ESTIMATION AND OPTIMAL DESIGN IN STEP ACCELERATED
LIFE TESTS FOR THE GENERALIZED BURR DISTRIBUTION

USING TYPE-II CENSORING

xk
Gamila M. Nasr

This paper considers simple failure step-stress accelerated life testing (ALT) under
mixture distribution where the experiment is subject to type-II censoring. A failure
step test runs until specified proportion of units fail at each stress. The life test
model consists of generalized Burr lifetime distribution with scale parameter is
affected by the stress through the inverse power law model, and a cumulative
exposure model for the effect of changing stress. Maximum Likelihocd estimators
(MLE) of the model are obtained. Also, Confidence intervals estimation of the
parameters is presented. Moreover, optimum plans for simple failure step-stress
ALT are developed, Such plans determine the best choice of the proportion of test
units allocated to each stress, depending on minimizing the generalized asymptotic
variance (GAYV) of the model parameters. An example is included for numerical
illustration,

1 Introduction:

Testing the life time of some products or materials under normal
condition often requires long periods of time. So, in order to short the
testing time, all or some of test units may be subjected to conditions
more sever than normal case. In this case, quick information on the
reliability of a product components or materials can be collected.
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In ALT, all test items Tun only at accelerated conditions. According to
Nelson (1990} (1), the stress can be applied in various ways. In some
branches of reliability testing, stress on the same units is changed
" during the test. In case of step-stress, the stress on the surviving units -
is turned up in order to force all or most of the units to fail more -
quickly than the case of constant stress. :

Stress on each unit is increased at pre-specified times (time-step
stress) or upon the occurrence of a fixed number failures (failure-step
stress). The step-stress pattern is chosen to assure failures quickly.
Usually all units go through the same specified pattern of stress levels
and test times. As with constant stress test, the parameters of a model
for life under step-stress are estimated. The test data and the relation
between the cumulative distribution function of product life under
constant stress and the cumulative distribution function under step
stress, are used to estimate product reliability. It is assumed that
changing the stress from one level to another affects the value of
the parameters only and not the functional form of the lifetime
distribution, this is a major assumption of ALT.

Several models are available in the literature concerning the
relationship between certain parameters of the life time distribution
and the stress levels at which the experiment is conducted. The power
rule model is the most widely used model as an acceleration function.

A functional relationship ,8 = g(s,a), where (a)is a vector of
unknown parameters and (s) denotes the vector of stresses. It is
assumed that changing (s)affects the value of & only and not the
functional form.of £1(t,9) .

There are different models showing how t(he stress s is affecting

the failure distribution. Amorg these models, the most famous models
are the inverse power law, the Arrhenius, the Erying relationships and
the log linear relationship. '
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The Inverse Power Law:

This model is mostly used for flash lamps and simple fatigue due to
mechanical loading. This relation is given by :

B=v/gP,

where @ is a parameter of life distribution, s is the applied
stress, v is the constant of proportionality and p is the power of

the applied stress, where vand p are the parameters to be estimated.

One method of constructing a new distribution is to use the known
parametric form of a distribution and allow one (or more) of the
parameters to vary according to a special probability law. The new
distribution is called a Mixture of distribution. This theory has useful
applications in industrial reliability and medical survivorship analysis.

If 1 ( |9)1s a probability den51ty function depending on a m.

dimensional parameter vector @and if G(g) is called a m-dimensional
cumulative distribution function, then :

)= [re)8)gc8) is called a mixture density, and g(8) is
9

called the mixing distribution @,

Dubey (1968) () obtained a (generalized burr) distribution by
mixing the Weibull distribution in the form

flg.6)= 9?56‘1,“"“'e“"”""j : 1>0, 4,650,
over the Gamma distribution in the form :

= ﬁa -1 -f8
g(é‘la,ﬁ)—r(a) g% e ", 6>0,a,B>0

The resulting probability density function (pdf) has the following
form:
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a ﬁa¢ t¢_1
(Brd S

which is a generalized Burr distribution with three parameters
(a.5,4).

The distribution function is:

Flle, .9) =1—(1+%] £1>0.

The reliability function has the following form:

flepg) = >0, ga,p>0,

¢ — &
Rl 8.4) =(1+’—} , ' £>0.
i)
and the hazard rate function is
¢
ne)=20 t>0.
g+t?

The step stress ALT is widely used in major research area, metal
fatigue. Researchers in this area developed many cumulative exposure
models. It also play an important role in electronic applications.

Statisticians have an important role in supporting expert in
engineering to develop cumulative damage models. Nelson (1980) “
was the first used maximum likelihood (ML) methods for estimating a
model for life as a function of constant stress from step-stress test
data. He obtained the MLE of the parameters of Weibull distribution
under the inverse power law model depending on data of cable
insulation.

Miller and Nelson (1983) ©) presented the optimum plans for
simple (two stresses) step-stress for accelerated life testing for the
case where all units are observed until fail. Such plans minimize the
asymptotic variance of the maximum likelihood estimator of the mean
at a design stress and the test units have exponential distribution.
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Bai et. al {1989) 6) discussed the optimum simple time-step and
failure-step stress accelerated life tests for the case where a pre-
specified censoring time is involved as an extension of the results of

Miller and Nelson (1983) @, They obtained the stress change time
and the number of items failed at low stress which minimize the
asymptotic variance of MLE of the log mean life at normal condition.

The optimum simple step-stress accelerated life tests for products
with competing causes of failure was presented by Bai and Chun

(1991)(8).They assumed that the life distribution of each cause is
exponential.

LuValle and Hines (1992) ) used a case study to show a
procedure for designing and graphically analysing step stress
experiments in order to gain information about Kinetics of the
processes governing failure.

Bai et. al (1993) (10) presented an optimum simple step-stress
accelerated life test for the weibull distribution under type-]
censoring,. It is assumed that a log-linear relationship exists between
the weibuull scale parameter and the stress and that a certain
cumulative exposure model for the effects of changing stress holds.

Lu Valle (1993)(”) studied the behavior of a large class of
physical processes that specify how multiple steps interact in
producing failure.

This paper considers simple failure-step-stress ALT which uses
two levels of stresses higher than the level of normal stress. The aim
of such experiment is to have more failure data in a limited, time
without using a high stress to all test units.

2-The cumulative Exposure (CE) Model:

In a failure-step stress, units are run at a specified low stress, which is
still larger than normal stress. If they do not fail at occurrence of a
pre-specified number of failures, stress is repeatedly increased and
held, until the units fail. As with the constant-stress test, one estimates
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parameters under step stress. The parameter estimates are used to
estimate life at a constant design stress.

So to analyze data from step-stress, one needs a model that relates
the distribution (or cumulative exposure) under step-stress to the
distribution (or exposure) under constant stress. This model assumes
that the remaining life of a unit depends only on the current
cumulative fraction failed and current stress. The unit does not
remember how the exposure was accumulated. Moreover, if held at
the current stress, survivors will continue failing according to the
cumulative distribution function of that stress but starting at the age
corresponding to the previous fraction failed. This model is called the

cumulative exposure (CE) model (2) |

In the experiment, the number of steps equal 2. The model of
constant stress is considered in the first step. Such a model affects the
lifetime of the unit by a certain level of stress ¢; , where ¢ is larger

than the usual stress ,. For the second step, other stress is
considered as ¢, where ¢, <¢;<¢,. Then the cumulative exposure

model reflects the effect of moving from the first stress to the second
one on the cumulative exposure distribution of the failure time.

In the experiment of step stress testing, the following assumptions
are taken:

1. For any stress ¢,¢, the life time distribution is Generalized

Burr (a, 8,4)in the form:

$-1
aﬁa¢j ffj
f(t,-j|a,;3.¢j)=7
J
ry.>0,a,ﬂ,¢j >0,i=1,... ,nj.j=1,-2- (21)
24
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2. pB,a are constant with respect to the stress ¢, and the scale
parameter ¢; is affected by the stress ¢;, j=12through the
inverse power law model in the form

¢; =vsh. _ (2.2)
Where v is the constant of proportionality, p is the power of
applied stress, are the parameters of this model, and

* k .
" \ n
s-=-c— , C =1_ch-J y b= / w0 ,p>0.
J cj =1 J J f‘,
nj
J=1

Suppose that, for a particular pattern of stress, units run at stress

c; starting at time Tnjoy and reaching to time Tnps j=12 (10=0).

The behavior of such units is as follows:

InStep 1:

The population fraction fy(¢)of units failing by time t under
constant stress ¢ is

-
Vsp
]

=]-(1
) + 7

0<t<f;nl,a,ﬂ,v.p>0. 2.3)

If we let H(t) be the population cumulative fraction of units
failing under step stress. Then in the first step:

H(t) = Fy(t) . O<t<g, . (2.4)

Where 7, is the time when the stress is raised from
¢; tocywhere humber of failures is n;. Therefore

-a
D
tVSl

H(t)=1-|1+ (2.5)
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In step 2:

For the second step, the cumulative exposure mode] is as follows:
When step 2 starts, units have equivalent age wu;, which have
produced the same fraction failed seen at the end of step 1. In other
meaning the survivors at time 7, will be switched to the stress

¢, beginning at the point u;, which can be determined as the solution

of
Falu)=Filen) (2.6)
e, 1=+ =1-(+eo)“
where
r
ui'2 T
W =—— and oj=——
B
1+W1=1+&J| ¥ =
uvszp =rVSlp
ny
p
=l @7
¢ .k k
where g, = and ¢ = Hc‘?}, bj=nj > n; mp>0.
€32 j=1 J=1

The population cumulative fraction of units failing in step 2 by
time t is expressed as follows:

HO)= Pl —on )+ u] | 2.8)
o, V|52 -
=1- 1+[( ”l)ﬁ | (2.9)

by substituting from (2.7) we have
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[("’m .)*f,(;jl/ )P ]”s’ﬂ

Hit)=1-|1+ F; ,rnlsts';nz (2.10)

It is seen that H(t) for a step-stress pattern consists of segments of
the cumulative distributions f|, ', . Then H(t) can be written in the

form:

[0 51y
H() =1 A e); Ty STy 2.11})
\Fz ((t —Tn )+ ] ) Ty SES Ty

and the associated densi"ty function h{t) is shown as the
following form:

-0 t=7g
() =147 6) rp S1STy 2.12)
¥f2 ((t —Tpy )+ uy ), ' Tny <!< Tuy

3- Maximum Likelihood Estimation:

Grimshaw (1993) (13) indicated that the ML method is commonly used
for most theoretical models and censored data. Although the exact
sampling distribution of maximum likelihood estimators (MLE} is
sometimes unknown, MLE have the desirable properties of being
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consistent and asymptoticaily normal for large samples. Also, it is

shown by Bugaighis (1988)('4) that the ML procedure generally
yields efficient estimators. However, these estimators do not always
exist in closed form, so, numerical methods are used to compute them,

The experiment under failure-step stress has the following
assumptions:
[1] There are 2 levels of stress ¢y, ¢, , where ¢ < ¢, are applied,

such that each unit is initially put under stress ¢,.

[2] We assumed that we begin the experiment with & units. It is
considered that at the first step, when stress ¢; is applied, nfailure
times f;1,i=12,...p of test units are observed. At the second step ,

stress ¢y is applied and #; failure times #;,i=12,.....n, are noticed.

[3] The experiment begins at stress level ¢; . If the unit doesn’t
fail till the occurrence of predetermined n) failures, the stress is raised
to ¢, and held until the occurrence of #, failures. In general , if the
unit doesn’t fail during the interval [rn j2Tn i J (until the occurrence

of n;_ifailures) at stress ¢ j—1 » then the stress is raised to ¢ ; at

Tnj. »J=2,and held until tn; (n;failures)

(4] the test is continued till all units, N fail or till a pre specified

k
number of failures= ) n,. At this time, there are n, units still
=l
» k . - -
survived, where n, =N~ 3n;, it is known that N is the total
=1
number of units run on the experiment. At the second step, the data
would be the failure times of (N -n,) failed units arranged in order,

and units which survived beyond 7, (n).

[5] The failure time distribution is assumed to be generalized
Burr distribution in the form (2.1) and the scale parameter is shown as

28
ANAY



a function of the stress through the inverse power law model. We pay
attention to the case of censored samples. The likelihood function of
the experiment is assumed to have the following form:

kA
[ _HZ_l'I]f ,-(tsj-rn_l’ru - [=Fi=rgortug- )1 G0
j=2i=

It is the general form of the likelihood function in time step-
stress accelerated life testing with censoring. It is shown from
equation (3.1) that this likelihood function consists of three parts. The
first one represents likelihcod of the first step which is the same as the
case of constant stress. The second part shows the likelihood function
of the (%-1) other stresses. The third part shows the likelihood function
of the survived units by time t,,, (7).

Depending on the previous assumptions and considering the
cumulative exposure model to relate cdf under step stress to the cdf
under constant stress it is evident that: .

4 ( F?—l)
f j(fr'f —Tj- +uJ'—1)=M((tU T J'-l)"'”j-l) "

P
—{e+1)
N [(’y _Tj—l)"' uj—l] /

B

1

Where ;= (Aj—z +ujp fsf“l /Sf)p

 Then, the likelihood function can be expressed in the following
form:
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Lo E i 1+ v *
~(a+)
Jilz: : Sif - (o i ) ”p_lj I+ - THLT uj_l] :
5 \-alee)
S e ] o3

B

The likelihood function of the experiment in the case of failure-
step stress is considered to have the same form as equation (3.3) but
the stress change point z;_; is replaced by Tnjy > J=23 ,k and

censoring point #1is replaced by z,, . It is clear that in failure-step
stress, n;_y, j=23,...k+1 are pre specified but z; ;, j=23,...k
and » are random variables.

It is known that the ML estimators of v, p,a and £ are obtained

by maximizing the logarithm of the likelihood function expressed in
the form:

k
lnL=lnA+(N-—nc)lnv+panlnsj +(N—nc)lna—(N—nc)Inﬂ

J=1
i | tvs}J g
+(vs]‘" —I)ZInt“ —(a+1)21n 1+ 4+ > (vsf.—l)Zln((t,-j —er|)+ uj_l)
i=l i=l Jif j=2 |
30
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—(a+1) i nzj:,!n 1+ [(t"f ~ Tj-l)'t; uj-I] ki

j=2i=1 B

VSP
- a(nc)!n[l + [(n ~Tk-1 )ﬂ+ uk—]] k } . : (3.4)

Where A is constant.
4-The Maximum Likelihood EstimationIn The Case of Type-II
Censoring When K=2 As a special case:
As a special case, let k=2, 7, =7y and 7, =7 it is shown that:

Foluy)=Fi(t1)> 4.1)

Then 5=/ (4.2)

So the population cumulative fraction of specimens failing in step
2 by time ¢ is given by:

H()=Falle 7+l

-

L )]
g

(4.3)

When k=2 there are two steps only with two levels of stress
¢cjand ¢, . In this case the likelihood function has the following form:

o p —(a+1)
n vslp o' (wl “1) t;sl
L=8B%* H tn 1+——
=1 B B
31
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~{a+l]
P (a+1)

).(”f ‘]J - [lt2 = 20+ 2]
B

P
I %E((‘fz - 11)+ U

i=l

P "a("c)
1+[(T?-ﬂ)+ul] 2
B

@.4)

Where B is a constant,
By substituting from (4.2) we get

—{a+l
vsf -1 vsP ( )

n vslpa 1 t.ll
L=Bx*T] 1 1+-4—
=1 B B

n P vsP_
*ﬁvsza((tilz _TI)+_TI(SI/32)pJ( 2 1)

=1

\-(afl)

{(‘ -1+ 71( 2 )p] "t
B

*[ 14+

)

~a(n)

[(’7 )+ "Z)p] wf )
#*| ]+ - '
B

4.5)

inL=al+a2+a3+ad4+a5. (4.6)
Where
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n
al=InB+nyinv+nplnsg+nlna-mn lnﬂ+(vslp —I)Zlm'n .
) i=1

a2
Vs

a2=—{a +l)%ln 1+ n
i=1 B

+n21nv+n2plns2 +hy lna-—ng Iﬂﬂ .
12

a3 = +(vs2p —I)ZIn[(t,—z —7)+ rl(‘gl‘lsz)p J
i=1

" [(‘ n-7)* 71(31/32)10 ] "4
ad=—{a+1)Y i1+ 7
i=1

s P

[(’7—71)+r](°'1/32)" ]v 2

a5 =—aln, )in 1+

B

So,In L =bl+b2+b3+bd+b5. (%))
Where

k .
b1=lnB+(N—nc)inv+ pXnjins; +(N—-nc)lna—(N—-nc)lnﬂ.
=1

vs P

H n t, J
b2= +(vs{’ —1)ﬁ Inty ~(a+ 1)izn 1+ tiﬂ
i=1 i=1

b3= +(vs2p - l)% [n[(t,-z —7 )+ rl(‘“/SZ)p J .
=1
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! 4 V.S'p

n [(‘il —r)+ 1'l(sl/sz)p ] g

b4=—(a+l)Zln ] - .
i=1 B

VSP
[(n - r,)+r](sl/52)“’} 2
b5 = —aln )in| 1+
B

Differentiating the logarithm likelihood function in (4.7) with
respect to v, p,a and 3, we can obtain the MLE's depending on the

following equations:

P

. VS
N-— Hy n sPt1 Ing,
dink _ nC+SlPZh‘”ﬂ—(a+1)z 1 il

ov v i=l i=l vslp

1+_til_

R P
+ sf Zln[ln -7 '*'71(51/52) ]
i=2

(@+1) p2
- JB K i=1 o vsy
(tﬂ — 7] +'E'1(S1/52) ]
1+
B
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' Vsp
['I -7t 71(”/52);, ] : ,ln(f;f ~Ty + 11(31/52)p J

_ aln, )s? . s
ﬂ A
(77 -7+ r](‘“/‘Z)pJ
1+
B
& Wz +1)s7 tnsy 1t} Int
alnL=vs,p Ins; 3 Inty - ( )51 1 (1 il
i=1 ﬁ j'=1 tvslp I
1+-L
g
\
n - p\
+vss lnszﬁln(t,-z -7 +rl(s1/sz)

/

P n
+ [5_1] (VS; - l)rl(sl/s:!)p ln[s—lJ Inty 22: !
52 59 =1 [‘:‘2 - Tl(ﬂlsz)p )

V.'n'p P
(fiz —ry 4 52’ J : [s_'] wspels2)’ h{s_‘]!nrl

_ (a + 1) % 5 5
P vy (s1/52)?
2 fy —T|+T
(r,-z -7+ rl(*'l/sl)p J 1
I+

B
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)
+ vsf Insy Zln[;iz -+ 1:.](sl/-¥2)40 ]J:|

i=1

P
vss ‘ P
[7] —T+ rl(sl/JZ)p] [i} stfl(sl/SZ)p [n(-s—]-Jlnrl
- e ¥ ' 89
g sy - (s1/52)?
[TT -7+ 1.](;1/52)‘0 Jv 2 m-Tn+
I+
B
+vst ins, %m[n —r+ 1:l(sj [s2)P Di| . 4.9)
=

p
V.
. 2
(N ) " - ,«v""l ny ["i;' —1T] +r](JI/32)pJ -
——alan_i_ In 1+L —Zln I+ '
=1 B =l Jij

da a

P
Vs,
(r] -7 + 71(-71/-"2)” J 2

n i1+

4.10
I (4.10)
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P
V. 2

[![2 -7+ Tl(sllsz)pJ

' ‘vslp
61nL=(a+1)"1 4 +(a+l)’§

aﬁ ﬁz i=1 tvslp ﬂz i=1 ( P vsé7
1+ [IIZ_TI"'TISIISZ) J
P R P
Ji)

VSp
NIV S
_N—nc+nca ! (411)

B B

Therefore the MLE may be found by setting (4.8), (4.9), (4.10)
and (4.11) equal to zero. As shown they are nonlinear equations, their
solutions are numerically obtained by using Newton-Raphson method
as will be seen later. They are solved numerically to obtain v, p, 8,

The asymptotic variance-covariance matrix of the estimators of
v, p, B, Is obtained depending on the inverse of Fisher information

matrix, where its elements are the negative of the second derivatives
of the natural logarithm of likelihood function defined in equation
4.7). :

The elements of the matrix are given as follows:
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p p
: 2 Y. 2 ¥s.
azlnL___N—nc Slp(a"*l)%‘fnl (lnt,-l) ‘nl
av? v? B i=l v.vi" vslp
l+£"—1—— 1+[“—
B B

\

S%P (@+ 1) )

/

P 'vséJ o 2
[[:-2 -7 + TI(JI/SZ) ] [ln[t,-z -7 +TI(S]/S2) ]]

+ 2
ﬂ i=l ) ( / )p vs:‘zp
[t,-z—f]'i'flsl 2 ]
1+
B
f \
Vs,
2
(’iz -1 +r](S|/s2)pJ
-1
. vsy
[[‘-2 -7 +1_1(.7|/.52)p]
A1+ -
B
\ /
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p vsz'a P 2
2p [17 ~7) + r](sl/sz) } [h{r] -7 +r1(‘“/‘72) D

.5‘2 nca
B vsP
(1]—1'[ +Tl(sl/32)P] 2
I+
g
( )
)
. 5y
[q o _,_,1(51/52)‘" J
_ ~1]. (4.12)
p
V.Tz
(n 1 Hl(n/sz)")
1+
B 1 7
L )
*inl_ N-ng “.13)
dc? a?

‘ p
VS,
2 n a+vsP (ns ) n2 1! Inty
8 mL:vslp(lnsl)zZInt,-l—( )"1( l) ﬁ il i
ap? i= B i=1 vsf
|+
B
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vs

p
VS
3 vsfty !l Ity

+ 'VS]'U ln[,']

2]

s
v§y T ln}—1~lnr1 Insy

LB z(ss_l]p

(’iz -7+ rl(sll“'z)p ]

© =l

et o] (o
(S—IJ (vséD l)r1 2 [!n l] Inty (3—1] 2 2/ Inr
mAs s s
F A0 2 _ A2 _(
= [[ - +,r1(51/52)p J [,‘,2 1y _,,rl(sn/sz)p )
\

i=l

51

ny
Zs‘zp v(lnsz)2 ln(t,-z -7y +¢-1(SI/52)PJ+

2 [ }p |
P -+ :
s s
( ]] vyry ' In=tingy

52

(fiz -7 +TI

(s1/52)" ]

% (1+ a{t;z -1 +r[(sl/"2)p]

p
s
-L Int)
52

I
vs4

i=1
[I,—z -7 +Tl(s1/s2)p]

Vs 2

4

1
B+ 5

- P
+ vsf Ins, 1"14[1',-2 —y + I.l(sI/-iz)
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(nz -7+ rl(sl/"Z)p ) L %2

p

ELJPTES

Vs vs
P2 2
(fi2~11+r](‘“/"2) J " (1+a{:i2"1-1+f1(31/6‘2) ]
-1|-3
j= p
vsy i=1 2 Y2
(riZ"Tl +Tl(s1/52)PJ (’iz —-f1+‘1'1(sl/s2) J
ﬁ 1+ - ﬁ 1+
g B
2]
—IJ vspr] 52 lnﬂ-lnrl . »
%2 %2 Ins—]+2ln.s'2 +(-£l—-] ln-s-l-lm'l +

52 89

_1]" |
¥2 ln-f-l-lnfl
52
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(s1/s2)P

nca[n 7147}

+

P

‘]VSZ

(1-ssefia)
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1
B 1+ 7

51
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52
V83 Ty

JP
5
ln—llnrl
52

(sl/sz)f’]

-1 +1

— H{(Sl/sz)p

D
]vsz

+vsd Insy ln[r] -7+ rl(sl/‘f?')p ]
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(Tl
p —
(S—l] vsf22°2/ In"Ling »
%2 . lns—1+2!nsz +(S—1] lns—llnrl +
(n_fl_i_rl(s]/sz) J L S2 52 52
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51 P |
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(ns )zln n-t sl1/s2)P | 152 2 (4.14)
’ o (1/s2)?
[n-.nwf"”z ]
( 3
2 Vs "'Sf
il _N-n. (a+)3 1t t _,
aﬂ2 ﬁz ﬁs i=1 tv.i'lp tvslp
1+- 2 g1+ 22—
B B
\ - /
43.

Vel



‘ vs¥ s,
( 1) - [Iiz -7 +7,'1(Sl/sz)p) ? (tiZ -1 +2'1(s1/32)p] 2
a+
ﬁJ i=| s vs?
[til -7 +rl(sl/52)p ]v 2 (ﬁ'z -7 +Tl(s]/s2)p] 2
1+ 1+
- p b B
\
{ 3\
vs vsP
[77—2'1+1'l(sl/s2)p) 2 (q—rl+‘rl(sl/-‘2)PJ 2
e
ﬁ3 vs vsP 2
[’F—Tl.+fl('§l/sé)p] ? (T;—r1+rl("l/s2)pJ 2
1+ 1+
; 17 5
/
(4.15)
44

Voo




il
ovap

p
V5
m sPr 1

Inty Ins| (e + 1) 1

n
Ysf nsylnty -3 1l

i=1 i=l v.s'lp
tl‘] ﬁ
[+ ==
B

Vod

vsP -1 vsd -1
2 2
[tsz - 71(51/52)”J (ﬂ wry + o1/ ]
N e '
VSZ V.!'Z
(‘:2 . 11(51/32)" J (,;, —ry + g2 J
1+ 1+




ny

i=l

+ Zsf Insy ln[l,-z -7+

+2

)

(s1/52)P )
J

p
) VSZ
[:;2 -1y +r,('"/ x2) ]

(cx+l)

1—-

p

)

DY 2
[fiz—rw'r](“"l/sﬂ J

B

1+

p

(/2 ) 2 (s1/52)P
(] +o:)5f(t,-2 =T +rl-fl 52 ] h{l!z -7 +rl.r] 52 )

i=]

[ti?. =T +T

Vsp
1(51/52)” J 2

B+

p a)
51 " p s
— | v T
52

5
InLing,

A

['z‘Z -7 + rl(sl/sl)p ]

. : o
+vsf Insy l”[‘iz ~7 +r1(’1/’2) J

46

VoV,

I




st
(t:'Z —nt fl(sl/sz y } ‘
A ~1]+
(r,-z -+ rl(sllsz)” ] 2
Al + F;

/

wf

p P

na sf[n-—rl +rl("[/52.) ] Inn-7 +T1(sl/32) ]
\

[Ti -7+ ml(‘l/fz)p )wg
7

Bl 1+

S

oy ()
P
s
[s—l] ‘v.s'é[J 7 52 ln—llnrl

S2 52

[n - 1.l(ﬂlsz)"’ ]

(s1/s2)P ]

+vs§ Insy In[ry ~T +7)

47
VoY




VS?‘?
[,, ) Hl(ﬂ/sz)”]

-1

V.'.‘p
‘(n -7+ rl(sl/sz)p] 2

B

A1+

)

P
2

P
nca(n -1+ rl(Si/-Tz ¥ ) 54 Ins; [n(n -7+ 11(51/52) )

P
Vs
2
[,7 - ,,l(ﬂ/sz)"’ ]

s

1+

B

(4.16)

Yol



VSP
p (ﬂ g+ g1l J : ln[?? T ]

P
" sf’t:lsl Inty (nc)s2
i=l vs’ ﬂ vsf
tnl - (s1/s2)P 4
1+ g n-7+7]
B 1+
B
4.17)
( 3
VSP VS‘D
azlnL__Slp(a*'l)%’nl Inty tr‘ll -1
ovop B 2 i=l tvs[p . vslp
1+ 1+ |
B B
\ )
vsP 2
(s1/s2)? ) 2 ( (sxlsz)pJ
fip —T1 +T Inltyp —11+7T
szp(a+l)"2['2 1 1 i2 1 1
B 2 ! P
i=1 . Vs,
ﬂ [152 -1 +7,'1(s]/52)p] 2
1+
p
49

‘e



P 14
s} V2 si/s) ) 2
k) | A w
[nz-rwr](s‘/sﬂ ] [T?-fl'*Tl(s'l/sZ)p]
1+ 1+
B 7 B F;
/
ng 2
(W—Tl +rl(sl/S2)P ] (lr{n—rl +rl(sl/52)P ]]
(4.18)




D
V5
' AN
p wf (fig -171 +z-1('“1/‘2) J
c"J‘ZlnL__wl Ins; oty ' Inty _lnzz:
dadp B o tvslp B i )P wf
1+% tp =T+ 1)
1+
B
s P
5 g 52 P 5
3 vss Intyin—
59 .

( / )p VS2
g :
2 +vs2P Insy ln(t,-?_ -7y 4 T.lsl ) J
I
[f,‘z -7 +Tl(sl/52)

)

L

‘ p
vsp P [.S‘_]]
(s1/52)P 2 5 ) P ined S
ng [77 -7+ 7 o 5 2} vs; Intyin m
p 1 s1/s2)P
’ [ﬂ T+ Ls/n2)P ]wz ['7 -7+ 71( : )
- 1 .
1+ i
ﬂ N
4
VS.
pY 2 .
+ vsf Ins, ln(q —7 + 7v.l(sllsz) J (4.19)

51

YEA




P P
02inl,  vsfa+ins 8 1)1 Inty 0] 1
aﬂap ﬂz i=1| tvslp tvs[p
I+ll_ Bl1+ il
B B
\ /

[ r
wf \P [S_l]
>
e Lo v dney in L
(@+1) 22 o -
2
e ' g (s1/52)P
[fiz -7y +r1(‘"/52)p] : tp =TI +7)
I+ I
ﬁ -
.
p
VS.
! 3
1 [&2 -1 +11('S|/52)p)

V5.
p Y2
+vs£’ Inss ln[t,-z -1 _,_Tl(-fl/sz) J

P
Vs
o) 2
. (”2 _Tl +T1(51/-‘2) }

VeV




vsP , ( 5 Jp
51/32 P 2 Sl 5
[77 =7+ Tl( ) J (__ ) »

— nca

i . VSP st /s
’ (U"Tl +r(s'/"2)PJ 2 [’?"T] +r1( 1/ 2)pJ
i

1+

ﬂ L

vsf’
v | (?] -7y + 71(51/52)[1 J
2
+ v.sf insy In[q —7 + 1',l(sI/-S'Z)P J

p
LAY
] [n -7y + 71(51/52)!?} 2

B
\ ).
(4.20)
P v.r2
aZ nl Bl t:sp h; (T] -7+ TI(SI/SZ) J
= 1 +
0adf 5 P v
g1+ . [7?—?1+r1("1/52)pJ
A B 1+
B
53

VER




P

" [tiz —7 +r](51/s2)pJ 2
> : (@dan
i=1 p v.s‘éJ
[.l‘iz - 7] +T1(S]/s2) J
21+ :
F B

Therefore, the MLE ¥, p5,& and [3 have an asymptotic

variance-covariance matrix defined by inverting the information
matrix .

(2L 22l 3%Inl 8 L
av? ovdp Ovoa  Ovof

3L #°ImL 8l 8L
dpdv ap? opdx  Opdf

3*imL 8°mmL 82l 8 L
dadv  dadp gt - Oadp

*mL 3’ Inl 3nl #%inlL
opov  0fop 9Poa  ap?

Since the maximum likelihood estimates are consistent and
asymptotically normally distributed, then, the confidence intervals of
the estimators are as the following.

To definea confidence interval for a population value @ ;
suppose
D= Dx\P)reereereer: ,yn) and  m.= a)...(y].............,yn) are functions

of the sample data y T 'Y, such that:

psosws)=7,



where the interval [a);.cou] is called a two sided 100y% confidence
interval for @ , where g,and g.. are the random lower and upper
confidence limits that enclose @ with probability » .

For large sample size, the maximum likelihood estimates under
appropriate regularity conditions, are consistent and asymptotically
normally distributed. Therefore, the two-sided approximate 100y%
confidence limits for the maximum likelihood estimate & of a population -
value @ can be obtained by :

p[~z$%$zi|zy, (4.23)

[mo(l-y)]”’
where z is the 2 standard normal percentile. Therefore, the
two-sided approximate 100y % confidence limits for v, p,c, § will be

respectively, as follows:

Ly=%-200) , U,=v+ze()
Lp=b-z0(8) , Up=p+s0(p) (4.249)
Lami-20() ,  Uy-d+i0(6)
Lp=B-zolB) Up=heeolf)

o

5- Simulation Studies :

To obtain the maximum likelthood estimates, for v, p,a and 8
put equations (4.8), (4.9), (4.10) and-(4.11) equal to zero, it is shown-
they are nonlinear equations, their solutions are numerically obtained
by using Newton-Raphson method depending on Mathematica 5.0.
Different sized samples are generated from the generalized Burr
lifetime  distribution. The population is with parameters
v=0.7,p=08a=08 and f=15; given n =04N , n, =0.5¥ and
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n,=0.1N, ¢, =15 and ¢y =2. For each set of data, 500 samples'

are obtained randomly. The sets of data are of sample sizes
N =100(100)500 .

Evaluating the performance of the parameters, v, p,a and g,
has been considered through the measures of accuracy such as the
mean relative absolute bias (MRA bias), the relative absolute bias
((RA bias), mean square errcr (MSE), the relative error (RE) and the
variances - covariances matrix of the estimators,

Table (5.1) demonstrates the average times (7, and 7,;) at
which n and », units failed. Also, table (5.1) summarizes the
performance of the parameters, v, p,a and £. It demonstrates the
maximum likelihood estimates of these two populations respectively.
Their MRA bias, RA bias, MSE and RE are obtained. As it is seen in
the tables, the estimators are near to the true value of the parameters
when N is increasing. Also, the MRA bias, RA bias, MSE and RE
arec decreasing when the sample size is increasing.

Table (5.2) shows the corresponding asymptotic variance-
covariance matrices for these two populations respectively with their
different sized samples. It is clear that the asymptotic variances of the
estimators are decreasing when N is increasing.

Table (5.3) presents the estimated values of the scale parameter
and the reliability function. In general it is obvious that the reliability .
decreases when the mission time (f) increases. Also the same table
shows that the relative absolute bias RA Bias (the absolute
difference between the predicted reliability function and its true
value divided by its true value),

Depending on the equation (4.24) the confidence intervals
estimation for the parameters are obtained. Table (5.4) presents the -
two-sided confidence limits at significant level 35%for each
population, respectively with different sized samples of
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N=100{100)500. As shown from the results, the intervals of the
parameters appear o be narrow as the sample size increases.

by setting the following equations equal to zero, 5 j» J=12 can

be optimally determined by solving them simultaneously and applying
the Newton-Raphson method:

a\ .

M s 6.0

Where [ is as shown in (4.22),

Then, optimum test plans are developed numerically. Table (5.5)
includes the expected number of items that must be allocated to each
step of stress represented by nf and n, which minimize the generalized
asymptotic variance (GAV) which defined as the reciprocal of the
determinant of the Fisher information matrix 7 {5). That is:

Gavls, p.a f)=|1"

Where minimization of the GAV is equivalent to maximization
of the determinant of 7.

It is clear that the optimum test plans do not allocate the same
number of the test units to each step. Also, the same tables include the

. ¥ .
average of expected times ;7 at which the stress changes from ¢qto

¢y and 77" ; at which each the experiment terminates. As indicated

from the results, the optimal GAV of the MLE of the model
parameters is decreasing as the sample size N is increasing. ‘
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Table(5.1): The Estimates, MRA Bias, RA Bias, MSE, RE of the parameters
v=07,p=08a=0.8 f=1I15given n; =0.4N and ny = 0.5 for different

‘sample size

N | T, Tya | Estimatés i‘gﬁ: RAB MSE RE
100 | 25.67 | 66426 | 3= '
YROT355 1 g 157005 | 0.0507145 | 0.0246165 | 0224138
P=0.860 | 320998 | 0.0752562 | 0.106891 | 0.408677
G=1.192 | 0750412 | 0489564 | 1.74164 | 1.64964
figsao | 0752401 | 0553742 | 480435 | 146126
200 | 2634 | 68454 | 5= '
",_(]'7187 0.107622 | 0.0266837 | 0.0097511 | 0.141068
p=0811 | 0205697 | 0.0136197 | 0.0441923 | 0.262775
4 =0898 | 033865 | 0.123032 | 0.25103 | 0.626286
fe1747 | 0342199 0.164845 | 68.6803 | 0.55249
300 | 26.10 | 6423.7 | 5=
v=0.7033 | ) 0997966 | 0.0100401 | 0.0048527 | 0.099516
p=0.817 | 4165408 | 0.020705 | 0.0277368 | 0.20818
G=0.888 | 0.254164 | 0.109448 | 0.095633 | 0.386557
| fotgon | 0261103 | 0129577 | 33.9203 | 0388274
400 | 26.19 | 6617 | 5= .
‘1_0'7086 0.0746699 |-0.0122089 | 0.0043372 | 0.0940818
pP=0811 | 0153395 | 0.0133033 | 0.024119 | 0.194129
G=0.838 | 0200695 | 0.0458555 | 0.0525382 | 0.286515
. 0.208297 | 0.0678079 | 17.0588 | 0.275348
B =16.02
500 | 26.06 | 6409 | = '
v 207034 1 0642988 | 0.0076941 | 0.0030081 | 0.0795148
P=0.816 | 0131288 | 0.0196851 | 0.017507 | 0.165392
G=0.829 { 0.17695 | 0411469 | 0.0335491 | 0.228955
. 0.18654 | 0.0590975 | 13.4327 | 0.244337
£ =15.89
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Table(5.2): Asymptotic Variances and Covariances of estimates for different

samples size of the parameters v=0.7, p=0.8,& =0.8, § = /5 given
ny =0.4N and n, =0.5N using type-II censoring

Variance-Covarianc Matrix

v JZ 7 ]
100 0.00250891 0.00448581 -0.00140873 0.0943901
0.00448581 0.0632464 0.0057448 0.402278
-0.00140873 - 0.0057448 0.0129116 0.26522
0.0943901 0.402278 0.26522 20.5028
200 0.00219023 0.00232707 -0.0024237 0.0545601
0.00232707 0.0343436 0.0054295 0.287591
-0.0024237 |- 0.0054295 | 0.0126348 0.225934
0.0545601 » 0.287591 0.225934 13.4504
300 0.00184494 0.00146541 -0.0022956 0.0327988
0.00146541 0.0238454 0.00532425 0.23673
-0.0022956 0.00532425 0.0124887 0.232029
0.0327988 0.23673 0.232029 11.2415
400 0.00158013 0.00105116 -0.00239865 0.023915
0.00105116 0.0183235 0.00425654 0.185147
-0.00239865 0.00425654 0.0108499 0.172894
0.023915 0.185147 0.172894 8.39498
300 0.00147617 0.00068079 -0.00262597 0.0127523
0.00068079 0.0148991 0.0041652 0.159172
-0.00262597 0.0041652 0.0105098 0.170596
0.0127523 0.159172 0.170596 7.22553
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Table(5.3): The Estimated Scale Paramctcr and Rclnb:hty under use condmon

vat different samples size when v= 0.7, p=0.8, &'~ 0.8, ,6’ I5 given
=04N and ny FQ.SN

N ¢ " Lo (to) Relative Bias
‘100 2.17126 3.6 053417‘-"’* *0.154439
38 | 0503447 | . 0.172824
_ . 4 . 0474162 .} 0.191323
200 1.99395 | 3.6 0.60923 0.035623
3.8 0.58397 .. 0.040523
4 0.55964 0.045545
300 1.96514 | 3.6 | 0.614313 ° 0.0275765
‘ 38| 0589596 -|*  0.0312792
‘ 4 0.56577 £ 0.0350863
t 400 1.9652] 3.6 0.619057 , 0.0200681
3.8 05948130 . 0.022708 .
4 0.57145 - 0.025399
500 1.96906 | 3.6 -|. 0617434 ,|. - 0.0226367
3.8 | 0.593142 |, 0.0254531
4 0.569742 0.0283111
[l 1
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Table(5.4):Confidence Bounds of the estimates at Confidence Level 95%
when v=0.7, p=0.8,a = 0.8, f = I5given n =0.4N and

ny=05N

; Standard Lower Upper

N Parameter | Estimates Devision Bound Bound
100 v 0.7355 0.050089 0.637325 0833675
P 0.860 0251488 | 0367288 1.35312

o 1.192 0.113629 | 0.968938 1.41436

B 23.30 4528 | 144312 32,181
200 v 0.7187 0.0467999 | 0.626951 | 0.810406
P 0.811 0.18532 0.447668 1.17412

o 0.898 0.112404 0.678112 1.11874

g 17.47 1,66748 10.2844 24.6609
300 v 0.7033 00429528 | 0.619017 0.787445
p 0.817 0.15442 0.513901 1.11923

o 0.388 0.111753 0.669523 1.10659

8 16.94 3.35284 10.3721 23.5152
400 ¥ 0.7086 0.0397509 | 0.630635 0.786458
p 0.811 0.135164 0.545328 1.07596

o 0.838 0.104163 0.632526 1.04084

B 16.02 2.89741 10,3382 21.69%

500 v 0.7054 0.0384209 | 0.630081 0.780691
p 0.816 0.122062 0.576507 105499

a 0.829 0102517 0.631984 1.03385

g 15.89 2.68803 10,6179 21.155

Table{5.5): The results of optimal design of the life test for different sized
samples under type-11 censoring in step-stress FALT given n) = 04N and

Ay =0.5N

= e » ! - LI L i — _
N | T | T2 1 | M2 MMl T n e
100 | 25.67 | 65642.6 | 0.32092] | 0,52092] | 32 | 52 | 12483 | 747.02 | 0.C00008
200 | 3534 | 68454 | 0.344726 | 0544726 | 6% | 109 | 17.163 | 20463 | 0.000002
300 | 25.19 6423 | 0349918 | 0549908 | 105 | 165 | 1E.738 | 4289.15 | 0.0000008
400 | 26,19 6617 | 0.350909 | 0.350909 | 140 | 220 | 18.506 | 482235 | 0.0000003 |
500 | 2608 6408 | 0352033 | 0.552933 | 176 | 276 | 18.666 | 536093 | 0.0000002 |
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