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ABSTRACT

Tracking a maneuvering target weakens the performance of predictive-model-based
Bayesian state estimators (Kalman Filter). Therefore, the Probability Hypothesis
Density (PHD) filter was proposed to overcome this problem. In this paper, the
performance of Kalman filter, modified Kalman filter, and PHD filter in tracking a
highly maneuverable target is shown. All three algorithms to track a maneuverable
target are applied. Monte Carlo simulation showed that the PHD filter provides
promising performance compared to Kalman filter. In particular, the algorithm is
capable of tracking multiple crossing maneuvering targets.
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| INTRODUCTION

Tracking maneuvering targets is required in a wide range of civilian
applications such as intelligent transportation system, air traffic control and
surveillance. Therefore, researchers have concerned about this issue during the past
several decades [1]. Surveillance systems are employing one or more sensors
together with computer subsystems to interpret the environment. Typically sensor
systems such as infrared (IR), sonar, and radar sensor. Reports measurement form
diverse sources .the target tracking objective is to collect sensor data from field of
view (FOV) containing one or more potential targets of interest and then partition
sensor data into set of observation, or tracks that are produced by same object (or
target),once tracks are formed and confirmed ,the number of target of interest can be
estimated and quantities ,such as target velocity future predicted position and target
classification characteristics ,can be computed from each track|[2].

Since most surveillance systems must track multiple targets. multiple target
tracking (MTT) is the most important tracking application fig. (1) [2]. shows the basic
element of typically MTT system. Which have been formulated in the early papers by
Wax [3] and Sittler [4] but these papers were written before the widespread
application of the Kalman filtering techniques [5]. Bar-Shalom [6]and Singer[7,8] can
be credited of modern MTT schemes that combine the data association techniques
and Kalman filtering theory. Starting with Farina and Studer [9], a humber of books,
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including [10-18], have been written to address the numerous problems involved in
tracking multiple targets with one or more sensors [19] .
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Fig.1. Basic elements of MTT system [2]

Gating, or measurement selection, is a necessary part of target tracking in
clutter. The purpose of gating is to reduce computational expense by eliminating from
consideration measurements which are far from the predicted measurement location.
Gating is performed for each track at each scan by defining an area of surveillance
space which is called the gate [20, 21]. All measurements positioned in the gate are
selected and used for the track update while measurements not positioned in the
gate are ignored for the purpose of the track update. The gate is usually formed in
such a way that the probability of a target-originated measurement falling within the
gate, provided that the target exists and is detected, is given by a gating probability
PG which can be evaluated from the available track statistics. Since the size or
volume of the gate is dependent on the tracking accuracy it therefore varies from
scan to scan and from track to track, and the standard validation gate is ellipsoid [22].
Several classical data association methods exist. The simplest is probably the
nearest neighbor (NN). In [20, 23], this is referred to as the nearest neighbor
standard filter (NNSF) and uses only the closest observation to any given state to
perform the measurement update step. The method can also be given as a global
optimization, so the total observation to track statistical distance is minimized.
Another multi target association method is Strongest Neighbor Filter (SNF)[24,25] It
use the measurement with the strongest intensity (amplitude) in the neighborhood of
the predicted target measurement location, known as the “strongest neighbor”
measurement, as if it were the true one.

Another multi target tracking association method is the probability data
association (PDA) [26], It estimates the states by a sum over all the association
hypothesis weighted by the probabilities from the likelihood. an extension of it, is the
joint probability data association (JPDA)[27,28] algorithm to multi targets. And the first
developed by fortmann et al(1983)[29]. And another major approach is the multi
hypothesis tracking (MHT)[2,30],and the first develop by Reid(1979)[31] which
calculates every possible update hypothesis.

A new multi-target data association algorithm for radar tracking which we call
the Fuzzy data association (FDA)[32]. This approach is formulated using the
extended Kalman filter, and FDA is accomplished using the fuzzy logic algorithm.
This technique is more robust and stable in heavy cluttered environment.

The measurements which correlate to a given track is processed by a filter to
update the track parameter for these tracks that didn't receive correlating
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observations, the previous predicted estimates are treated as the filtered estimates.
Then, the predictions are made to the time when the next data scan is to be received
[33]

As referred in [5] Kalman filter is used in prediction also their exist the
probability hypothesis density (PHD)filtering approach, an attractive alternative to
tracking unknown numbers of targets and their states in the presence of data
association uncertainty, clutter, noise, and miss-detection. In particular, it has been
discovered that the PHD filter has a closed form solution under linear Gaussian
assumptions on the target dynamics and birth [34].

In section 2 we will present PHD filter and section 3 Kalman Filter and its
modification in 4, section 5 the simulation results for maneuvering and non-
maneuvering targets and the performance for each one

[ PHD filter

In several unpublished manuscripts written from 1993 to 1995, Michael Stein,
C.L. Winter, and Robert Tenney introduced a multitarget tracking and evidential-
accumulation concept called a "Probability Hypothesis Surface" (PHS) .A PHS is the
graph of a probability distribution-the Probability Hypothesis Density (PHD)-that,
when integrated over a region in target state space, gives the expected number of
targets in that region. The PHD is uniquely defined by this property: Any other density
function that satisfies it must be the PHD. In particular, the PHD is the expected value
of the point process of a random track-set i.e. , of the density that, when integrated
over a region in state space, gives the exact (random) number of targets in that
region. In 1997 in the book Mathematics of Data Fusion was sketched the elements
of a theoretical foundation for PHS/PHD. It was shown that the PHD is a first-order
moment statistic of the random multitarget process and, consequently that from a
computational perspective it is a multitarget analog of single-target constant-gain
Kalman filters such as the a--y filter.[35]

The probability hypothesis density (PHD) filtering approach, an attractive
alternative to tracking unknown numbers of targets and their states in the presence of
data association uncertainty, clutter, noise, and miss-detection.[34]

The PHD filter operates on the single-target state space and avoids the
combinatorial problem that arises from data association. These salient features
render the PHD filter extremely attractive. However, the PHD recursion involves
multiple integrals that have no closed form solutions in general.[36]

The PHD represents the expectation, the integral of which in any region of the
state space S is the expected number of objects in S.
The PHD is estimated instead of the multiple target posterior distribution as it is much
less computationally expensive to do so. The time required for calculating joint multi-
target likelihoods grows exponentially with the number of targets and is thus not very
practical for sequential target estimation as this may need to be undertaken in real
time.

The PHD is defined as the density, Dt|t (xt |[Z1:t ), whose integral:
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On any region S of the state space is the expected number of targets in S. The
estimated object states can be detected as peaks of this distribution.

The derivation for the PHD equations is provided by Mahler [37], the prediction
and update equations are given by:
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In the prediction equation, by is the PHD for spontaneous birth of a new target
at time t, Ps is the probability of target survival and fy.1(X(|Xw.1) is the single target
motion distribution. In the data update equation, g is the single target likelihood
function, Pp is the probability of detection, x; is the Poisson parameter specifying the
expected number of false alarms and c; is the probability distribution over the state
space of clutter points.[38]

Il Kalman filter

In 1960, R.E. Kalman published his famous paper describing a recursive
solution to the discrete-data linear filtering problem [5]. Since that time, due in large
part to advances in digital computing; the Kalman filter has been the subject of
extensive research and application, particularly in the area of autonomous or assisted
navigation.

The Kalman filter is a set of mathematical equations that provides an efficient
computational (recursive) solution of the least-squares method. The filter is very
powerful in several aspects: it supports estimations of past, present, and even future
states, and it can do so even when the precise nature of the modeled system is
unknown [39].The target can be modeled in discrete Markov form by

x(k +1) = Ax(K) +q(K) (8)

Where
X ... n-dimensional target state vector,
A ... state transition matrix, and
g(k) ... zero mean white Gaussian noise with known covariance Q.
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the M-dimensional measurement vector is modeled as
y(k) = Hx(k) —v(k) 9)
Where
H ... Mxn measurement matrix, and
v(k) ... zero mean white Gaussian measurement noise with covariance R.
Given the target dynamics and measurement model from (8) and (9) the kalman filter
equations are driven in [40].which are given by

R(k/K) = K(k/k =1) + K (K)[y(k) = HR(k/ k = 1)] (10)
K(k) = P(k/k-1)HT[HP(k/k-1)H™ +R (11)
P(k/k) =[I - K(K)H]P(k/k 1) (12)

R(k +1/K) = AX(K/K) (13)

P(k +1/K) = AP(k/K)AT +Q (14)

Where
P(k/K) ... the estimated covariance matrix at scan k, and
P(K+1/k) ... the predicted covariance matrix at scan k+1 given scan k.

IV Modified Kalman filter

We assume a threshold to make reset to error covariance matrix P to its initial
value PO.

Table 1. Pseudo-Code for Modified KalmanFilter

Given Z, H ,P0,X0, and TH % TH is the threshold %%

Res=(Z-H*XO0);
if (norm(Res)>=TH)
PO=PO01;
end
Xest=X0+K*Res; % Filtering State %%
Pest=(eye(4)-K*H)*PO0; % Filtering Error Covariance %%

V Simulation Results

We apply three different algorithms which are Kalman filter, modified with reset
error, and PHD filter to five scenarios first one is linear motion (bomber) and three
different scenarios for fighter and the last for trainers.

5.1 Bomber
In this section we will show bomber air craft in linear motion and discuss the
three output of the filters used.
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In this scenario, 19 radar scan are done on a part on land (4.3, 6.2)*10* (m)
and using the three filters, we see that for linear motion the curves for all filters and

the error criteria are nearly to be identical.
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Table 2. Error analysis for bomber

Kind of filter Error in X position (m) | Errorin Y position (m) | Error criteria
Kalman filter 2.974641 1.055708 3.156424
Modified Kalman 2.97703 1.056524 3.158947
PHD filter 2.97703 1.056524 3.158947
5.2 Fighter 1

maneuver motion by fighter air craft

In this section we will show the difference between the 3 algorithms during
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In this scenario, 50 radar scan are done on a part on land (3.1, 2.6)*10* (m)
and using the three filters, we see that for maneuver motion the curves of the filters
and the error criteria are different and Kalman filter has large error 147.2178 and the
difference between the two other filters is 0.000072

Table 3. Error analysis for fighter 1

Kind of filter Error in X position (m) | Error in Y position (m) | Error criteria
Kalman filter 136.8142 54.35944 147.2178
Modified Kalman 4.180211 6.677924 7.878378
PHD filter 4.179974 6.677986 7.878304




Proceedings of the 8" | CEENG Conference, 29-31 May, 2012

5.3 Fighter 2
Another scenario for maneuver motion will be shown in this section also by
fighter air craft
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In this scenario, 50 radar scan are done on a part on land (2.6, 2.6)*10* (m)
and using the three filters, we see that for maneuver motion the curves of the filters
and the error criteria are different and Kalman filter has large error 141.5815 and the
difference between the two other filters is 0.00011
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Table 4. Error analysis for fighter 2

| EE158 - 10 |

Kind of filter Error in X position (m) | Errorin Y position (m) | Error criteria
Kalman filter 133.9246 45.92965 141.5815
Modified Kalman 7.709743 6.435743 10.04285
PHD filter 7.709715 6.435936 10.04296

5.4 Fighter 3
Also this section will see another way for maneuver motion by fighter air craft
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In this scenario, 30 radar scan are done on a part on land (1,95, 1,9)*10* (m)
and using the three filters, we see that for maneuver motion the curves of the filters
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and the error criteria are different and Kalman filter has large error 56.38372 and the
difference between the two other filters is 0.000138

Table 5. Error analysis for fighter 3

Kind of filter Error in X position (m) | Errorin Y position (m) | Error criteria
Kalman filter 44.03945 35.20868 56.38372
Modified Kalman 6.013361 4,159153 7.311571
PHD filter 6.013213 4.159125 7.311433
5.5 Trainer
Another maneuver by different type of air craft called trainer
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In this scenario, 50 radar scan are done on a part on land (4.5, 4)*10* (m) and
using the three filters, we see that for maneuver motion the curves of the filters and
the error criteria are different and Kalman filter has large error 20.74106 and the
difference between the two other filters is zero

Table 6. Error analysis for trainer

Kind of filter Error in X position (m) | Errorin Y position (m) | Error criteria
Kalman filter 16.09614 13.08075 20.74106
Modified Kalman 7.851098 7.46157 10.83119
PHD filter 7.851084 7.461582 10.83119

VI CONCLUSION

We showed that modified Kalman Filter provides promising performance which
is nearly typically the performance of the PHD Filter. This code is written by Matlab
which is easy to change it to any other language as c++ or lab view to be used in real
time application. In particular, the algorithm is capable of tracking multiple
maneuvering targets that cross each other and the number of target tracked known
from the number of stages that in the algorithm.
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