($1, N$)-ARITHMETIC LABELLING OF CHAIN OF EVEN CYCLES, SPLITTING GRAPH OF PATHS AND SPLITTING GRAPH OF CYCLES $C_{4 m}$

S. ANUBALA AND V.RAMACHANDRAN

Abstract

A (p,q) - graph G is said to have ($1, N$) - Arithmetic labelling if there is a one-one function ϕ from the vertex set $V(G)$ to $\{0,1, N,(N+1), 2 N$, $(2 N+1), \ldots,(q-1) N,(q-1)(N+1)\}$ so that the values of the edges, obtained as the sums of the labelling assigned to their end vertices can be arranged in the arithmetic progression $1,(N+1),(2 N+1), \ldots,(q-1) N+1$. In this paper we prove that certain chain of even cycles, splitting graph of paths and splitting graph of cycles $C_{4 m}$ have $(1, N)$ - Arithmetic Labelling for every positive integer $N>1$.

1. Introduction

B.D Acharya and S.M. Hedge [1], 2] introduced (k, d) - arithmetic graphs and certain vertex valuations of a graph. A (p, q)-graph is said to be (k, d) - arithmetic if its vertices can be assigned distinct non -negative integers so that the values of the edges, obtained as the sums of the numbers assigned to their end vertices, can be arranged in the arithmetic progression $k, k+d, k+2 d, \ldots k+(q-1) d$.

Joseph A.Gallian [3] surveyed numerous graph labelling methods.
V. Ramachandran and C.Sekar [4] introduced ($1, N$)-Arithmetic labelling. They proved that stars, paths, complete bibartite graph $K_{m, n}$, highly irregular graph $H i(m, m)$, Cycle $C_{4 k}$, ladder and subdivision of ladder have $(1, N)$ - Arithmetic Labelling. They also proved that $C_{4 k+2}$ does not have $(1, N)$ - Arithmetic Labelling and no graph G containing an odd cycle has $(1, N)$ - Arithmetic Labelling for any integer N.

In this paper we prove that certain chain of even cycles, splitting graph of paths and splitting graph of cycles $C_{4 m}$ have $(1, N)$ - Arithmetic Labelling.

2. Preliminaries

2.1 Definition: 5 Let $C_{2 k}$ be an even cycle. Consider n copies of $C_{2 k}$. A chain of even cycles $C_{2 k}$ denoted by $C_{2 k, n}$ has vertex set $\left\{v_{i}, u_{j}, w_{h} / 1 \leq i \leq n+1,1 \leq j, h \leq k-1\right\}$

[^0]and edge set $\left\{v_{i} u_{3 i-2}, v_{i} w_{3 i-2} / 1 \leq i \leq n\right\} \cup\left\{v_{i} u_{3 i-3}, v_{i} w_{3 i-3} / 2 \leq i \leq n+1\right\} \cup\left\{u_{j} u_{j+1}, w_{h} w_{h+1} / 1 \leq j, h \leq k-2\right\}$ $C_{2 k, n}$ has $(2 k-1) n+1$ vertices and $2 k n$ edges.
$C_{2 k, n}$ has ($k-1$) n upper vertices $u_{1}, u_{2}, \ldots u_{(k-1) n},(k-1) n$ lower vertices $w_{1}, w_{2}, . ., . w_{(k-1) n}$ and $(n+1)$ middle vertices $v_{1}, v_{2}, \ldots, v_{n+1}$.
Illustration: $C_{8,4}$

Fig 2.1
2.2 Definition: Let G be a graph, For each vertex v of a graph G, take a new vertex v^{\prime}. Join v^{\prime} to those vertices of G adjacent to v. The graph thus obtained is called the splitting graph of G. We denote it by $S^{\prime}(G)$.

3. Main Results

3.1 Theorem: $C_{4, n}$ is $(1, N)$ - Arithmetic for all $N>1$ and for integer, $n \geq 2$.

Proof: $C_{4, n}$ has $3 n+1$ vertices and $4 n$ edges.
Define $f\left(u_{i}\right)=N(i-1)+1, \quad$ for $i=1,2, \ldots, n$

$$
\begin{array}{rlrl}
f\left(w_{i}\right) & =2 N n+N(i-1)+1, & \text { for } i=1,2, \ldots, n \\
f\left(v_{i}\right) & =N(i-1), & & \text { for } i=1,2, \ldots, n+1
\end{array}
$$

Clearly f is one-one.
The edges have the labels $1, N+1,2 N+1, \ldots,(4 n-1) N+1$.
Therefore $C_{4, n}$ is $(1, N)$-Arithmetic.
Example:A $(1,7)$ - Arithmetic labelling of $C_{4,5}$.

Fig 3.1
3.2 Theorem: $C_{6,2 m}$ is $(1, N)$ - Arithmetic for all $N>1$ and for integer $m \geq 1$.

Proof: $C_{6,2 m}$ has $10 m+1$ vertices and $12 m$ edges.
For $i=1,5, \ldots .4 m-3$,
define $f\left(u_{i}\right)=7 N \frac{(i-1)}{4}+1$ and $f\left(w_{i}\right)=7 N \frac{(i-1)}{4}+N+1$
For $i=2,6,10, \ldots, 4 m-2$,
define $f\left(u_{i}\right)=5 N \frac{(i-2)}{4}+3 N$ and $f\left(w_{i}\right)=5 N \frac{(i-2)}{4}+N$.
For $i=3,7,11, \ldots,(4 m-1)$,
define $f\left(u_{i}\right)=5 N \frac{(i-3)}{4}+4 N$ and $f\left(w_{i}\right)=5 N \frac{(i-3)}{4}+2 N$
For $i=4,8,12, \ldots, 4 m$,
define $f\left(u_{i}\right)=7 N \frac{(i-4)}{4}+5 N+1$ and $f\left(w_{i}\right)=7 N \frac{(i-4)}{4}+6 N+1$
For $i=1,3,5, \ldots,(2 m+1)$, define $f\left(v_{i}\right)=5 N \frac{(i-1)}{2}$

For $i=2,4,6, \ldots, 2 m$, define $f\left(v_{i}\right)=7 N \frac{(i-2)}{2}+3 N+1$
Clearly f is one-one.
The edge labels are $1, N+1,2 N+1, \ldots,(12 m-1) N+1$
Thus $C_{6,2 m}$ is $(1, N)$ - Arithmetic.
Example:B (1,5)- Arithmetic labelling of $C_{6,6}$.

Fig 3.2
3.3.Theorem: $C_{8, n}$ is $(1, N)$ - Arithmetic for all $N>1$ and for integer $n \geq 2$.

Proof: $C_{8, n}$ has $7 n+1$ vertices and $8 n$ edges.
For $i=1,4,7, \ldots, 3 n+2$,
define $f\left(u_{i}\right)=4 N \frac{(i-1)}{3}+1$ and $f\left(w_{i}\right)=4 N \frac{(i-1)}{3}+N+1$
For $i=2,5,8, \ldots, 3 n-1$,
define $f\left(u_{i}\right)=4 N \frac{(i-2)}{3}+3 N$ and $f\left(w_{i}\right)=4 N \frac{(i-2)}{3}+N$
For $i=3,6,9, \ldots, 3 n$,
define $f\left(u_{i}\right)=4 N \frac{(i-3)}{3}+2 N+1$ and $f\left(w_{i}\right)=4 N \frac{(i-3)}{3}+3 N+1$
For $i=1,2, . ., n+1$,
define $f\left(v_{i}\right)=4 N(i-1)$
Clearly f is one-one.
The edges have the labels $1, N+1,2 N+1, \ldots,(8 n-1) N+1$
Therefore $C_{8, n}$ is $(1, N)$-Arithmetic.
Example:C (1,9)-Arithmetic labelling of $C_{8,3}$.

Fig 3.3
3.4 Theorem:Splitting graph of a path of length n is $(1, N)$-Arithmetic for all integers $N>1$.
Proof: Let $S^{\prime}\left(P_{n}\right)$ be the splitting graph of path P_{n} of length n.
$S^{\prime}\left(P_{n}\right)$ has $2 n+2$ vertices and $3 n$ edges.
Let $u_{1}, u_{2}, \ldots, u_{n+1}$ be the vertices of the path P_{n} and $v_{1}, v_{2}, \ldots, v_{n+1}$ be the new vertices corresponding to $u_{1}, u_{2}, \ldots, u_{n+1}$ respectively.
Case: 1 Let $n=4 m+1, m \geq 0$.
For $m=0$, the $(1, N)$ - Arithmetic labelling is as follows.

Fig 3.4

Suppose $m \geq 1$.
Define $f\left(u_{i}\right)=N(i-1), \quad$ for $i=1,3,5,7, \ldots, 4 m+1$.

$$
\begin{aligned}
& f\left(u_{i}\right)=1+N(i-2), \quad \text { for } i=2,4,6, \ldots, 4 m+2 . \\
& f\left(v_{1}\right)=(12 m+1) N \\
& f\left(v_{i}\right)=N(i-2)+N+1, \quad \text { for } i=2,4,6, \ldots, 4 m \\
& f\left(v_{i}\right)=(12 m-2) N-2 N(i-3), \quad \text { for } i=3,7,11, \ldots, 4 m-1 \\
& f\left(v_{i}\right)=(12 m-5) N-2 N(i-5), \quad \text { for } i=5,9,13, \ldots, 4 m+1 . \\
& f\left(v_{4 m+2}\right)=2 N(4 m+1)+1 .
\end{aligned}
$$

Clearly f is one-one.
The edge labels are $1, N+1,2 N+1, \ldots,(12 m+2) N+1$.
Therefore $S^{\prime}\left(P_{4 m+1}\right)$ is $(1, N)$-Arithmetic.
Case:2 Let $n=4 m+3, m \geq 0$.
Define $f\left(u_{i}\right)=N(i-1), \quad$ for $i=1,3,5,7, \ldots, 4 m+3$.
$f\left(u_{i}\right)=1+N(i-2), \quad$ for $i=2,4,6, \ldots, 4 m+4$.
$f\left(v_{1}\right)=(12 m+6) N$
$f\left(v_{4 m+4}\right)=(8 m+6) N+1$
$f\left(v_{i}\right)=N(i-2)+N+1, \quad$ for $i=2,4,6, \ldots, 4 m+2$.
$f\left(v_{i}\right)=N(12 m+5)+2 N(i-3), \quad$ for $i=3,7,11, \ldots, 4 m+3$.
$f\left(v_{i}\right)=12 m N-2 N(i-5), \quad$ for $i=5,9,13, \ldots, 4 m+1$.
Clearly f is one-one.
The edge labels are $1, N+1,2 N+1, \ldots,(12 m+8) N+1$
Therefore $S^{\prime}\left(P_{4 m+3}\right)$ is $(1, N)$-Arithmetic.
Case:3 Let $n=4 m, m \geq 1$
For $m=1,(1, N)$ - Arithmetic labelling of $S^{\prime}\left(P_{4}\right)$ is given as follows:

Fig 3.5

Suppose $m \geq 2$.
Define $f\left(u_{i}\right)=N(i-1), \quad$ for $i=1,3,5,7, \ldots, 4 m+1$.

$$
f\left(u_{i}\right)=1+N(i-2), \quad \text { for } i=2,4,6, \ldots, 4 m
$$

$f\left(v_{1}\right)=(12 m-3) N$
$f\left(v_{4 m+1}\right)=(8 m+1) N$

$$
\begin{array}{ll}
f\left(v_{i}\right)=N(i-2)+N+1, & \text { for } i=2,4,6, \ldots, 4 m . \\
f\left(v_{i}\right)=N(12 m-4)-2 N(i-3), & \text { for } i=3,7,11, \ldots, 4 m-1 . \\
f\left(v_{i}\right)=N(12 m-9)-2 N(i-5), & \text { for } i=5,9,13, \ldots, 4 m-3 .
\end{array}
$$

Clearly f is one-one.
The edge labels are $1, N+1,2 N+1, \ldots,(12 m-1) N+1$
Therefore $S^{\prime}\left(P_{4 m}\right)$ is $(1, N)$ - Arithmetic.
Case: 4 Let $n=4 m+2, m \geq 0$
Define $f\left(u_{i}\right)=N(i-1), \quad$ for $i=1,3,5,7, \ldots, 4 m+3$.

$$
\begin{aligned}
& f\left(u_{i}\right)=1+N(i-2), \quad \text { for } i=2,4,6, \ldots, 4 m+2 \\
& f\left(v_{1}\right)=(12 m+5) N \\
& f\left(v_{4 m+3}\right)=(8 m+4) N \\
& f\left(v_{i}\right)=N(i-2)+N+1, \\
& f\left(v_{i}\right)=N(12 m+1)-2 N(i-3), \quad \text { for } i=2,4,6, \ldots, 4 m+2 \\
& f\left(v_{i}\right)=(12 m-2) N-2 N(i-5), \quad \text { for } i=3,7,11, \ldots, 4 m-1 . \\
& \text { for } i=5,9,13, \ldots, 4 m+1 .
\end{aligned}
$$

Example:D (1,6)-Arithmetic labelling of $S^{\prime}\left(P_{9}\right)$.

Fig 3.6

Example:E (1,10)-Arithmetic labelling of $S^{\prime}\left(P_{11}\right)$.

Fig 3.7

Example:F (1,4)- Arithmetic labelling of $S^{\prime}\left(P_{12}\right)$.

Fig 3.8

Example:G $(1,9)$ - Arithmetic labelling of $S^{\prime}\left(P_{10}\right)$.

Fig 3.9
3.5 Theorem: $S^{\prime}\left(C_{4 m}\right)$ is $(1, N)$-Arithmetic for all $N>1$ and integer $m \geq 1$. Proof: $S^{\prime}\left(C_{4 m}\right)$ has $8 m$ vertices and $12 m$ edges.
Let $u_{1}, u_{2}, \ldots, u_{4 m}$ be the vertices of the cycle $C_{4 m}$ and $v_{1}, v_{2}, \ldots, v_{4 m}$ be the new vertices corresponding to $u_{1}, u_{2}, \ldots, u_{4 m}$ respectively. Illustration $S^{\prime}\left(C_{8}\right)$ is given as follows.

Fig 3.10
Suppose $m=1$
$(1, N)$ - Arithmetic labelling of $S^{\prime}\left(C_{4}\right)$ is given as follows:

Fig 3.11
Clearly the edge labels are $1, N+1,2 N+1,3 N+1,4 N+1,5 N+1,6 N+1,7 N+$ $1,8 N+1,9 N+1,10 N+1$ and $11 N+1$.
Thus $S^{\prime}\left(C_{4}\right)$ is $(1, N)$ - Arithmetic.

Suppose $m \geq 2$.
Define $f\left(u_{i}\right)=N(i-1), \quad$ for $i=1,3,5, \ldots, 2 m-1$.

$$
\begin{aligned}
& f\left(u_{i}\right)=N i, \quad \text { for } i=2 m+1,2 m+3, \ldots, 4 m-1 \\
& f\left(u_{i}\right)=N(i-2)+1, \quad \text { for } i=2,4, \ldots, 4 m . \\
& f\left(v_{1}\right)=2 N(4 m-1) \\
& f\left(v_{i}\right)=N(i-2)+N+1, \quad \text { for } i=2,4,6, \ldots, 4 m-2 . \\
& f\left(v_{3}\right)=3 N(4 m-1) \\
& f\left(v_{i}\right)=3 N(4 m-3)-2 N(i-5), \quad \text { for } i=5,9,13, \ldots, 4 m-3 . \\
& f\left(v_{i}\right)=3 N(4 m-4)-2 N(i-7), \quad \text { for } i=7,11, \ldots, 4 m-1 . \\
& f\left(v_{4 m}\right)=N(8 m-1)+1
\end{aligned}
$$

Clearly f is one -one..
The edges have the labels $1, N+1,2 N+1, \ldots,(12 m-1) N+1$.
Therefore $S^{\prime}\left(C_{4 m}\right)$ is $(1, N)$ - Arithmetic.
Example:H $(1,6)$ - Arithmetic Labelling of $S^{\prime}\left(C_{12}\right)$.

Fig 3.12

References

[1] B.D.Acharya and S.M.Hedge, Arithmetic graphs, Journal of Graph Theory, 14 (1990) 275299.
[2] B.D.Acharya and S.M.Hedge, On certain vertex valuations of a graph I, Indian J. Pure Appl. Math, 22 (1991) 553-560.
[3] Joseph A.Gallian, A Dynamic Survey of Graph Labelling, The Electronic Journal of combinatorics, DS6 (2018).
[4] V.Ramachandran, C.Sekar, (1,N)-Arithmetic graphs, International Journal of Computers and Applications, Vol. 38 (1) (2016) 55-59.
[5] C.Sekar, Studies in Graph Theory, Ph.D. thesis, Madurai Kamaraj University, 2002.
S. ANUBALA

Assistant Professor, Department of Mathematics,Sri Kaliswari College(Autonomous), Sivakasi, Tamil Nadu.

Email address: anubala.ias@gmail.com
V.RAMACHANDRAN

Assistant Professor, PG and Research Department of Mathematics, Mannar Thirumalai Naicker College, Pasumalai,Madurai, Tamilnadu.

Email address: me.ram111@gmail.com

[^0]: 2010 Mathematics Subject Classification. 05C78.
 Key words and phrases. Chain of even cycles, Splitting graph of paths, Splitting graph of cycles $C_{4 m}$.

 Submitted April 18, 2020. Revised Feb. 1, 2021.

