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(1,N )-ARITHMETIC LABELLING OF CHAIN OF EVEN

CYCLES, SPLITTING GRAPH OF PATHS AND SPLITTING

GRAPH OF CYCLES C4m

S. ANUBALA AND V.RAMACHANDRAN

Abstract. A (p,q) - graph G is said to have (1,N) - Arithmetic labelling if

there is a one-one function φ from the vertex set V (G) to {0, 1, N, (N + 1) , 2N,
(2N + 1) , ..., (q − 1)N, (q − 1) (N + 1)} so that the values of the edges, ob-

tained as the sums of the labelling assigned to their end vertices can be ar-
ranged in the arithmetic progression 1, (N + 1) , (2N + 1) , ..., (q − 1)N +1. In

this paper we prove that certain chain of even cycles, splitting graph of paths

and splitting graph of cycles C4m have (1,N ) - Arithmetic Labelling for every
positive integer N > 1.

1. Introduction

B.D Acharya and S.M. Hedge [1],[2] introduced (k, d) - arithmetic graphs and
certain vertex valuations of a graph. A (p, q) -graph is said to be (k, d) - arithmetic
if its vertices can be assigned distinct non -negative integers so that the values of
the edges, obtained as the sums of the numbers assigned to their end vertices, can
be arranged in the arithmetic progression k, k + d, k + 2d, ...k + (q − 1) d.

Joseph A.Gallian [3] surveyed numerous graph labelling methods.
V. Ramachandran and C.Sekar [4] introduced (1,N)- Arithmetic labelling. They
proved that stars, paths, complete bibartite graph Km,n, highly irregular graph
Hi (m,m),Cycle C4k, ladder and subdivision of ladder have (1,N ) - Arithmetic
Labelling. They also proved that C4k+2 does not have (1,N ) - Arithmetic Labelling
and no graph G containing an odd cycle has (1,N ) - Arithmetic Labelling for any
integer N .

In this paper we prove that certain chain of even cycles, splitting graph of paths
and splitting graph of cycles C4m have (1,N ) - Arithmetic Labelling.

2. Preliminaries

2.1 Definition: [5]Let C2k be an even cycle. Consider n copies of C2k. A chain
of even cycles C2k denoted by C2k,n has vertex set {vi, uj , wh/1 ≤ i ≤ n + 1, 1 ≤ j, h ≤ k − 1}
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and edge set {viu3i−2, viw3i−2/1 ≤ i ≤ n}∪{viu3i−3, viw3i−3/2 ≤ i ≤ n + 1}∪{ujuj+1, whwh+1/1 ≤ j, h ≤ k − 2}.
C2k,n has (2k − 1)n + 1 vertices and 2kn edges.
C2k,n has (k−1)n upper vertices u1, u2, ...u(k−1)n ,(k−1)n lower vertices w1, w2, .., .w(k−1)n
and (n + 1) middle vertices v1, v2, ..., vn+1.
Illustration: C8,4
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Fig 2.1

2.2 Definition: Let G be a graph, For each vertex v of a graph G, take a new
vertex v′. Join v′ to those vertices of G adjacent to v. The graph thus obtained is
called the splitting graph of G. We denote it by S

′
(G).

3. Main Results

3.1 Theorem: C4,n is (1,N )- Arithmetic for all N > 1 and for integer, n ≥ 2.
Proof: C4,n has 3n + 1 vertices and 4n edges.
Define f(ui) = N(i− 1) + 1, for i = 1, 2, ..., n

f(wi) = 2Nn + N(i− 1) + 1, for i = 1, 2, ..., n.
f(vi) = N(i− 1), for i = 1, 2, ..., n + 1.

Clearly f is one-one.
The edges have the labels 1, N + 1, 2N + 1, ..., (4n− 1)N + 1.
Therefore C4,n is (1,N )-Arithmetic.
Example:A (1, 7)- Arithmetic labelling of C4,5.
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Fig 3.1

3.2 Theorem:C6,2m is (1,N ) - Arithmetic for all N > 1 and for integer m ≥ 1.
Proof:C6,2m has 10m + 1 vertices and 12m edges.
For i = 1, 5, ...., 4m− 3,

define f(ui) = 7N (i−1)
4 + 1 and f(wi) = 7N (i−1)

4 + N + 1
For i = 2, 6, 10, ..., 4m− 2,

define f(ui) = 5N (i−2)
4 + 3N and f(wi) = 5N (i−2)

4 + N .
For i = 3, 7, 11, ..., (4m− 1),

define f(ui) = 5N (i−3)
4 + 4N and f(wi) = 5N (i−3)

4 + 2N
For i = 4, 8, 12, ..., 4m,

define f(ui) = 7N (i−4)
4 + 5N + 1 and f(wi) = 7N (i−4)

4 + 6N + 1

For i = 1, 3, 5, ..., (2m + 1), define f(vi) = 5N (i−1)
2
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For i = 2, 4, 6, ..., 2m, define f(vi) = 7N (i−2)
2 + 3N + 1

Clearly f is one-one.
The edge labels are 1, N + 1, 2N + 1, ..., (12m− 1)N + 1
Thus C6,2m is (1,N )- Arithmetic.
Example:B (1,5)- Arithmetic labelling of C6,6.
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Fig 3.2

3.3.Theorem: C8,n is (1,N ) - Arithmetic for all N > 1 and for integer n ≥ 2.
Proof: C8,n has 7n + 1 vertices and 8n edges.
For i = 1, 4, 7, ..., 3n + 2,

define f(ui) = 4N (i−1)
3 + 1 and f(wi) = 4N (i−1)

3 + N + 1
For i = 2, 5, 8, ..., 3n− 1,

define f(ui) = 4N (i−2)
3 + 3N and f(wi) = 4N (i−2)

3 + N
For i = 3, 6, 9, ..., 3n,

define f(ui) = 4N (i−3)
3 + 2N + 1 and f(wi) = 4N (i−3)

3 + 3N + 1
For i = 1, 2, .., n + 1,
define f(vi) = 4N(i− 1)
Clearly f is one-one.
The edges have the labels 1, N + 1, 2N + 1, ..., (8n− 1)N + 1
Therefore C8,n is (1,N )-Arithmetic.
Example:C (1,9)-Arithmetic labelling of C8,3.
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Fig 3.3

3.4 Theorem:Splitting graph of a path of length n is (1,N )-Arithmetic for all
integers N > 1.
Proof: Let S

′
(Pn) be the splitting graph of path Pn of length n.

S
′
(Pn) has 2n + 2 vertices and 3n edges.

Let u1, u2, ..., un+1 be the vertices of the path Pn and v1, v2, ..., vn+1 be the new
vertices corresponding to u1, u2, ..., un+1 respectively.
Case:1 Let n = 4m + 1, m ≥ 0.
For m = 0, the (1,N )- Arithmetic labelling is as follows.
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Suppose m ≥ 1.
Define f(ui) = N(i− 1), for i = 1, 3, 5, 7, ..., 4m + 1.

f(ui) = 1 + N(i− 2), for i = 2, 4, 6, ..., 4m + 2.
f(v1) = (12m + 1)N
f(vi) = N(i− 2) + N + 1, for i = 2, 4, 6, ..., 4m
f(vi) = (12m− 2)N − 2N(i− 3), for i = 3, 7, 11, ..., 4m− 1
f(vi) = (12m− 5)N − 2N(i− 5), for i = 5, 9, 13, ..., 4m + 1.
f(v4m+2) = 2N(4m + 1) + 1.

Clearly f is one-one.
The edge labels are 1, N + 1, 2N + 1, ...., (12m + 2)N + 1.

Therefore S
′
(P4m+1) is (1,N )-Arithmetic.

Case:2 Let n = 4m + 3, m ≥ 0.
Define f(ui) = N(i− 1), for i = 1, 3, 5, 7, ..., 4m + 3.

f(ui) = 1 + N(i− 2), for i = 2, 4, 6, ..., 4m + 4.
f(v1) = (12m + 6)N
f(v4m+4) = (8m + 6)N + 1
f(vi) = N(i− 2) + N + 1, for i = 2, 4, 6, ..., 4m + 2.
f(vi) = N(12m + 5) + 2N(i− 3), for i = 3, 7, 11, ..., 4m + 3.
f(vi) = 12mN − 2N(i− 5), for i = 5, 9, 13, ..., 4m + 1.

Clearly f is one-one.
The edge labels are 1, N + 1, 2N + 1, ..., (12m + 8)N + 1

Therefore S
′
(P4m+3) is (1,N )-Arithmetic.

Case:3 Let n = 4m, m ≥ 1
For m = 1, (1,N )- Arithmetic labelling of S

′
(P4)is given as follows:
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Fig 3.5

Suppose m ≥ 2.
Define f(ui) = N(i− 1), for i = 1, 3, 5, 7, ..., 4m + 1.

f(ui) = 1 + N(i− 2), for i = 2, 4, 6, ..., 4m.
f(v1) = (12m− 3)N
f(v4m+1) = (8m + 1)N
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f(vi) = N(i− 2) + N + 1, for i = 2, 4, 6, ..., 4m.
f(vi) = N(12m− 4)− 2N(i− 3), for i = 3, 7, 11, ..., 4m− 1.
f(vi) = N(12m− 9)− 2N(i− 5), for i = 5, 9, 13, ..., 4m− 3.

Clearly f is one-one.
The edge labels are 1, N + 1, 2N + 1, ..., (12m− 1)N + 1

Therefore S
′
(P4m) is (1,N ) - Arithmetic.

Case:4 Let n = 4m + 2, m ≥ 0
Define f(ui) = N(i− 1), for i = 1, 3, 5, 7, ..., 4m + 3.

f(ui) = 1 + N(i− 2), for i = 2, 4, 6, ..., 4m + 2.
f(v1) = (12m + 5)N
f(v4m+3) = (8m + 4)N
f(vi) = N(i− 2) + N + 1, for i = 2, 4, 6, ..., 4m + 2.
f(vi) = N(12m + 1)− 2N(i− 3), for i = 3, 7, 11, ..., 4m− 1.
f(vi) = (12m− 2)N − 2N(i− 5), for i = 5, 9, 13, ..., 4m + 1.

Example:D (1,6)-Arithmetic labelling of S
′
(P9).
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Fig 3.6

Example:E (1,10)-Arithmetic labelling of S
′
(P11).
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Fig 3.7
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Example:F (1,4)- Arithmetic labelling of S
′
(P12).
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Fig 3.8
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Example:G (1,9)- Arithmetic labelling of S
′
(P10).
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3.5 Theorem: S
′
(C4m) is (1,N )-Arithmetic for all N > 1 and integer m ≥ 1.

Proof: S
′
(C4m) has 8m vertices and 12m edges.

Let u1, u2, ..., u4m be the vertices of the cycle C4m and v1, v2, ..., v4m be the new
vertices corresponding to u1, u2, ..., u4m respectively.
Illustration S

′
(C8) is given as follows.
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Fig 3.10

Suppose m = 1
(1,N )- Arithmetic labelling of S

′
(C4) is given as follows:
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Fig 3.11
Clearly the edge labels are 1, N + 1, 2N + 1, 3N + 1, 4N + 1, 5N + 1, 6N + 1, 7N +
1, 8N + 1, 9N + 1, 10N + 1 and 11N + 1.
Thus S

′
(C4) is (1,N )- Arithmetic.
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Suppose m ≥ 2.
Define f(ui) = N(i− 1), for i = 1, 3, 5, ..., 2m− 1.

f(ui) = Ni, for i = 2m + 1, 2m + 3, ..., 4m− 1
f(ui) = N(i− 2) + 1, for i = 2, 4, ..., 4m.
f(v1) = 2N(4m− 1)
f(vi) = N(i− 2) + N + 1, for i = 2, 4, 6, ..., 4m− 2.
f(v3) = 3N(4m− 1)
f(vi) = 3N(4m− 3)− 2N(i− 5), for i = 5, 9, 13, ..., 4m− 3.
f(vi) = 3N(4m− 4)− 2N(i− 7), for i = 7, 11, ..., 4m− 1.
f(v4m) = N(8m− 1) + 1

Clearly f is one -one..
The edges have the labels 1, N + 1, 2N + 1, ..., (12m− 1)N + 1.

Therefore S
′
(C4m) is (1,N ) - Arithmetic.

Example:H (1,6)- Arithmetic Labelling of S
′
(C12).
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