The Fertility Outcomes of Egyptian Buffalo Cows after Ovsynch and Presynch-Ovsynch Protocols | ||||
Journal of Applied Veterinary Sciences | ||||
Article 5, Volume 8, Issue 4, October 2023, Page 28-36 PDF (681.97 K) | ||||
Document Type: Original Article | ||||
DOI: 10.21608/javs.2023.218656.1246 | ||||
View on SCiNiTO | ||||
Authors | ||||
Mahmoud A. Othman; Amr S. Elshalofy ; Mostafa M. Abou-Ahmed; Abdel Raouf M. Ghallab | ||||
Theriogenology Department, Faculty of Veterinary Medicine, Cairo University, Giza 12211, Egypt | ||||
Abstract | ||||
The present study aimed to compare the reproductive outcomes after the blind application of the standard Ovsynch and Presynch Ovsynch protocols on Egyptian Buffaloes (Bubalus bubalis) during the breeding season. Fifty multiparous Egyptian buffalo cows of an unknown stage of the estrous cycle were randomly divided into two groups: 1) the standard Ovsynch protocol (first GnRH (G1) at d0, PGF2α at d7 , and second GnRH; G2 56 h later and 2) the pre-synch Ovsynch (G6G-Ovsynch) protocol (PGF2α and GnRH 2 days apart 6 days before starting G1 of the standard Ovsynch). Cows were subjected to timed artificial insemination (TAI) 16 and 40 h after the G2 injection in both groups. Blood sampling and ovarian transrectal ultrasonography were performed at three time points, PGF2α, G2, and 2 days after G2. Serum progesterone (P4) (ng/mL) concentrations were significantly higher in the G6G-Ovsynch group than in the Ovsynch group at the time of PGF2α and two days after the G2 injection, but they were lower (P ˂ 0.05) at the G2 injection. The Vascularity index of the corpus luteum (CL) and dominant follicle (DF) wall area (%) were higher (P ˂ 0.05) in the G6G-Ovsynch group compared to the Ovsynch group. The ovulatory response indicated by the presence of CL at d7 was significantly higher in G6G-Ovsynch than in Ovsynch (73 vs. 51%, respectively). Moreover, a higher (P ˂ 0.05) pregnancy rate was observed in G6G-Ovsynch than in the Ovsynch group. In conclusion, the blind application of the G6G-Ovsynch improved the ovulatory response in the early stages of the synchronization protocol and raised the pregnancy rates in Egyptian buffaloes. | ||||
Keywords | ||||
Buffalo; G6G-Ovsynch; Ovsynch; Ovulatory response; Pregnancy rate; Pre-synchronization | ||||
References | ||||
ACOSTA, T. J., YOSHIZWA, N., OHTANI, M., and MIYAMOTO, A., 2002. Local Changes in Blood Flow Within the Early and Midcycle Corpus Luteum after Prostaglandin F2α Injection in the Cow1. Biology of Reproduction,66(3), 651-658. https://doi.org/10.1095/biolreprod66.3.651 Ali, A., 2015. Seasonal variations of the ovarian activity and pregnancy rate in the Egyptian buffalo cows (Bubalus bubalis). Tropical animal health and production, 47(5), 815-818. https://doi.org/10.1007/s11250-015-0793-8 ALLAHYARI, I., GHARAGOZLOU, F., VOJGANI, M., POOLADZADEH, P., MOBEDI, E., and AKBARINEJAD, V., 2023. Replacement of the first GnRH by estradiol in the breeding Ovsynch of Double Ovsynch protocol could improve fertility in Holstein dairy cows. Animal Reproduction Science, 252, 107228. https://doi.org/10.1016/j.anireprosci.2023.107228 BARUSELLI, P., MUCCIOLO, R., VISINTIN, J., VIANA, W., ARRUDA, R., MADUREIRA, E., OLIVEIRA, C., and MOLERO-FILHO, J., 1997. Ovarian follicular dynamics during the estrous cycle in buffalo (Bubalus bubalis). Theriogenology, 47(8), 1531-1547. https://doi.org/10.1016/S0093-691X(97)00159-3 BARUSELLI, P. S., 2001. Control of follicular development applied to reproduction biotechnologies in buffalo. In: Proceedings of the I Congresso Nazionale sull’allevamento del Bufalo; 2001. BELLO, N. M., STEIBEL, J., and PURSLEY, J., 2006. Optimizing ovulation to first GnRH improved outcomes to each hormonal injection of Ovsynch in lactating dairy cows. Journal of dairy science, 89(9), 3413-3424. https://doi.org/10.3168/jds.S0022-0302(06)72378-5 BÓ, G. A., DE LA MATA, J. J., BARUSELLI, P. S., and MENCHACA, A., 2016. Alternative programs for synchronizing and resynchronizing ovulation in beef cattle. Theriogenology, 86(1), 388-396. https://doi.org/10.1016/j.theriogenology.2016.04.053 BRIDGES, G., and LAKE, S., 2011. Comparison of the CIDR Select and 5-day Select Synch+ CIDR protocols that included limited estrus detection and timed insemination for synchronizing estrus in beef heifers. The Professional Animal Scientist, 27(2), 141-146. https://doi.org/10.15232/S1080-7446(15)30461-7 CAMPANILE, G., VECCHIO, D., NEGLIA, G., DI PALO, R., PRANDI, A., and D'OCCHIO, M., 2008. Progesterone and pregnancy status of buffaloes treated with a GnRH agonist. Livestock science, 115(2-3), 242-248.https://doi.org/10.1016/j.livsci.2007.08.001 CARAVIELLO, D., WEIGEL, K., FRICKE, P., WILTBANK, M., FLORENT, M., COOK, N., NORDLUND, K., ZWALD, N., and RAWSON, C., 2006. Survey of management practices on reproductive performance of dairy cattle on large US commercial farms. Journal of dairy science, 89(12), 4723-4735. https://doi.org/10.3168/jds.S0022-0302(06)72522-X DE RENSIS, F., and LOPEZ-GATIUS, F., 2007. Protocols for synchronizing estrus and ovulation in buffalo (Bubalus bubalis): A review. Theriogenology, 67(2), 209-216. https://doi.org/10.1016/j.theriogenology.2006.09.039 DIRANDEH, E., ROODBARI, A. R., GHOLIZADEH, M., DELDAR, H., MASOUMI, R., KAZEMIFARD, M., and COLAZO, M., 2015. Administration of prostaglandin F2α 14 d before initiating a G6G or a G7G timed artificial insemination protocol increased circulating progesterone prior to artificial insemination and reduced pregnancy loss in multiparous Holstein cows. Journal of dairy science, 98(8), 5414-5421. https://doi.org/10.3168/jds.2015-9417 FAOSTAT, F., 2019. Food and agriculture data. Crop Statistics. Available online: http://www. fao. org/faostat (accessed on 14 August 2020). FRICKE, P. 2020. The evolution of fertility programs for lactating dairy cows. American Association of Bovine Practitioners Conference Proceedings (pp 104-112). https://doi.org/10.21423/aabppro20207979 GALVÃO, K., FEDERICO, P., DE VRIES, A., and SCHUENEMANN, G. M., 2013. Economic comparison of reproductive programs for dairy herds using estrus detection, timed artificial insemination, or a combination. Journal of dairy science, 96(4), 2681-2693. https://doi.org/10.3168/jds.2012-5982 HERZOG, K., BROCKHAN-LÜDEMANN, M., KASKE, M., BEINDORFF, N., PAUL, V., NIEMANN, H., and BOLLWEIN, H., 2010. Luteal blood flow is a more appropriate indicator for luteal function during the bovine estrous cycle than luteal size. Theriogenology, 73(5), 691-697. https://doi.org/10.1016/j.theriogenology.2009.11.016 JANSON, P., DAMBER, J.-E., and AXEN, C., 1981. Luteal blood flow and progesterone secretion in pseudopregnant rabbits. Reproduction, 63(2), 491-497.https://doi.org/10.1530/jrf.0.0630491 KHEDKAR, C., KHEDKAR, G., PATIL, M., and KALYANKAR, S., 2003. Encyclopedia of Food Sciences and nutrition(pp. 705-709). Maryland: Academic Press. In. LÓPEZ‐GATIUS, F., SANTOLARIA, P., YÁNIZ, J., GARBAYO, J., and HUNTER, R., 2004. Timing of early foetal loss for single and twin pregnancies in dairy cattle. Reproduction in Domestic Animals, 39(6), 429-433. https://doi.org/10.1111/j.1439-0531.2004.00533.x LOPEZ, H., SATTER, L., and WILTBANK, M., 2004. Relationship between level of milk production and estrous behavior of lactating dairy cows. Animal Reproduction Science, 81(3-4), 209-223. https://doi.org/10.1016/j.anireprosci.2003.10.009 LÜTTGENAU, J., and BOLLWEIN, H., 2014. Evaluation of bovine luteal blood flow by using color Doppler ultrasonography. Reproductive biology, 14(2), 103-109. https://doi.org/10.1016/j.repbio.2014.03.003 LÜTTGENAU, J., ULBRICH, S. E., BEINDORFF, N., HONNENS, A., HERZOG, K., and BOLLWEIN, H., 2011. Plasma progesterone concentrations in the mid-luteal phase are dependent on luteal size, but independent of luteal blood flow and gene expression in lactating dairy cows. Animal Reproduction Science, 125(1-4), 20-29. https://doi.org/10.1016/j.anireprosci.2011.02.002 MATTIOLI, M., BARBONI, B., TURRIANI, M., GALEATI, G., ZANNONI, A., CASTELLANI, G., BERARDINELLI, P., and SCAPOLO, P. A., 2001. Follicle activation involves vascular endothelial growth factor production and increased blood vessel extension. Biology of Reproduction, 65(4), 1014-1019. https://doi.org/10.1095/biolreprod65.4.1014 MOORE, S., SCULLY, S., BROWNE, J., FAIR, T., and BUTLER, S., 2014. Genetic merit for fertility traits in Holstein cows: V. Factors affecting circulating progesterone concentrations. Journal of dairy science, 97(9), 5543-5557. https://doi.org/10.3168/jds.2014-8133 NATIONAL RESEARCH COUNCIL (NRC), 2001. Nutrient requirements of dairy cattle. National Research, 319. NEGLIA, G., DE NICOLA, D., ESPOSITO, L., SALZANO, A., D’OCCHIO, M. J., and FATONE, G., 2020. Reproductive management in buffalo by artificial insemination. Theriogenology, 150, 166-172. https://doi.org/10.1016/j.theriogenology.2020.01.016 PERERA, B. 2008. Reproduction in domestic buffalo. Reproduction in Domestic Animals, 43, 200-206. https://doi.org/10.1111/j.1439-0531.2008.01162.x PERERA, B., 2011. Reproductive cycles of buffalo. Animal Reproduction Science, 124(3-4), 194-199. https://doi.org/10.1016/j.anireprosci.2010.08.022 PURSLEY, J., MEE, M., and WILTBANK, M., 1995. Synchronization of ovulation in dairy cows using PGF2α and GnRH. Theriogenology, 44(7), 915-923. https://doi.org/10.1016/0093-691X(95)00279-H RASTEGARNIA, A., NIASARI-NASLAJI, A., HOVARESHTI, P., SARHADDI, F., and SAFAEI, M., 2004. The effect of different doses of Gonadorelin on ovarian follicle dynamics in river buffalo (Bubalus bubalis). Theriogenology, 62(7), 1283-1291. https://doi.org/10.1016/j.theriogenology.2004.01.014 ROY, K., and PRAKASH, B., 2009. Changes in endocrine profiles during ovsynch and ovsynch plus norprolac treatment in Murrah buffalo heifers at hot summer season. Tropical animal health and production, 41(4), 677-687. https://doi.org/ 10.1007/s11250-008-9241-3 SARKAR, M., BORAH, B. D., and PRAKASH, B., 2009. Strategies to optimize reproductive efficiency by regulation of ovarian function in yak (Poephagus grunniens L.). Animal Reproduction Science, 113(1-4), 205-211. https://doi.org/10.1016/j.anireprosci.2008.07.005 SCHALLENBERGER, E., SCHAMS, D., BULLERMANN, B., and WALTERS, D.L., 1984. Pulsatile secretion of gonadotrophins, ovarian steroids and ovarian oxytocin during prostaglandin-induced regression of the corpus luteum in the cow. J Reprod Fertil, 71(2). https://doi.org/10.1530/jrf.0.0710493 SCULLY, S., EVANS, A. C., DUFFY, P., and CROWE, M. A., 2014. Characterization of follicle and CL development in beef heifers using high resolution three-dimensional ultrasonography. Theriogenology, 81(3), 407-418. https://doi.org/10.1016/j.theriogenology.2013.10.012 SHAH, K. B., TRIPATHY, S., SUGANTHI, H., and RUDRAIAH, M., 2014. Profiling of luteal transcriptome during prostaglandin F2-alpha treatment in buffalo cows: analysis of signaling pathways associated with luteolysis. PLoS One, 9(8), e104127. https://doi.org/10.1371/journal.pone.0104127 SHARIFUDDIN, W., and JAINUDEEN, M., 1983. The accuracy of rectal diagnosis of corpora lutea in water buffalo (Bubalus bubalis). Animal Reproduction Science, 6(3), 185-189. https://doi.org/10.1016/0378-4320(83)90036-2 SIDDIQUI, M., ALMAMUN, M., and GINTHER, O., 2009. Blood flow in the wall of the preovulatory follicle and its relationship to pregnancy establishment in heifers. Animal Reproduction Science, 113(1-4), 287-292. https://doi.org/10.1016/j.anireprosci.2008.07.008 SILVA, L., GASTAL, E., GASTAL, M., BEG, M., and GINTHER, O., 2018. Relationship between vascularity of the preovulatory follicle and establishment of pregnancy in mares. Animal Reproduction (AR), 3(3), 339-346. https://www.animal-reproduction.org/journal/animreprod/article/5b5a6080f7783717068b47cd SINGH, I., and BALHARA, A., 2016. New approaches in buffalo artificial insemination programs with special reference to India. Theriogenology, 86(1), 194-199. https://doi.org/10.1016/j.theriogenology.2016.04.031 SIQUEIRA, L. G. B., TORRES, C. A., AMORIM, L. S., SOUZA, E. D., CAMARGO, L. S. A., FERNANDES, C. A., and VIANA, J. H. M., 2009. Interrelationships among morphology, echotexture, and function of the bovine corpus luteum during the estrous cycle. Animal Reproduction Science, 115(1-4), 18-28. https://doi.org/10.1016/j.anireprosci.2008.11.009 TENHAGEN, B.-A., DRILLICH, M., SURHOLT, R., and HEUWIESER, W., 2004. Comparison of timed AI after synchronized ovulation to AI at estrus : Reproductive and economic considerations. Journal of dairy science, 87(1), 85-94. https://doi.org/10.3168/jds.S0022-0302(04)73145-8 VARUGHESE, E., BRAR, P., HONPARKHE, M., and GHUMAN, S., 2014. Correlation of blood flow of the preovulatory follicle to its diameter and endocrine profile in dairy buffalo. Reproduction in Domestic Animals, 49(1), 140-144. https://doi.org/10.1111/rda.12242 VASCONCELOS, J., SARTORI, R., OLIVEIRA, H., GUENTHER, J., and WILTBANK, M., 2001. Reduction in size of the ovulatory follicle reduces subsequent luteal size and pregnancy rate. Theriogenology, 56(2), 307-314. https://doi.org/10.1016/S0093-691X(01)00565-9 VRISMAN, D. P., BASTOS, N. M., ROSSI, G. F., RODRIGUES, N. N., BORGES, L. P. B., TAIRA, A. R., DE PAZ, C. C. P., DE PAULA NOGUEIRA, G., TEIXEIRA, P. P. M., and MONTEIRO, F. M., 2018. Corpus luteum dynamics after ovulation induction with or without previous exposure to progesterone in prepubertal Nellore heifers. Theriogenology, 106, 60-68. https://doi.org/10.1016/j.theriogenology.2017.10.018 WAQAS, M., MEHMOOD, M., SHAHZAD, Q., KAUSAR, R., SATTAR, A., and NASEER, Z., 2016. Comparative efficacy of G6G and Ovsynch protocols on synchronization and pregnancy rate in Nili–Ravi buffalo. Animal Reproduction Science, 166, 9-14. https://doi.org/10.1016/j.anireprosci.2015.12.006 YINDEE, M., TECHAKUMPHU, M., LOHACHIT, C., SIRIVAIDYAPONG, S., NA‐CHIANGMAI, A., RODRIGUEZ‐MARTINEZ, H., VAN DER WEYDEN, G., and COLENBRANDER, B., 2011. Follicular dynamics and oestrous detection in Thai postpartum swamp buffaloes (Bubalus bubalis). Reproduction in Domestic Animals, 46(1), e91-e96. https://doi.org/10.1111/j.1439-0531.2010.01647.x | ||||
Statistics Article View: 314 PDF Download: 538 |
||||