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A NOTE ON GAMMA FUNCTION UNDER THE TREATMENT

OF BICOMPLEX ANALYSIS

DEBASMITA DUTTA, SATAVISHA DEY, SUKALYAN SARKAR AND SANJIB KUMAR

DATTA

Abstract. In complex analysis Gamma function defined by a convergent im-
proper integral

Γ(z) =

∞∫
0

xz−1e−xdx,

z being a complex number with a positive real part. Gamma function is the

commonly used extension of the factorial function to complex numbers.The

analytic continuation of this integral function to a meromorphic function that is
holomorphic in the whole complex plane except zero and non negative integers.

In this paper our main aim is to derive the bicomplex version of Gamma
function supported by relevant examples and some of its related properties,

mostly with the help of idempotent representation and Ringleb decomposition

of bicomplex numbers and bicomplex valued functions.

1. Introduction

The theory of bicomplex numbers is a matter of active research for quite a long
time since seminal work of {cf. [12] and [3]} and in search of special algebra. the
algebra of bicomplex numbers are widely use in the literature as it becomes viable
commutative alternative {cf. [13]} to the non skew field of quaternions introduced
by Hamilton {cf. [7]} (both are four dimensional and generalization of complex
numbers).

2. Preliminaries

2.1. The Bicomplex Numbers{cf.[10]}. A bicomplex number is defined as

z = x1 + i1x2 + i2x3 + i1i2x4

= (x1 + i1x2) + i2 (x3 + i1x4)

= z1 + i2z2

2010 Mathematics Subject Classification. 30D30, 30G35.
Key words and phrases. Bicomplex number, Bicomplex valued functions, Analytic functions,

Gamma function, Infinite product, Convengence.
Submitted April 13, 2020. Revised Jan. 29, 2021.

273



274 D. DUTTA, S. DEY, S. SARKAR AND S. K. DATTA EJMAA-2021/9(2)

where xi, i = 1, 2, 3, 4 are all real numbers with i21 = i22 = −1, i1i2 = i2i1, (i1i2)
2

= 1,
and z1, z2 are complex numbers.

The set of all bicomplex numbers , complex numbers and real numbers are
denoted by C2,C1 and C0 respectively.

2.2. Algebra of Bicomplex Numbers{cf.[10]}. Addition is the operation on C2

defined by the function ⊕ : C2 × C2 → C2,

(x1 + i1x2 + i2x3 + i1i2x4, y1 + i1y2 + i2y3 + i1i2y4) = (x1 + y1)+i1 (x2 + y2)+i2 (x3 + y3)+i1i2 (x4 + y4) .

Scalar multiplication is the operation on C2 defined by the function � : C0×C2 →
C2,

(a, x1 + i1x2 + i2x3 + i1i2x4) = (ax1 + i1ax2 + i2ax3 + i1i2ax4) .

The system (C2,⊕,�) is a linear space.
Here the norm is defined as

|| || : C2 → R≥0,

‖x1 + i1x2 + i2x3 + i1i2x4‖ =
(
x21 + x22 + x23 + x24

) 1
2 .

So the system (C2,⊕,�, || ||) is a normed linear space.
The space C4

0 with the Euclidean norm is known to be complete space. As C2 is
embedded in C4

0 so that x1 + i1x2 + i2x3 + i1i2x4 corresponds to (x1, x2, x3, x4)
and for this reason the norm on C2 is the same as the norm of C4

0, then the normed
linear space (C2,⊕,�, || ||) is a complete Space. Hence (C2,⊕,�, || ||) is a Banach
Space.

The product on C2 is defined as

⊗ : C2 × C2 → C2,

(x1 + i1x2 + i2x3 + i1i2x4, y1 + i1y2 + i2y3 + i1i2y4) =


x1y1 − x2y2 − x3y3 + x4y4

+i1 (x1y2 + x2y1 − x3y4 − x4y3)
+i2 (x1y3 − x2y4 + x3y1 − x4y2)

+i1i2 (x1y4 + x2y3 + x3y2 + x4y1)

 .

Since,

(i) ‖z (z1 + i2z2)‖ = |z| · ‖z1 + i2z2‖ .
(ii) ‖(z1 + i2z2) (w1 + i2w2)‖ ≤ 2

√
2 ‖z1 + i2z2‖ · ‖w1 + i2w2‖ .

where z ∈ C1, (z1 + i2z2) and (w1 + i2w2) ∈ C2.
So, (C2,⊕,�, || ||,⊗) is a Banach Algebra.

2.3. Idempotent Representation of Bicomplex Numbers {cf.[10]}. There
are four idempotent elements in C2. they are

0, 1,
1 + i1i2

2
,

1− i1i2
2

.

We now denote two non trivial idempotent elements by

e1 =
1 + i1i2

2
and e2 =

1− i1i2
2

in C2.

where

e21 = e1, e
2
2 = e2, e1e2 = e2e1 = 0, e1 + e2 = 1.

So, e1 and e2 are alternatively called orthogonal idempotents.
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Every element ξ : (z1 + i2z2) ∈ C2 has the following unique representation

ξ = (z1 − i1z2) e1 + (z1 + i1z2) e2

= ξ1e1 + ξ2e2, where ξ1, ξ2 are complex numbers.

This is known as idempotent representation of the element ξ : (z1 + i2z2) ∈ C2.
An element ξ : (z1 + i2z2) ∈ C2 is non-singular iff

∣∣z21 + z22
∣∣ 6= 0 and it is

singular iff
∣∣z21 + z22

∣∣ = 0. The set of all singular elements is denoted by θ2.
If f(z) be a bicomplex valued function, then f can be represented as

f (z) = f1 (z1) e1 + f2 (z2) e2 where f1 (z1) , f2 (z2) ∈ C1 .

where f1 (z1) , f2 (z2) are both functions in C1.This type of decomposition is known
as Ringleb decomposition in C2{cf.[8]and[9]}.

2.4. Bicomplex Exponential Function {cf.[10]}. If w be any bicomplex num-

ber then the sequence
(
1 + w

n

)n
converges to a bicomplex number denoted by expw

or ew, called the bicomplex exponential function.

i.e., ew = lim
n→∞

(
1 +

w

n

)n
.

If w = (z1 + i2z2) , then we get the bicomplex version of Euler’s formula

ew = ez (cos z2 + i2 sin z2) = e|w|i1 (cos arg i1w + sin arg i1w)

where ew /∈ θ2.

2.5. Bicomplex Logarithmic Function{cf.[10]}. Let ξ be a bicomplex number
and w be another bicomplex number such that w /∈ θ2. If eξ = w, then ξ is called
logarithm of w.

Let w = (z1 + i2z2) /∈ θ2. i.e., if (z1 − i1z2) 6= 0 and (z1 + i1z2) 6= 0 then

log (z1 + i2z2) = {log |z1 − i1z2|+ i1 arg (z1 − i1z2) + 2n1πi1} e1
+ {log |z1 + i1z2|+ i1 arg (z1 + i1z2) + 2n2πi1} e2.

where n1, n2 = 0,±1,±2, .......
Also we can write,

log (z1 + i2z2) = log (z1 − i1z2) e1 + log (z1 + i1z2) e2.

2.6. Bicomplex Holomorphic Function{cf.[10]}. We start with a bicomplex
valued function

f : Ω ⊂ C2 → C2.

The derivative of f at a point ω0 ∈ Ω is defined by

f ′(ω) = lim
h→0

f(ω0 + h)− f(ω0)

h

provided the limit exists and the domain is so chosen that

h = h0 + i1h1 + i2h2 + i1i2h3

is invertible. It is easy to prove that h is not invertible only for h0 = −h3, h1 = h2
or h0 = h3, h1 = −h2.i.e.h /∈ θ2.
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If the bicomplex derivative of f exists at each point of its domain then in similar
to complex function, f will be a bicomplex holomorphic function in Ω. Indeed if f
can be expressed as

f(ω) = g1(z1, z2) + i2g2(z1, z2)

ω = z1 + i2z2 ∈ Ω

then f will be holomorphic if and only if g1, g2 are both complex holomorphic in
z1, z2 and

∂g1
∂z1

=
∂g2
∂z2

,
∂g1
∂z2

= −∂g2
∂z1

.

Moreover,

f ′(ω) =
∂g1
∂z2

+ i2
∂g2
∂z1

.

2.7. Bicomplex Entire Function{cf.[10]}. A function f is said to be a bicom-
plex entire function if f is analytic in the whole bicomplex plane C2.

2.8. Bicomplex Meromorphic Function{cf.[10]}. A function f is said to be
bicomplex meromorphic function in an open set Ω ⊆ T if f is a quotient g

h of two
functions which are bicomplex holomorphic in Ω where h /∈ θ2.

If f(z) be a bicomplex meromorphic function, then f can be represented as

f (z) = f1 (z1) e1 + f2 (z2) e2 where f1 (z1) , f2 (z2) ∈ C1 .

where f1 (z1) , f2 (z2) are both meromorphic functions in C1.

2.9. Infinite Series of Bicomplex Numbers{cf.[6]}. ∞k=0ξk ∀ k, ξk ∈ C2 is
called infinite series in C2. Define the sequence S : N→ C2 by

Sn =n
k=0 ξk ∀ n ∈ N.

Then the infinite sum converges iff lim
n→∞

Sn exists and diverges if the limit does not exists.

If lim
n→∞

Sn = ξ∗ then ξ∗ is called sum of the series and we write∞k=0ξk = ξ∗.

The infinite series ∞k=0ξk has the sum ξ∗ = z∗1 + i2z
∗
2 iff the following infinite series

converge and have the sums
∞
k=0 (z1k − i1z2k) = z∗1 − i1z∗2 ,
∞
k=0 (z1k + i1z2k) = z∗1 + i1z

∗
2 .

2.10. Infinite Product of Bicomplex Numbers{cf.[6]}. If we multiply an infi-
nite number of factors according to some definite law then the product so obtained
is called an infinite product. Let {uk}be the sequence of bicomplex numbers. Thus
the product u1u2u3....of infinite number of factors is denoted symbolically as ∞k=1uk
and in case the factors be finite we write it as

Pn =n
k=1 uk

It is also clear from above that
Pn
Pn−1

= un and
Pn+p
Pn

= un+1un+2........un+p.

For the sake of convenience we will choose the factors to be of the form (1 + uk) ,
∞
k=1 (1 + uk) = (1 + u1) (1 + u2) (1 + u3) ......
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The product of n factors is written as

n
k=1 (1 + uk) = (1 + u1) (1 + u2) (1 + u3) ....... (1 + un) .

During the year 1729, 1730 Euler introduced an analytic function which has the
property to interpolate the factorial whenever the argument of the function is an
integer.
{cf. [4],[1] and [2]} Let x > 0

Γ (x) =

∫ 1

0

(− log(t))x−1dt.

By elementary changes of variables this historical definition takes the more usual
forms:

Γ (x) =

∫ ∞
0

e−t · tx−1dt.For x > 0.

For complex numbers with a positive real part the Gamma finction is defined
via a convergent improper integral:

Γ (z) =

∫ ∞
0

e−t · tz−1dt, for Re(z) > 0.

The Gamma function is defined as the analytic continuation of the integral func-
tion to a meromorphic function that is holomorphic in the whole complex plane
except the non positive integers, where the functions has simple poles.

In this paper we wish to find out the formation of Gamma function with
some of its important properties under the treatment of bicomplex analysis.Further,
we improve some results of usual Gamma function as derived in the complex field
in the flavour of the notion of bicomplex analysis.We do not explain the standerd
definitions and notatios of the theories of bicomplex valued entire function as those
are available in {cf.[10], [4], [8] and [9]}.

3. Lemmas

In this section we present some relevant lemmas which will be needed in the
sequel.
{cf.[6]}The necessary and sufficient condition for the convergence of infinite prod-

uct (1 + an) is that the series log (1 + an) is convergent where each logarithm has

ita principle value and (1 + an) /∈ θ2, for each bicomplex number ai = a
′

ie1 + a′′i e2.
{cf.[6]}The infinite product (1 + an) where (1 + an) /∈ θ2 is absolutely conver-

gent iff the series log (1 + an) is absolutely convergent i.e., iff an is absolutely

convergent series of bicomplex numbers ai = a
′

ie1 + a′′i e2.
Let z = z1e1 + z2e2 ∈ C2.

a1 ≤ Rez1 ≤ A1, a2 ≤ Rez2 ≤ A2 where 0 < a1 < A1 <∞, 0 < a2 < A2 <∞.

if a = min {a1, a2} and A = max {A1, A2} then

a ≤ Rez1 ≤ A also a ≤ Rez2 ≤ A where 0 < a < A <∞.

Consider the set

S = {z = z1e1 + z2e2 ∈ C2 : a ≤ Rez1 ≤ A also a ≤ Rez2 ≤ A}
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(a) for every ε > 0 ∃ δ > 0 such that for all z in S∥∥∥∥∥
∫ β

α

e−t · tz−1dt

∥∥∥∥∥ < ε whenever 0 < α < β < δ.

(b) for ε > 0 there is a number K such that for all z in S∥∥∥∥∥
∫ β

α

e−t · tz−1dt

∥∥∥∥∥ < ε whenever β > α > K.

Proof. If o < t ≤ 1 and z ∈ S then

(Re (z1)− 1) log t ≤ (a− 1) log t

and

(Re (z2)− 1) log t ≤ (a− 1) log t

Since et ≤ 1 ∣∣e−t · tz1−1∣∣ ≤ tRe(z1)−1 ≤ ta−1
and ∣∣e−t · tz2−1∣∣ ≤ tRe(z2)−1 ≤ ta−1
So, if 0 < α < β < 1 then∣∣∣∣∣

∫ β

α

e−t · tz1−1dt

∣∣∣∣∣ ≤
∫ β

α

ta−1dt

=
1

a
(βa − αa) .

Similarly ∣∣∣∣∣
∫ β

α

e−t · tz2−1dt

∣∣∣∣∣ ≤ 1

a
(βa − αa) .

let us consider ε > 0. For choosen ε, ∃ 0¡δ < 1 such that

1

a
(βa − αa) <

ε√
2
.

In view of Ringleb decomposition {cf..[8]} ,for all z ∈ S,∥∥∥∥∥
∫ β

α

e−t · tz−1dt

∥∥∥∥∥ =

∥∥∥∥∥
(∫ β

α

e−t · tz1−1dt

)
e1 +

(∫ β

α

e−t · tz2−1dt

)
e2

∥∥∥∥∥
≤

∣∣∣∣∣
∫ β

α

e−t · tz1−1dt

∣∣∣∣∣ · ‖e1‖+

∣∣∣∣∣
∫ β

α

e−t · tz2−1dt

∣∣∣∣∣ · ‖e2‖
≤ 1

a
(βa − αa) ·

√
2

2
+

1

a
(βa − αa) ·

√
2

2

=

√
2 (βa − αa)

a
< ε for |α− β| < δ.

This proves Part (a) of the Lemma 3.3.
To prove Part (b) we should note that for z ∈ S and t ≥ 1,∣∣tz1−1∣∣ ≤ tA−1 and

∣∣tz2−1∣∣ ≤ tA−1
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Since tA−1 · exp
(
− 1

2 t
)

is continuous on [1,∞) and converges to zero as t→∞.
There is a constant C such that

tA−1 · exp

(
−1

2
t

)
≤ C ∀ t ≥ 1.

This gives that∣∣e−t · tz1−1∣∣ ≤ C · e− 1
2 t and

∣∣e−t · tz2−1∣∣ ≤ C · e− 1
2 t

For all z ∈ S and t ≥ 1. If β > α > 1 then∥∥∥∥∥
∫ β

α

e−t · tz−1dt

∥∥∥∥∥ ≤

∣∣∣∣∣
∫ β

α

e−t · tz1−1dt

∣∣∣∣∣ · ‖e1‖+

∣∣∣∣∣
∫ β

α

e−t · tz2−1dt

∣∣∣∣∣ · ‖e2‖
≤ c

∫ β

α

e−
1
2 tdt ·

(√
2

2

)
+ c

∫ β

α

e−
1
2 tdt ·

(√
2

2

)

=
√

2c

∫ β

α

e−
1
2 tdt

=
√

2c
(
e−

1
2α − e− 1

2β
)
.

{cf.[1]} Again for ε > 0, ∃ a number K > 1 such that
√

2c
(
e−

1
2α − e− 1

2β
)
< ε whenever α, β > K.

�

Part (b) of the lemma 3.3 follows.
{cf.[2]} If 0 ≤ t ≤ n then

0 ≤ e−t −
(

1− t

n

)n
≤ t2e−t

n
.

4. Results

In this section is subdivided into two subsections 4.A and 4.B.
4.A : It deals with some theorems one of which is most important to derive the

definition of Gamma function in bicomplex analysis with its related properties.

Theorem 4.1. Let a1, a2, a3, ........be a given sequence of non zero bicomplex num-
bers such that 1

‖an‖2
<∞. Then if g (z) is any entire function, the function

f (z) = eg(z) · zk
(
∞
n=1

(
1− z

an

)
e

z
an

)
is entire.

Proof. Since a1, a2, a3, ........be a given sequence of non zero bicomplex numbers.
So,

ai = a
′

ie1 + a′′i e2, where a
′

i, a
′′

i ∈ C1.

Since 1
‖an‖2

<∞ and ‖ai‖ =

√∣∣a′i∣∣2 +
∣∣a′′i ∣∣2. So,

1∥∥a′i∥∥2 <∞ and
1∥∥a′′i ∥∥2 <∞.
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g (z) is any bicomplex entire function.

Therefore, g (z) = g1 (z1) e1 + g2 (z2) e2 where g1 (z1) , g2 (z2) ∈ C1.

Since, g1 (z1) is entire function and 1

‖a′i‖2
< ∞. {cf.[4]}So, ∃ f1 (z1) ∈ C1 such

that

f1 (z1) = eg1(z1) · zk1
(
∞
n=1

(
1− z1

a′n

)
e

z1

a
′
n

)
.

Since, g2 (z2) is entire function and 1

‖a′′i ‖2
< ∞. {cf.[4]}So, ∃ f2 (z2) ∈ C1 such

that

f2 (z2) = eg2(z2) · zk2
(
∞
n=1

(
1− z2

a′′n

)
e

z2

a
′′
n

)
both are entire functions.

Hence

f (z) =

[
eg1(z1) · zk1

(
∞
n=1

(
1− z1

a′n

)
e

z1

a
′
n

)]
e1

+

[
eg2(z2) · zk2

(
∞
n=1

(
1− z2

a′′n

)
e

z2

a
′′
n

)]
e2

= eg(z) · zk
(
∞
n=1

(
1− z

an

)
e

z
an

)
is an entire function.This proves the Theorem. �

Remark 1 :The following example ensures the conclusion of Theorem 4.1.

sin z = z∞n=1

(
1− z2

n2π2

)
where z = z1e1 + z2e2, z1, z2 ∈ C1.

z = z1e1 + z2e2, z1, z2 ∈ C1.
we can write

sin z1 = z1
∞
n=1

(
1− z21

n2π2

)
{cf.[4]}

sin z2 = z2
∞
n=1

(
1− z22

n2π2

)
{cf.[4]}

(sin z1) e1 + (sin z2) e2 =

[
z1
∞
n=1

(
1− z21

n2π2

)]
e1 +

[
z2
∞
n=1

(
1− z22

n2π2

)]
e2

sin z = z∞n=1

(
1− z2

n2π2

)
where z ∈ C2.

Theorem 4.2. Let

G (z) =∞n=1

(
1 +

z

n

)
e−

z
n ,where z ∈ C2 (1)

Then G (z) is an entire function of bicomplex variable with simple zeros at
−1,−2,−3, .......... Further G satisfies the identity

zG (z) ·G (−z) =
sinπz

π
. (2)

Further Let

H (z) = G (z − 1) (3)
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Then the function H(z) has zeros at 0,−1,−2, ........and

H (z) = eg(z) · z∞n=1

(
1 +

z

n

)
e−

z
n = zeg(z) ·G (z) ,where z ∈ C2 (4)

Proof. In Theorem 4.1 with an = −n we have the assertion that G is entire with
simple zeros at −1,−2,−3, .......and in view of example 1 we get that,

zG (z) ·G (−z) = z ·∞n=1

(
1 +

z

n

)
e−

z
n ·∞n=1

(
1− z

n

)
e

z
n

= z ·∞n=1

(
1− z2

n2

)
=

sinπz

π
.

Let

H (z) = G (z − 1)

= ∞
n=1

(
1 +

z − 1

n

)
e−

(z−1)
n

is entire by Theorem 4.1 and zeros at 0,−1,−2,−3, .......
Now using Lemma 3.2

logH (z) = log z + g (z) +∞n=1

(
log
(

1 +
z

n

)
− z

n

)
converges being uniform on closed discuss, term by term differentiation is allowed.

d

dz
(logH (z)) =

1

z
+ g

′
(z) +∞n=1

(
1

z − 1 + n
− 1

n

)
=

1

z
− 1. (5)

= ∞
n=2

(
1

z + 1− n
− 1

n

)
=

1

z
− 1 +∞n=1

(
1

z + n
− 1

n+ 1

)
=

1

z
− 1 +∞n=1

(
1

z + n
− 1

n

)
+∞n=1

(
1

n
− 1

n+ 1

)
=

1

2
+∞n=1

(
1

z + n
− 1

n

)
. (6)

Comparing (5) and (6) and using (3) we see that g
′
(z) = 0 and g (z) is constant

say γ.{cf.[4]}
Thus

G (z − 1) = zeγ ·G (z) . (7)

This proves the theorem. �

Theorem 4.3.

Γ (z) = [zeγz ·G (z)]
−1

=
[
zeγzn=1

∞
(

1 +
z

n

)
e−

z
n

]−1
is a meromorphic functions with simple poles at 0,−1,−2,−3, .......

Proof. Since G(z) is entire function with simple zeros at negative integers−1,−2,−3, .......
Thus Γ (z) is a meromorphic functions with simple poles at 0,−1,−2,−3, .......

�
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This completes the theorem.
Now we are in a position to define Gamma function in bicomplex field and to

derive some of its properties.
4.B : Gamma Function.

The Gamma function Γ (z) is a meromorphic function on C2 with simple poles
0,−1,−2,−3, ....... defined by

Γ (z) =
e−γz

z

∞

n=1

(
1 +

z

n

)−1
e

z
n ,where z ∈ C2.

where γ is constant chosen so that Γ (1) = 1, γ is called Euler’s constant.

Now in view of Lemma 3.2 we would like to find γ :
Since {cf.[4]} Γ (1) = 1

eγ = ∞
n=1

(
1 +

1

n

)−1
e

1
n

⇒ γ =∞k=1

[
log

(
1 +

1

k

)−1
e

1
k

]

= ∞
k=1

[
1

k
− log (k + 1) + log k

]
= lim

n→∞
n
k=1

[
1

n
− log (k + 1) + log k

]
= lim

n→∞

[(
1 +

1

2
+ ......+

1

n

)
− log (n+ 1)

]
.

Adding and substracting to each term of the sequence and using the fact

lim
n→∞

log

(
n+ 1

n

)
= 0

yeilds

γ = lim
n→∞

[(
1 +

1

2
+ ......+

1

n

)
− log n

]
.

In the next sequel we deduce some properties of Gamma function following the
course of bicomplex analysis.

Example I Γ (z + 1) = z · Γ (z) , z 6= 0,−1,−2, ......where z ∈ C2

Proof. In view of (7) of Theorem 4.2

Γ (z + 1) =
[
(z + 1) · eγ(z+1) ·G (z + 1)

]−1
= [(z + 1) · eγ ·G (z + 1) · eγz ]

−1

[G (z) · eγz ]
−1

= z · Γ (z) .

This completes the theorem. �

Example II Γ (n+ 1) = n!



EJMAA-2021/9(2) A NOTE ON GAMMA FUNCTION UNDER THE TREATMENT 283

Proof. We have Γ (1) = 1

Since, Γ (z) = [z · eγzG (z)]
−1

and
G (1) = e−γ

i.e,Γ (2) = 2 · 1 = 2!

i.e,Γ (3) = 3 · 2 · 1 = 3!

In this way
i.e,Γ (n+ 1) = n!.

This completes the proof. �

Example III Γ (z) · Γ (1− z) = π
sinπz ,where z ∈ C2

Proof. In view of Equation (2) and Theorem 4.2{cf.[4]}
1

zG (z) ·G (−z)
=

π

sinπz

but
1

zG (z)
= eγzΓ (z) and

1

G (−z)
= −e−γzzΓ (−z)

Thus
1

zG (z) ·G (−z)
=

π

sinπz

i.e,−z ·G (z) · Γ (−z) =
π

sinπz
.

In view of Property I ,completes the proof. �

Example IV

Γ (z) = lim
n→∞

n!nz

z (z + 1) · · · · (z + n)

for z 6= 0,−2, where z ∈ C2.

Proof. By definition of Γ (z) we can write,

1

Γ (z)
= zeγzk=1

∞
(

1 +
z

k

)
e−

z
k

= lim
n→∞

zeγzk=1
∞
(

1 +
z

k

)
e−

z
k

= lim
n→∞

z exp

{
z

(
n
k=1

1

k
− log n

)}n
k=1

(
1 +

z

k

)
e−

z
k

= lim
n→∞

[
z exp

(
znk=1

1

k

)
exp (−z log n) ·nk=1

(
1 +

z

k

)
exp

(
−znk=1

1

k

)]
= lim

n→∞
ze−z lognk=1

n
(

1 +
z

k

)
= lim

n→∞

[
zn−z (1 + z)

(
1 +

z

2

)
· · ·
(

1 +
z

n

)]
= lim

n→∞

z (z + 1) · · · · · (z + n)

nzn!
.
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Thus

Γ (z) = lim
n→∞

n!nz

z (z + 1) · · · · (z + n)
.

�

Remark 2 : This Property is analogues to Gauss′s Formula in C1.
Example V {cf.[4]} For any fixed positive integer n ≥ 2,

Γ (z)·Γ
(
z +

1

n

)
·······Γ

(
z +

n− 1

n

)
= (2π)

n−1
2 ·n 1

2−nz ·Γ (nz) , where z ∈ C2. (8)

Proof. We have

Γ (z) = lim
m→∞

m!mz

z (z + 1) .... (z +m)
= lim
m→∞

(m− 1)!mz

z (z + 1) .... (z +m− 1)

= lim
m→∞

(mn− 1)! (mn)
z

z (z + 1) .... (z +mn− 1)
.

We define f (z) as follows:

f (z) =
nnzΓ (z) Γ

(
z + 1

n

)
· · · · · Γ

(
z + n−1

n

)
nΓ (nz)

(9)

= nnz−1
n−1
k=0 limm→∞

{(m−1)!}nmz····m(z+n−1
n )

(z+ k
n )(z+ k

n+1)···(z+ k
n+m−1)

limm→∞
(mn−1)!(mn)nz

nz(nz+1)···(nz+mn−1)

= lim
m→∞

{(m− 1)!}nmn−1
2 nmn−1 (nz) (nz + 1) · · · (nz +mn− 1)

(mn− 1)!n−1k=0 (nz + k) (nz + k + n) · · · (nz + k +mn− n)

= lim
m→∞

{(m− 1)!}nmn−1
2 nmn−1

(mn− 1)!

This shows that f is constant. Setting z = 1
n , we get

f (z) = Γ

(
1

n

)
Γ

(
2

n

)
· · · ·Γ

(
n− 1

n

)
> 0

and so

[f (z)]
2

=
πn−1

sin π
n sin 2π

n · · · · sin
(
n−1
n π

)
From the fact that

sin
π

n
sin

2π

n
· · · · sin

(
n− 1

n
π

)
=

π

2n−1
; n = 2, 3, ......

which follows from the fact that the product can be written as 1
2n−1 times the

product of the non-zero roots of polynomial (1− z)n − 1, we have

[f (z)]
2

=
(2π)

n−1

n
.

Since f (z) > 0, f (z) = (2π)
n−1
2√
n

.

Thus by (9)

Γ (z) · Γ
(
z +

1

n

)
· · · · · · · Γ

(
z +

n− 1

n

)
= (2π)

n−1
2 · n 1

2−nz · Γ (nz) , n ≥ 2.
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This completes the proof. �

Example VI Γ
(
1
2

)
=
√
π.

Proof. Put z = 1
2 in Property V we can write

Γ

(
1

2

)
Γ (1) = 2

√
π
√

2

⇒ Γ

(
1

2

)
=
√
π.

Γ (z) · Γ (1− z) =
π

sinπz
.

This completes the proof. �

Now we want to find the Gamma function in terms of integral of bicomplex
function.

Theorem 4.4. Let z = z1e1 + z2e2 ∈ C2 , Re (z1) > 0 and Re (z2) > 0 then

Γ (z) =

∫ ∞
0

e−t · tz−1dt.

Proof. We know that

lim
n→∞

(
1− t

n

)n
= e−t.

We have,

Γ (z) = lim
n→∞

∫ n

0

(
1− t

n

)n
· tz−1dt.

Let f (z) =
∫∞
0
e−t ·tz−1dt from Lemma 3.3, we can say that this integral converges.

And further

∫ ∞
1

e−t·tαdt and

∫ 1

0

tpdt converges for P > −1 (By comparision test in R)

Now,

f (z)− Γ (z) = lim
n→∞

[∫ n

0

{
e−t −

(
1− t

n

)n}
tz−1dt+

∫ ∞
n

e−t · tz−1dt
]

=

(
lim
n→∞

[∫ n

0

{
e−t −

(
1− t

n

)n}
tz1−1dt+

∫ ∞
n

e−t · tz1−1dt
])

e1

+

(
lim
n→∞

[∫ n

0

{
e−t −

(
1− t

n

)n}
tz2−1dt+

∫ ∞
n

e−t · tz2−1dt
])

e2(10)

First note that
∫∞
n
e−t · tz1−1dt → 0 as n → ∞ and

∫∞
n
e−t · tz2−1dt → 0 as

n→∞.
In fact if t > 1 then∣∣e−t · tz1−1∣∣ ≤ e−t · tm where m is an integersuch that m ≥ Re (z1) > 0.

And also,∣∣e−t · tz2−1∣∣ ≤ e−t · tk where m is an integersuch that k ≥ Re (z2) > 0.

Using integration by parts it can be shown that∫ ∞
0

e−t · tmdt <∞ and

∫ ∞
0

e−t · tkdt <∞.



286 D. DUTTA, S. DEY, S. SARKAR AND S. K. DATTA EJMAA-2021/9(2)

So, ∫ ∞
0

e−t · tmdt→ 0 as n→∞ and

∫ ∞
0

e−t · tkdt→ 0 as n→∞.

The only thing which we shall have to show now is that∫ n

0

{
e−t −

(
1− t

n

)n}
tz1−1dt→ 0 as n→∞

and ∫ n

0

{
e−t −

(
1− t

n

)n}
tz2−1dt→ 0 as n→∞.

Now by Lemma 3.4,∣∣∣∣∫ n

0

{
e−t −

(
1− t

n

)n}
tz1−1dt

∣∣∣∣ ≤ ∫ n

0

e−t · tRez1+1

n

≤ 1

n

∫ ∞
0

e−t · tRez1+1dt→ 0 as n→∞.

Similarly,∣∣∣∣∫ n

0

{
e−t −

(
1− t

n

)n}
tz2−1dt

∣∣∣∣ ≤ ∫ n

0

e−t · tRez2+1

n

≤ 1

n

∫ ∞
0

e−t · tRez2+1dt→ 0 as n→∞.

From (10) we can write for Re (z1) > 0 and Re (z2) > 0,

Γ (z) =

∫ ∞
0

e−t · tz−1dt.

�

Thus the theorem is established.
We can state that Γ (z) as, where z is a bicomplex number z = z1e1 + z2e2,

z1 ∈ C1 and z2 ∈ C1 and Re (z1) > 0 and Re (z2) > 0

Γ (z) =

∫ ∞
0

e−t · tz−1dt.

5. Future Prospect

In the line of the works as carried out in the paper one may think of the analytic
continuation of bicomplex valued Gamma function. As a consequence the derivation
of relevant results in this area may be an active area of research.
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