−1 Mp
∫ t+l

t
mσ (s)Θσ (‖x̄s‖p

B)ds

≤ 6p−1lp−1 MpΘσ (r1)
∫ t+l

t
mσ (s)ds.

(10)

Gathering the above inequalities (5)-(10), we obtain

E‖(Ψ2x)(t + l)− (Ψ2x)(t)‖p
H ≤ 6p−1εp(t−ε)p−1

+ 12p−1 Mpεp−1E
∫ t

t−ε
‖u(s)‖p

Yds

+ 6p−1‖C‖p∞lp−1 MpE
∫ t+l

t
‖u(s)‖p

Yds

+ 6p−1‖C‖p∞εp(t−ε)p−1E
∫ t−ε

0
‖u(s)‖p

Yds

+ 12p−1 Mpεp−1Θσ (r1)
∫ t

t−ε
mσ (s)ds

+ 6p−1lp−1 MpΘσ (r1)
∫ t+l

t
mσ (s)ds.

(11)

Consequently, the right-hand side of (11) is independent of x ∈ Br(0,BC) and
tends to zero as l → 0 andε sufficiently small. Thus, the set {Ψ2x : x ∈ Br(0,BC)}
is equicontinuous.

Step 5. Ψ2 : BC → BC.
Let {x(n)} ⊆ Br(0,BC) with x(n) → x as n → ∞ in BC. From Axiom (A), it

is easy to see that (x(n))s → x̄s uniformly for s ∈ (−∞, T] as n → ∞. By the
conditions (A1) and (A2), we have

σ(s, x(n)s)→ σ(s, x̄s) as n→ ∞
for each s ∈ [0, t], and since

E‖σ(s, x(n)s)−σ(s, x̄s(η, ·))‖p
H ≤ 2p−1Θσ (r1)mσ (s), s ∈ [0, T],
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by the dominated convergence theorem we obtain

E‖(Ψ2x(n))(t)− (Ψ2x)(t)‖p
H = E

∥∥∥∥∫ t

0
R(t− s)[σ(s, x(n)s)−σ(s, x̄s)]ds

∥∥∥∥p

H

≤ Tp−1
∫ t

0
‖R(t− s)‖p

HE‖σ(s, x(n)s)−σ(s, x̄s)‖p
Hds

≤ MpTp−1
∫ t

0
E‖σ(s, x(n)s)−σ(s, x̄s)‖p

Hds.

Therefore,

‖Ψ2x(n) − Ψ2x‖p
C = sup

t∈J
E‖(Ψ2x(n))(t)− (Ψ2x)(t)‖p

H → 0 as n→ ∞.

Hence, Ψ2 is continuous and Ψ2 is a completely continuous operator.

Step 6. Consider the following set

G = {x ∈ BC : αΨ1(
x
α
) +αΨ2(x) = x, for someα ∈ (0, 1)}.

We show that G is bounded in J.
We consider the following nonlinear operator equation

x(t) = αΨx(t), α ∈ (0, 1), (12)

where Ψ is already defined. Next, we give a priori estimate for the solution of the
above equation. In fact, let x ∈ BC be a possible solution of x = αΨx for some
∈ (0, 1). This implies that for each t ∈ J, we have

x(t) = αR(t)ϕ(0) +α
∫ t

0
R(t− s)C(s)u(s)ds

+α
∫ t

0
R(t− s)σ(s, xs)ds +α

∫ t

0
R(t− s) f (s, xs)dw(s), t ∈ J.

(13)
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By (A1)− (A5) and (13), we have for t ∈ J,

E‖x(t)‖p
H ≤ 4p−1E‖R(t)ϕ(0)‖p

H + 4p−1E
∥∥∥∥∫ t

0
R(t− s)C(s)u(s)ds

∥∥∥∥p

H

+4p−1E
∥∥∥∥∫ t

0
R(t− s)σ(s, xs)ds

∥∥∥∥p

H

+4p−1E
∥∥∥∥∫ t

0
R(t− s) f (s, xs)dw(s)

∥∥∥∥p

H

≤ 4p−1 MpE‖ϕ‖p
H + 4p−1 MpTp−1‖C‖p∞E

∫ t

0
‖u(s)‖p

Yds

+4p−1 MpTp−1
∫ t

0
E‖σ(s, x̄s)‖p

Hds

+8p−1Cp Mp
[∫ t

0

[
E‖ f (s, x̄s)− f (s, 0)‖p

H

+ E‖ f (s, 0)‖p
H

]2/p
ds
]p/2

≤ 4p−1 Mp(H̃‖ϕ‖B)p + 4p−1 MpTp−1‖C‖p∞‖u‖p
Lp
F (J,Y)

+4p−1 MpTp−1
∫ t

0
mσ (s)Θσ (‖x̄s‖p

B)ds

+8p−1Cp MpTp/2−1L f

∫ t

0
‖x̄s‖p

Bds

+8p−1Cp MpTp/2−1
∫ t

0
E‖ f (s, 0)‖p

Hds.

We have by Lemma 2.2 that

sup{‖x̄s‖p
B : 0 ≤ s ≤ t} ≤ 2p−1(MT‖ϕ‖B)p

+2p−1Kp
T sup{‖x(s)‖p

H : 0 ≤ s ≤ t}.

Now, consider the function defined by

z(t) = 2p−1(MT‖ϕ‖B)p + 2p−1Kp
T sup{‖x(s)‖p

H : 0 ≤ s ≤ t}, 0 ≤ t ≤ T.

For each t ∈ [0, T], we have

z(t) ≤ 2p−1(MT‖ϕ‖B)p + 2p−1Kp
Tθ

+16p−1Cp MpKp
TTp/2L f z(t)

+8p−1 MpKp
TTp−1

∫ t

0
mσ (s)Θσ (z(s))ds,

where

θ = 4p−1 Mp(H̃‖ϕ‖B)p

+4p−1 MpTp−1‖C‖p∞‖u‖p
Lp
F (J,Y)

+8p−1Cp MpTp/2−1
∫ t

0
E‖ f (s, 0)‖p

Hds.
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Since γ = 16p−1Cp MpKp
TTp/2L f < 1, we obtain

z(t) ≤ 1
1−γ

[
2p−1(MT‖ϕ‖B)p + 2p−1Kp

Tθ

+ 8p−1 MpKp
TTp−1

∫ t

0
mσ (s)Θσ (z(s))ds

]
.

Detoting by ξ(t) the right-hand side of the above inequality, we have

z(t) ≤ ξ(t), for all t ∈ J,

and

ξ(0) =
1

1−γ

[
2p−1(MT‖ϕ‖B)p + 2p−1Kp

Tθ
]

ξ
′
(t) ≤ 1

1−γ 8p−1 MpKp
TTp−1mσ (t)Θσ (z(t)), t ∈ J.

Therefore, we have

ξ
′
(t) ≤ 1

1−γ 8p−1 MpKp
TTp−1mσ (t)Θσ (ξ(t)), for each t ∈ J.

This implies that∫ ξ(t)
ξ(0)

1
Θσ (µ)

dµ ≤
∫ T

0

1
1−γ 8p−1 MpKp

TTp−1mσ (t)dt < ∞.

Then, we deduce from the above inequality that there is a positive constant Γ in-
dependent of t such that ξ(t) ≤ Γ , t ∈ J. Hence, we have ‖x‖p

C ≤ z(t) ≤ ξ(t) ≤ Γ ,
where Γ depends only on M, p, Cp, KT , T and on the function Θσ (·). Thus, the
set G is bounded on J. Finally, by Lemma 2.5, we deduce that Ψ has a fixed point
x(·) ∈ BC, which is a mild solution of system (1). The proof is complete.

�

4. EXISTENCE OF STOCHASTIC OPTIMAL CONTROLS

In this section, we investigate the existence of stochastic optimal controls for the
system (1). We consider the Lagrange problem (LP) associated to system (1):

(LP)
{

Find an optimal pair (x0, u0) ∈ BC ×Uad such that
J (x0, u0) ≤ J (xu, u), for all u ∈ Uad,

where

J (xu, u) = E
∫ T

0
L(t, xu

t , xu(t), u(t))dt,

is the cost function and xu denotes the mild solution of system (1) corresponding
to the control u ∈ Uad.

For the existence of solutions to problem (LP), we make the following assump-
tions.

(L1): The functional L : J ×B ×H×Y→ R∪ {∞} is Borel measurable.
(L2): L(t, ·, ·, ·) is sequentially lower semicontinuous on B×H×Y for almost

all t ∈ J.
(L3): L(t, x, y, ·) is convex on Y for each x ∈ B, y ∈ H and almost all t ∈ J.
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(L4): There exist constants β1,β2 ≥ 0, β3 > 0 and ν ∈ L1(J,R) non-negative
such that

L(t, x, y, u) ≥ ν(t) +β1‖x‖B +β2‖y‖H +β3‖u‖
p
Y.

We have the following result on the existence of optimal controls for problem
(LP).

Theorem 4.1. Assume that (L1)-(L4) and the assumptions of Theorem 3.1 hold. Suppose
that C be a compact operator. Then, the Lagrange problem (LP) admits at least one
optimal pair on BC ×Uad.

Proof. If inf{J (xu, u)|u ∈ Uad} = +∞, there is nothing to prove.
Without loss of generality, assume that inf{J (xu, u)|u ∈ Uad} = ε < +∞.
By (L1)-(L4), we have

J (xu, u) ≥
∫ T

0
ν(t)dt +β1

∫ T

0
‖xu

t (t)‖Bdt +β2

∫ T

0
‖xu(t)‖Hdt

+β3

∫ T

0
‖u(t)‖p

Ydt ≥ −α > −∞,

where α is a positive constant. Then, ε ≥ −α > −∞. Additionally, by using
definition of infimum, there is a minimizing sequence of feasible pair {(xn, un)} ⊂
Sad, such that

J (xn, un)→ ε as n→ +∞,
where Sad = {(x, u) : x is a mild solution of system (1) corresponding to u ∈ Uad}.
Since {un} is bounded in Lp

F (J,Y) for {un} ⊆ Uad, hence there exists a subse-
quence , relabeled as {un}, and u0 ∈ Lp

F (J,Y) such that

un w→ u0 in Lp
F (J,Y) as n→ ∞.

Since Uad is closed and convex, by Mazur Lemma, we conclude that u0 ∈ Uad.
Now, we assume that xn are the mild solutions of Eq. (1) corresponding to un

and xn satisfied the following equation:

xn(t) = R(t)ϕ(0) +
∫ t

0
R(t− s)C(s)un(s)ds

+
∫ t

0
R(t− s)σ(s, xns)ds +

∫ t

0
R(t− s) f (s, xns)dw(s), t ∈ J.

To simplify, we setσn(s) = σ(s, xns), by (A4), we obtain thatσn is a compact oper-
ator from J into H. Therefore, by the compactness ofσn , there exits a subsequence,
relabeled as {σn(·)}, and σ ∈ H such that

σn(·)→ σ in H as n→ ∞.

Next, we consider the following controlled system
x′(t) =

[
Ax(t) +

∫ t

0
B(t− s)x(s)ds + C(t)u0(t)

+σ(t)
]

dt + f (t, xt)dw(t) for t ∈ J, u0 ∈ Uad,

x0 =ϕ ∈ B.

(14)

Then, by Theorem 3.1 the above system has a mild solution which is given by
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x̃(t) = R(t)ϕ(0) +
∫ t

0
R(t− s)C(s)u0(s)ds

+
∫ t

0
R(t− s)σ(s)ds +

∫ t

0
R(t− s) f (s, ¯̃xs)dw(s), t ∈ J.

Now, we show that xn converges to x̃ in BC as n → ∞. So, for each t ∈ J,
xn(·), x̃(·) ∈ BC, we have

E‖xn(t)− x̃‖p
H ≤ ϑ

1
n(t) + ϑ

2
n(t) + ϑ

3
n(t),

where

ϑ1
n(t) = 3p−1E

∥∥∥∥∫ t

0
R(t− s)C(s)[un(s)− u0(s)]ds

∥∥∥∥p

H
,

ϑ2
n(t) = 3p−1E

∥∥∥∥∫ t

0
R(t− s)[σn(s)−σ(s)]ds

∥∥∥∥p

H
,

ϑ3
n(t) = 3p−1E

∥∥∥∥∫ t

0
R(t− s)[ f (s, x̄n

s )− f (s, ¯̃xs)]dw(s)
∥∥∥∥p

H
.

Using Hölder’s inequality, we obtain

ϑ1
n(t) = 3p−1E

∥∥∥∥∫ t

0
R(t− s)B(s)[un(s)− u0(s)]ds

∥∥∥∥p

H
,

≤ 3p−1 MpTp−1
∫ t

0
E‖C(s)[un(s)− u0(s)]‖p

Hds,

and

ϑ2
n(t) = 3p−1E

∥∥∥∥∫ t

0
R(t− s)[σn(s)−σ(s)]ds

∥∥∥∥p

H
,

≤ 3p−1 MpTp−1
∫ t

0
E‖σn(s)−σ(s)‖p

Hds.

Since C is a compact operator, we have

∫ t

0
E‖C(s)[un(s)− u0(s)]‖p

Hds→ 0 as n→ ∞,

and by Lebesgue’s dominated convergence theorem,

∫ t

0
E‖σn(s)−σ(s)‖p

Hds→ 0 as n→ ∞.

Consequently,

ϑ1
n(t), ϑ

2
n(t)→ 0 as n→ ∞.
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On the other hand, by (A5) and Hölder inequality, we obtain

ϑ3
n(t) = 3p−1E

∥∥∥∥∫ t

0
R(t− s)[ f (s, xns)− f (s, ¯̃xs)]dw(s)

∥∥∥∥p

H

≤ 3p−1Cp

[∫ t

0

[
‖R(t− s)‖p

HE‖ f (s, xns)− f (s, ¯̃xs)‖p
H

]2/p
ds
]p/2

≤ 3p−1Cp MpTp/2−1
∫ t

0
E‖ f (s, xns)− f (s, ¯̃xs)‖p

Hds

≤ 3p−1Cp MpTp/2−1L f

∫ t

0
‖xns − ¯̃xs‖p

Bds

≤ 6p−1CpKp
T MpTp/2L f sup

s∈[0,T]
E‖xn(s)− ¯̃x(s)‖p

H

= 6p−1CpKp
T MpTp/2L f sup

s∈[0,T]
E‖xn(s)− x̃(s)‖p

H

since x̄ = x on J,
= θ‖xn − x̃‖,

C

where θ = 6p−1CpKp
T MpTp/2L f . Then, we have

E‖xn(t)− x̃‖p
H ≤ ϑ

1
n(t) + ϑ

2
n(t) +θ‖xn − x̃‖p

C ,

this implies that

‖xn − x̃‖p
C ≤

ϑ1
n(t) + ϑ2

n(t)
1−θ ,

since the right-hand of the above inequality tends to 0 as n→ ∞, we deduce that

xn → x̃ in BC as n→ ∞.

Moreover, by (A4) , we have

σn(·)→ σ(·, ¯̃x) in BC as n→ ∞.

By the uniqueness of limit, we obtain

σ(t) = σ(t, ¯̃x) for all t ∈ J.

Thus, x̃ takes the following form

x̃(t) = R(t)ϕ(0) +
∫ t

0
R(t− s)C(s)u0(s)ds

+
∫ t

0
R(t− s)σ(s, ¯̃xs)ds +

∫ t

0
R(t− s) f (s, ¯̃xs)dw(s), t ∈ J,

which is just a mild solution of system (1) corresponding to u0. Since BC ↪→
L1(J,H), using the assumptions (L1)-(L4) and Balder’s theorem (see [3] ), we get

ε = lim
n→∞E

∫ T

0
L(t, xn

t , xn(t), un(t))dt

≥ E
∫ T

0
L(t, x̃t, x̃(t), u0(t))dt ≥ J (x̃, u0) ≥ ε.

Finally, we conclude that J attains its minimum at (x̃, u0) ∈ BC ×Uad. The proof
is complete. �
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5. EXAMPLE

In this section, we illustrate the obtained theory. We consider the following
stochastic integrodifferential equation with infinite delay of the form:

∂

∂t
z(t,ρ) =

[
∂2

∂ρ2 z(t,ρ) +
∫ t

0
α(t− s)

∂2

∂ρ2 z(s,ρ)ds +
∫ 0

−∞ a1(t, s− t,ρ, z(s,ρ))ds

+
∫
[0,π ]

∫ T

0
q(t,ρ, u(s, τ))dsdτ

]
dt +

∫ 0

−∞ a2(t)a3(s− t)z(s,ρ)dsdω(t),

t ∈ [0, T],ρ ∈ [0, π ],

z(t, 0) = z(t, π) = 0, t ∈ [0, T],
z(τ ,ρ) = z0(θ,ρ), −∞ ≤ τ ≤ 0, ρ ∈ [0, π ],

(15)
whereω(t) denotes a one dimensional standard Wiener process defined on a sto-
chastic space (Ω,F ,P) and the cost function is given by

J (z, u) =E
∫ T

0

[ ∫
[0,π ]

∫ 0

−∞ |zu(t + s,ρ)|2 dsdρ+
∫
[0,π ]
|zu(t,ρ)|2 dρ

+
∫
[0,π ]
|u(t,ρ)|2Y dρ

]
dt.

Let H = Y = L2([0, π ]) with the norm ‖ · ‖ and define the operator A : D(A) ⊆
H→ H by Av =

∂2

∂ρ2 v

D(A) = H1
0 ([0, π ]) ∩ H2([0, π ]).

Then,

Av = −
∞
∑

n=1
n2 〈v, en〉 en, v ∈ D(A),

where en(ρ) =
√

2
π sin(nρ), n = 1, 2, . . . is the orthogonal set of eigenvectors of

A.
It is well known that A is the infinitesimal generator of a strongly continuous

semigroup on H, thus (R1) is true.
Let B : D(A) ⊂ H→ H be the operator defined by

B(t)y = α(t)Ay, for t ≥ 0 and y ∈ D(A).

The control u belongs, for a constant η > 0, to the following set

Uad =

{
u(·, y) : J → Y measurable ,FT-adapted stochastic processes

and ‖u‖Lp
F (J,Y) ≤ η

}
.

Let us consider r > 0, 1 ≤ q < ∞ and let h : (−∞,−r] → R be a non-negative
measurable function which satisfies the conditions (h− 5) and (h− 6) in the ter-
minology of Hino et al. [8].
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Briefly, this means that h is locally integrable and there is a non-negative, locally
bounded function G on (−∞, 0] such that h(ξ + τ) ≤ G(ξ)h(τ) for all ξ ≤ 0 and
τ ∈ (−∞,−r) \ Nξ where Nξ ⊂ (−∞,−r) is a set whose Lebesgue measure on
zero.
We denote by Cr × Lq(h,H) the set of all functions
ϕ : (−∞,−r) → H such thatϕ|[−r,0] ∈ C([−r, 0],H),ϕ(·) is Lebesgue measurable
on (−∞,−r) and h‖ϕ‖q is Lebesgue integrable in (−∞,−r). The seminorm is
given by

‖ϕ‖B = sup
−r≤τ≤0

‖ϕ(τ)‖+
( ∫ −r

−∞ h(τ)‖ϕ(τ)‖dτ
) 1

q

.

We notice that Axioms (A)-(C) are satisfied by the space B = Cr × Lq(h,H).
Moreover when, r = 0 and q = 2, we can take h = 1, M(t) = G(−t)

1
2 and

K(t) = 1 +

( ∫ 0

−t
h(τ)dτ

) 1
2

, for t ≥ 0.

In addition, we assume that:

(i): The function a1 : R4 → R is completely continuous and there exists a
continuous function ζ : R2 → R such that

|a1(t, s,ρ, y)| ≤ ζ(t, s) |y| , (t, s,ρ, y) ∈ R4.

(ii): The functions a2, a3 : R→ R are continuous, and dc =

(∫ 0

−∞
(a3(s))2

h(s)
ds
) 1

2

<∞.
(iii): The function q : [0, T] × [0, π ] × R → R is continuous and there exists a

continuous function qe : [0, T]× [0, π ]→ R such that :

|q(t,ρ, u)| ≤ qe(t,ρ)|u|

for all (t,ρ) ∈ [0, T]× [0, π ] and u ∈ L2([0, T]× [0, π ]).
We takeϕ ∈ B = C0× L2(h,H) withϕ(s)(ξ) =ϕ(s,ξ). The nonlinear functions

f : [0, T]×B → H, σ : [0, T]×B → Lb are defined by

f (t,φ)(ρ) =
∫ 0

−∞ a2(t)a3(s)φ(s)(ρ)ds,

σ(t,φ)(ρ) =
∫ 0

−∞ a1(t, s,ρ,φ(s)(ρ))ds.

For all u ∈ L2([0, T]× [0, π ]), we define an operator C as follows:

(Cu)(t,ρ) =
∫
[0,π ]

∫ T

0
q(t,ρ, u(s, τ))dsdτ .

Using these definition, we can represent the system (15) in the abstract form :
z′(t) =

[
Az(t) +

∫ t

0
B(t− s)z(s,ρ)ds + (Cu)(t,ρ)

+σ(t,φ)(ρ)
]

dt + f (t,φ)(ρ)dω(t) for t ≥ 0,

z(t, 0) = z(t, π) = 0 t ∈ [0, T],

(16)
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with the cost function

J (zu, u) = E
∫ T

0

[ ∫
[0,π ]
‖zu(t + s)‖2ds + ‖u(t)‖2

Y + ‖zu(t)‖2

]
dt.

We suppose that α is a bounded and C1 function such that α
′

is bounded and
uniformly continuous, which implies that the operator B(t) satisfies assumption
(R2). Consequently, we deduce the existence of resolvent operator (R(t))t≥0 for
Eq. (2). From (i), we have,

E‖σ(t,φ)‖p = E
[( ∫ π

0

∣∣∣∣∫ 0

−∞ a1(t, s, x,φ(s)(x))ds
∣∣∣∣2 dx

) 1
2
]p

≤ E
[( ∫ π

0

(∫ 0

−∞ |ζ(t, s)φ(s)(x)| ds
)2

dx
) 1

2
]p

≤ E
[( ∫ 0

−∞
(ζ(t, s))2

h(s)
ds
) 1

2
( ∫ 0

−∞ h(s)‖φ(s)‖2ds
) 1

2
]p

≤ c1(t)

[
‖φ(0)‖+

( ∫ 0

−∞ h(s)‖φ(s)‖2ds
) 1

2
]p

≤ c1(t)‖φ‖
p
B

for all (t,φ) ∈ [0, T]×B, where c1(t) =
[( ∫ 0

−∞
(ζ(t, s))2

h(s)
ds
) 1

2
]p

.

By (ii), when we take again Θσ (s) = s,
∫ +∞

1

1
Θσ (s)

ds = ∞, we obtain

E‖ f (t,φ)− f (t,φ1)‖p = E
[( ∫ π

0

∣∣∣∣∫ 0

−∞ a2(t)a3(s)[φ(s)(x)−φ1(s)(x)]ds
∣∣∣∣2 dx

) 1
2
]p

≤ E
[
‖a2‖∞

( ∫ π

0

(∫ 0

−∞ a3(s) |φ(s)(x)−φ1(s)(x)| ds
)2

dx
) 1

2
]p

≤ E
[
‖a2‖∞

( ∫ 0

−∞
(a3(s))2

h(s)
ds
) 1

2
( ∫ 0

−∞ h(s)‖φ(s)−φ1(s)‖2ds
) 1

2
]p

≤ L̃ f

[
‖φ(0)‖+

( ∫ 0

−∞ h(s)‖φ(s)−φ1(s)‖2ds
) 1

2
]p

≤ L̃ f ‖φ−φ1‖
p
B

for all (t,φ), (t,φ1) ∈ [0, T]×B, where L̃ f = [‖a2‖∞dc]p with dc =

(∫ 0

−∞
(a3(s))2

h(s)
ds
) 1

2

.

Therefore, the assumptions (A1)− (A5) are satisfied. By assumption (iii), it is
obvious that (Cu)(t,ρ) is measurable in [0, t]× [0, π ]. For u ∈ L2([0, T]× [0, π ])
we have
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∫
[0,π ]

∫ T

0
|(Cu)(t, x)|2dtdx =

∫
[0,π ]

∫ T

0

∣∣∣∣∫
[0,π ]

∫ T

0
q(t, x, u(s, τ))dsdτ

∣∣∣∣2 dtdx

≤
∫
[0,π ]

∫ T

0

[∫
[0,π ]

∫ T

0
|qe(t, x)|2dsdτ

∫
[0,π ]

∫ T

0
|u(s, τ)|2dsdτ

]
dtdx

≤ (MqeπT)2
∫
[0,π ]

∫ T

0
|u(s, τ)|2dsdτ

where Mqe = max
(t,x)∈[0,T]×[0,π ]

|qe(t, x)|. This implies that the operator C : L2([0, T]×

[0, π ])→ L2([0, T]× [0, π ]), and

‖Cu‖L2([0,T]×[0,π ]) ≤ MqeπT‖u‖L2([0,T]×[0,π ]).

Hence, we conclude that for all u ∈ L2([0, T] × [0, π ]), C is a compact operator
in L2([0, T] × L2([0, π ])). Additionally, all conditions of Theorem 4.1 hold, thus
system (16) has at least one optimal pair.
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