MAXIMUM LIKELIHOOD ESTIMATION AND OPTIMAL DESIGN
IN CONSTANT ACCELERATED LIFE TESTS FOR THE
GENERALIZED BURR DISTRIBUTION WITH TYPE-I
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The present paper deals with the case of Constant-Stress Fully Accelerated Life
Testing (CSFALT) when three stress levels are involved under mixture distributions
with type-] censoring where a pre-specified censoring time is involved. The
lifetimes of test are assumed to follow the Generalized Burr lifetime distribution.
Maximum Likelihood (ML) method is used to estimate the parameters of CSFALT
model. In addition, confidence intervals for the model parameters are constructed.
Optimum CSFALT plans, that determine the best choice of the proportion of test
units allocated to each stress, are developed. Such optimum test plans minimize the
Generalized Asymptotic Variance (GAV) of the ML estimators of the model
parameters. For illustration, numerical examples are given.

1-Introduction:

In many problems of life testing , the lifetime of a product or material
with high reliability requires an unacceptably long period of time to
acquire the test data at the specified use condition. So, life testing at
normal conditions makes the test impracticable. For this reason,
Accelerated Life Test (ALT) is the suitable and reasonable procedure -

to be applied. ALT is used to get quick information on the reliability of
product components and materials.
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In (ALT) the units are tested under conditions that are more severe than
the normal ones to induce failures of very high reliability systems in a
short time. The main reason for accelerated tests is to estimate quickly
information about a device under- accelerated conditions and the
information obtained from these tests is extrapolated, through a
physically reasonable statistical model, to obtain information at normal
conditions. This model is usually derived from an analysis of the
physical mechanisms of failure of the device under test. It is assumed
that changing the stress from one level to another affects the value of
the parameters only and not the functional form of the lifetime
distribution, this is a major assumption of ALT.

Several models are available in the literature concerning the
relationship between certain parameters of the life time distribution and
the stress levels at which the experiment is conducted. The power rule

model is the most widely used model as an acceleration function.

The current approach to the problem of ALT involves building a
model that consists of:

o A life distribution f(r,) that represents the time to failure of an
item at risk where @ is a victor of unknown parameters.

e A functional relationship ,0= g(g, _o_t),where ais a vector of
unknowns and s denotes the vector of stresses. It is assumed that
changing s affects the value of & only and not the functional form '
of £(,6) . ' '

There are different models showing how the stress s is affecting
the failure distribution. Among these models, the most famous ones are

the inverse power law, the Arrhenius, the Erying relationships and the
log linear relationship.

The Inverse Power Law:
This model is mostly used for flash lamps and simple fatigue dueto
mechanical loading. This relation is given by :

’ 9=V/Sp,
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where @ is a parameter of life distribution, s is the applied stress,
v is the constant of proportionality and p is the power of the

applied stress, wherevand p are the parameters to be estimated.

Accelerated life testing results are used in the reliability-design
process to assess or demonstrate component and subsystem reliability
and detect failure models. The causes of failure of a product are
accelerated by increasing the applied stress above its usual value, There
are two different methods of accelerating a reliability test: Increasing
the use-rate of the product or increasing the aging-rate of the product
(overstress testing).

As Nelson (1990) @) indicates, the stress can be applied in various.
ways, commonly used methods are constant stress, step stress and
progressive stress level. These kinds of stresses would induce early
failures of the tested units.

In a constant stress accelerated test, each unit in the experiment is
run under a prespecified constant stress level. A sample size of r units is
divided into k groups, n j» j=12,......k, where pn j units are all run

k
under a constant stress c and n= ), n j It is assumed that
j=1
c1<¢z <iirenen <Ck-
The acceleration medel which is a relationship between stress and
one or more parameters of the lifetime distribution must be chosen.

Life testing is the case where items taken from a population are put
to test and their times to failure are noted. The case which implies
observing the lifetime of all the items is called uncensored data, but
such situation rarely happens in reliability testing. Then for the limited
time or budget, the test must be terminated before the failure of all
items. In life testing, the experiment is terminated by two common
types of data censoring .The observations of the censored sample occur
in an ordered manner. The most common life test experiments are:
Testing is terminated after a prespecified number of failure r have
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occurred from all items of test #, where #<n, in this case the number of
failures 7 is a fixed constant and time ¢ is the random variable (type I1
censoring), or testing is terminated when all the items have failed orat a
predetermined time t, whichever is sooner, in this case the number of
failure 7 is the random variable and the time ¢ is a fixed constant (type I
censoring).

One method of constructing a new distribution is to use the known
parametric form of a distribution and allow one (or more) of the
parameters to vary according to a special probability law. The new
distribution is called a Mixture of distribution. This theory has useful
applications in industrial reliability and medical survivorship analysis.

If f (tiﬁ)is a probability density function depending oﬁ am
dimensional parameter vector gand if G(Q) is called a m-dimensional
cumulative distribution function, then :

@) = [£(18 )g(8) is called a mixture density, and g(8 )
. 8 :

called the mixing distribution ®).

Dubey (1968) ®)  obtained a (generalized Burr) distribution by
mixing the Weibull distribution in the form

7(p.0)=¢6 t‘ﬁﬁle'etgj , >0, 4,0>0,
over the Gamma distribution in the form :
v 4
g(ala:ﬁ)=—ﬂ—9aﬂle—ﬁg, 8>0,a,f>0

I'f(e)

The resulting probability density function (pdf) has the following
form:
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flee, 5.0) - t>0, o, f>0,

which is a generalized Burr distribution with three paraméter (a, B, ¢) .

The distribution function is:

Flla, 8.9) ¥1-[1+ﬁ]_a, >0,
| B

The reliability function has the following form:

Rltle. .9) =[1+ﬂ.] ; . t>0.
B
and the hazard rate function is
#-1
nty=2L_ (>0,
ﬁ+t"5

It was stated by Lewis (1981)® that many standard theoretical
distributions, such as exponential, Weibull; logistic, normal , and Pareto
are special cases or limiting cases of the Burr system of distributions.
This can be investigated as follows: '

o ¢—i ' . '
1- f{de. B.8)= %’—j . Generalized Burr distribution (e, 5,¢).
| (p+s#f '
If ¢ =1

. (21
Then f({fe, ﬂ)=@—°f?3,

Whibh is Pareto distribution (a, ﬂ)
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B+t¢ ﬁ+r¢
g-1 p %
_apt 1+
B+t? B
let 0=2,
B
then

[#4
W T
i

o

+

1.7
0 «

'
if @, 8 — 0, itisknown that e= [jn (1+—1-] .
. = {

Then Jim fla.B.8)=46 # ¢ which is Weibull distribution

o—>0

.6).
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3-let g=1

Then f (t|9) =geY", Exponential distribution (9).

The hazard function is considered in the choice of the distribution
for survival or reliability data. The shape of the hazard function
reflects type of risk to which the population under study is exposed as
a function of time.

As Abd EL Wahab (2001)® indicated, the Burr type XII

barb

distribution {Burr (b,l)} where Aft)= 5 Jor finite A and if O
1+¢

<b £ 1 the hazard function decreases with increasing t and ultimately
approaches zero. For b >1 the hazard function, h(t), has an inverse u-

shape. The hazard rate initially increases , attains a maximum at
|
(= (&- 1)/[; and then decreases to zero as f —> 0.

The outline of the paper is as follows. Beside this introductory
section, the paper incloude five section. Section 2 deals with the
derivation of the maximum likelihood estimators of the Generalized
Burr distribution. The confidence limits of the parameters are
presented in section 3. Section 4 studies the optimum constant-stress
test plans of the fully accelerated life testing (FALT). For illustration,
simulation studies are given in section 5.

2- Maximum Likelihood Method:

Maximum Likelihood method has been widely considered as one of
the most reliable ways to estimate the parameters of distribution. The
ML method is commonly used for most kinds of censored data and the
analysis of accelerated life tests.

The methodology is to perform & independent life tests at k values
of stresses ¢. After observing the failure times at each siress level; the
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likelihood of the model parameters is formulated in terms of the data
from all the £ trials.

Once the MLE of the model parameters are obtained, the value of
the scale parameter of pgeneralized Burr distribution under usual
condition is observed. The reliability function is estimated at a normal
stress level ¢,, .

The ML methods are mostly used for most theoretical models and
different types of censored data. MLE have suitable statistical
characteristics. Although .the exact sampling distribution of MLE are
sometimes not determined, it is known that under appropriate
regularity conditions, MLE are consistent and asymptotically normally
distributed. Also, MLE have the invariance property. This property is
helpful for estimating model’s parameters and measurements. As an
example of such measurements is the reliability function at a certain
mission time.

Unfortunately, the MLE do not always exist in closed form and
therefore, numerical techniques are used to compute estimates. The
Newton —Raphson procedure is regarded as one of the most efficient
numerical techniques so it is widely used.

There is a large amount of literature applying ML on estimation
under Accelerated Life Testing for its massive applications in different

fields. In the case of constant stress, Singpurwalla (1'971)(5) has
obtained a ML estimator of the mean life time of exponential
distribution considering the inverse power law model.

A numerical scheme for solving ML equations was given by

McCool (1980) @) assuming that the Weibull scale parameter varies
inversely witha stress variable.

Abdel-Ghaly (1981)(8) has generalized the work of Singpurwalla

(1971)@for the case of the Weibull distribution with known shape
parameter.

12
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The MLE of aWeibull regression mode! under type-I censoring

were ‘derived by Bugaighis (1990) 1), Moreover, bias and mean
square error of the parameters are reported.

Using the generalized Burr distribution, the problems of both
maximum likelihood estimation and optimal design for constant-stress

FALT were studied by Abdel-Ghaly, et al. (2007) an using type II
censoring.

In accelerated testing, experiments are usually terminated before
all units fails. Censored data reduce test time and expense. Failure-
censored data (type-II) are usually used in the theoretical literature but
Time-censored data (type-I) are common in practice.

~ 2.1 Maximum Likelihood Estimation With Type-I Censoring:

Let the life time experiment is assumed under k levels of high stresses
cjs J=12, vk and assume that ¢, is the normal use condition such

that ¢, < ¢cy<cp<en < ¢y, and there are g j units are put on test at
each ¢ jJ=1,2....,k. When a type-] censoring is applied at each stress
level, the lifetime at stress cjs b i=1L2, ... A j=1,2,..... Lk, are

assumed to be realizations from generalized Burr distribution with the
density function.

ap®s;t’
. = /)
f(ty: a!ﬁl¢j) ¢ a+l’
J
(ﬁ*’ Ly J .
rij>0,ﬂ,a,¢>0 Jj=1,2,.. k,andi=1,.... Ny ' 2.1
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It is assumed that the stress ¢ ; affects only on the scale parameter
of the generalized Burr distribution ¢; through a certain acceleration

model. The accelerated model is the model relating one parameter to
the stress levels applied to the items being tested. Selection of this
model is the most serious difficulty. This model should be physically
reasonable for the particular item or product being tested and the kind
of stress being applied to accelerated failures.

The inverse power law model suggested by Singpurwalla

(1971)12) will be considered. This model is widely used for electrical
insulation in voltage-endurance tests, flash lamps and simple metal
fatigue due to mechanical loading, It-assumes the following relation:

¢J-=vsj,-D ,J=1,2,... ...k (2.2)

Where v is the constant of proportionality and p is the power of
applied stress are the parameters of this model such that

* k ‘
o . nj .
g:=5 e =11 cbJ b i=—2— v>0,p>0.
T | Ik
¢ e 5 a,
j=1

Applying type-1 censoring at each stress level, the experiment
once all the items fail or when a fixed censoring time 7, ; is reached.

Then the corresponding likelihood function is expressed as
follows:

14
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where § ;; is an indicator variable such that:
1 for ti <L j
5ij= for all i=1,.......,nj,j=1, ........ k.

0 Jor ty>L;
(2.4)
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It is well known that the ML estimator of v,p, B and care
obtained by maximizing the logarithm of likelthood function, which
can be written in the form:

lnL(v,p,ﬂ,ak):InaZZé}j+lnv225ij+p226,-jlnsj
F Ji Ji

(vsp 1)25 Int; 5 ln[ﬁﬂy 1+alnﬂzz
p

—aZZé‘Uln[ﬁH;sJ J+aZZ(1—5,j)lnﬂ
ji Ji

—aZZ(l—c?ﬁ)ln[ﬁ+L;Sf } . | @5

The derivatives of the logarithm of likelihood function with respect
to v, p, B and « respectively are given by:
' ) p
5%

v
Py 7
L _ 1 Sity~ Ity
. =_Zzaﬁ+zsfz5 Inty - zza,, ! >
v_] ' o J vsj
B+t
vsf vif
st Int s¥L;) InL;
a3 Y 6521 Vg (1—5..)1—1——’.
ZZ vsf ?Z:: s "S}J
B+t B+Lj
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Therefore the MLE may be found by setting (2.6), (2.7), (2.8) and
(2.9) equal to zero. As shown they are nonlinear equations, their
solutions are numerically obtained by using Newton-Raphson method
as will be seen later. They are solved numerically to obtain v, p, 8, ¢.

The asymptotic variance-covariance matrix of the estimators of
v, p, B, is obtained depending on the inverse fisher information matrix

using the second derivatives of the logarithm of likelihood function
where:

52]"[‘ z{zns )zspza Int
vl [ W v i
[ﬁ-l—tyj ](vlntijlnsj) sfv.sj-’t;-" Ins;Int;+t; i sf lnsj:l |:vlnt lmjs }Z
~(1+a)3 3 57 >
S (oY -
ﬂ+t,.jf ﬁ+t,jf
\

sp 4 vs s
[[)’-I—I; ](vlnL lnsj)[sfvsf j-’ Ins;inL; +L; / sp Ins; ] |:vlnLjInsjsj?I;-J }

Ji s

(2.10)
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‘-’1“-1-Jr Int;
2+aZZI
Vs J 1
ﬁ‘l”ij

The asymptotic Fisher-Information matrix can be written as

follows:

(02mL 2L #*inL & InL]
o2  ovop ovoa  OvOp
2l Il il dInL

P optv  gp*  Opda  Opdp
Il Il 8*inl inL
dadv  dadp  pg?  Oadp
?inL 'L L & InL
| opov  opp  opoa op?

(2.20)

The MLE ¥, p,& and A have an asymptotic variance-covariance

matrix defined by inverting the above information matrix.

Practically, it is difficult to use results obtained at accelerated *
conditions to make prediction about the product performance over
time at the use or design conditions. When making prediction from an
ALT, one must make strong assumptions about the adequacy of the
ALT process to describe the use process. Selection of the accelerated
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model is the most+ important difficulty. This model relates one or
morc parameter(s) to the stress levels that are to be applied to the
testing items, it should be physically suitable for the item or product
being tested and the type of stress being applied to accelerate failures

(13)

The inverse power law model, which is the most commonly used in
practice, is considered.

To predict the value of the scale parameter ¢, ,under stress ¢, ,
the invariance property of MLE is used. The MLE of the scale
parameter of Generalized Bur distribution, ;5“ can be derived by
using the following equation:

b, =sE, 2:21)
where
Sy = C*/cu .

Furthermore, the MLE of the reliability function under usual conditions,

J -a
R,(t0)= 1+% : (2.22)

In section 5, the scale parameter and the reliability function at
different mission times are predicted under design stress v, = 0.5.

3- The Confidence Limits of MLEs:

The maximum likelihood method provides a single point estimate fora
population value. A confidence interval indicates the uncertainty in an
estimate calculated from sample data, it encloses the population value
with a specified high probability. Confidence intervals indicates how
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precise or imprecise estimates are where they reflect the random
scatter in the data. The length of such an interval indicates if that
corresponding estimates is accurate enough for practical purposes.
Confidence intervals are generally wider than inexperienced data
analysts expect; so confidence intervals help one avoid thinking that

estimates are closer to the true value than they really are (14) .

As indicated by Vander Wiel and Meeker (1990) (15), the most
common method to set confidence bounds for the parameters is to use
the large-sample (asymptotic) normal distribution of the ML
estimators.

To define a confidence interval for a population value @
suppose

Ws= w*(yl, ............ ,yn) and  ee= a),,,,(yl, ............ ,yn) are

pm(ah SQSwn)=y,

where the interval [a;,,. ,a),.,,,,J is called a two sided 100y % confidence
interval for @ , where ,and ges are the random lower and upper
confidence limits that enclose @ with probability y . '

For large sample size, the maximum likelihood estimates under
appropriate regularity conditions, are consistent and asymptotically
normally distributed. Therefore, the two-sided approximate 100y %
confidence limits for the maximum likelihood estimate & of a
population value @ can be obtained by :

g2

p[_zsaz(i) SZ};,/, 6D
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[100(1-3/)}”"

where z is the 2 standard normal percentile. Therefore, the
two-sided approximate /00y % confidence limits for v, p,a, f will be
respectively, as follows:

L,=9—z0( - U, =9+z0()
L,=p-zo(p) , U ,=bp+z0(p) (3:2)
L, =6-z20(d) . Ug=t+zol@
Lp=h-20() , Up=h+aold)

4-Optimum Constant-stress Test Plans:

Most of the test plans are equally-spaced test stresses i.e. the same
numbers of test units are allocated to each level of stress. Such type-of
test plans are usually inefficient for estimating the mean life at design

stress (Yang,1994) (6

The optimum test plan’ for products having a generalized Burr
lifetime distribution is derived in which the choice of the allocation to
cach stress will be investigated such that the GAV of the MLE of the
model parameters at use stress is minimized.

Generalized Asymptotic Variance of the Model Parameters: {an
optimality criterion) '

The GAV of the MLE of the mode! parameters is the reciprocal of the
determinant of the Fisher information matrix denoted by I (Bai, e/ al.,

1993)47). That is:

(4.1)

Gav(p, p.a B)=l"
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Thus, minimization of the GAV is equivalent to maximization of
the determinant of /. The Newton-Raphson method is applied to
determine numerically the best choice of the censoring time at each
level of stress which minimizes the GAV as defined previously.

Accordingly, the corresponding optimal censoring time at cach level of
stress can be obtained.

From equation (2.20)

—ajy; -dpy -a13 -4y4
I = —apy -ayz -4z -4y
—day3 ~-dp3 -433 -d3y
—apy -dyq -A34-944

(4.2)

then
1= - ayganady - ariadseu
=\a; 1422033044 — Q1 ]A22034 — 011033044 + 11423034424
2 ) ( 2 2 2
+ayaz4ay3034 — a1 A24a33 ) —\d12033944 — 412834
—Qyp03073044 812023034014 +012824913934 = 012024033014)
' 2
+ (013a12023044 —ajp3a)a34an4 —ay3a2044 T 13072334414
2 2 (
+aj3a34—a;3a24G23814 |—\01412023934 ajqap2a33a24
- 2.2
— Q407013034 +A14A220330]4 + 314323913924 — 14973 ) 4.3)

So, by setting the following equations equal to zero, [ ;,

j=1,23 can be optimally determined by solving them simultaneously
and applying the Newton-Raphson method:
o\l
L,j =1,2,3. (4.4)
oL j
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5.Numerical Results of Simulation Studies:

The main aim of this section is to make a numerical investigation to
illustrate the theoretical results of both estimation and optimal design
problems. Several data sets are generated from Generalized Burr distribution
for a combination of the true parameter values of v, p,& and fand for .

sample sizes 100,200,300,400 and 500 using 500 replications for each
sample size. It is assumed that =3 i.e. there are only three different levels of
stress ¢y =1,c=1.5,¢3=2 ,which are higher than the stress at use

condition; ¢, =0.5 Numbers of test units are allocated to each level of
stress (#, j=123) follow the sub sample-proportions 77 ;, j=123,

wherep;=0.5, ;=03 ﬂ3=(1"'(ﬂ'1+7[2)), the pre-specified
censoring times are [,=185,[,=2000and [3=12000 ; (Type-l
- censoring).

The true parameter values of v, p,a, 8 used in this simulation study are
(0.6,0.9,1.6,30) to generate (t,-j,i=1,..- ....... ,nj,j=1,2,3). Computer
programs are derived depending on Mathematica 5.0 using the iterative
technique of Newton-Raphson method to solve the derived nonlinear
logarithmic  likelihood  equations in  (2.5),2.6)27) and (2.8)

simultaneously.
Once the values of v, p, # and ¢ are obtained, these estimators are used

to obtain; depending on equation (2.21 ) and letting the design stress,
¢y =0.5, the scale parameter under this stress, ¢,, is predicted as

qﬁu =7 s{;’ where s, = ¢ /cu . Also, the reliability function is predicted for
different values of mission times under use condition using (2.22).

Evaluating the performance of the estimators of v, p,a, S has been
considered through some measurements of accuracy. In order to study the
precision and variation of maximum likelihood estimators, it is convenient
to use, firstly, the mean relative absolute bias (MRA Bias); which is the
mean of absolute difference between the estimated parameter and its true
value divided by its true value. The second one is the relative absolute
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bias (RA Bias); which is the absolute differerice between the estimated
parameter and its true value divided by its true value. The third one is the
mean square error (MSE); which is the mean of the square difference
between the estimated parameter and its true value. Also the relative error
(RE of the estimator); which is the square root of the MSE of the estlmator
d1v1ded by its true value.

Table (1) demonstrates the average number of units failed at each
level of stress; 7|,7,and 75 .Also Table(l) summarizes the results of

solving the ML equations of v, p, # « in type I censoring for different
sample sizes with their MRA Bias, RA Bias, MSE and RE. The numerical
results indicate that the ML approximate the true values of the parameters
as the sample size increases. Also, as shown in the numerical results the
MRA Bias, the RA Bias the MSE and the RE are decreasing when the
sample size is increasing.

Table (2) shows the asymptotic variance-covariance matrix for the
same different sample sizes. As shown in the table, the asymptotic variances
of the estimators are decreasing as n is getting to be large.

Table (3) presents the predicted values of the scale parameter and the
reliability function. In general it is known that the reliability decreases when
the mission time (¢;) increases. The results show that reliability reduces

when the mission time increases from 3.6 to 4 . Therefore, the results get
better in the sense that the aim of an ALT experiments is to get large
number of failures (reduce the reliability) of the device of high reliability.
Also the same table shows that the relative absolute bias RA Bias (the
absolute difference between the predicted reliability function and its true
value divided by its true value) is reducing when the sample size is
getting to be large. :

- To obtain the confidence intervals for the four parameters
v, p, B anda , the equations (3.2) are used for each parameter, five different

sized samples of n=100(100)50b are considered with parameters v=0.6,
p=09, a=16 and F=30. Table (4) demonstrates the two-sided
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confidence limits with confidence level 95% of the parameters. As shown
from the results, the interval of the estimator is getting to be narrow as the
sample size increases. '

Optimum test plans are developed numerically, it can be observed -
from the numerical results presented in Table (5), that the optimum test -
plans do not specify the same censoring time to each stress. Also table (5)
includes the optimal censoring time of each level of stress for the
: c_onsidered different sized samples represented by Lr , LZ and L;

which minimize the GAV of the MLE of the model parameters. As
indicated from the results, the optimal GAV of the MLE of the model -
parameters is decreased as the sample size » is increasing. Also, the
corresponding optimal average number of units failed at each level of stress;

FI , F; and F; , respectively, are presented in this table.
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Table(1): The Estimates, MRA Bias, RA Bias, MSE, RE of the
Parameters v=0.6, p=0.9,a = 1.6, f = 30 for Different Sample

Size

n | 7y | 75 | 73| Estimates “gﬁ‘:‘ RAB | MSE | RE

100 | 40 | 24 | 15 | $=061061 | 0.115427 | 0.0176675 | 0.0090156 | 0.155504
5=0.87909 0.14785 | 0.0232342 | 0.0277703 | 0.189565
AR 1.24341 1.0528 224422 | 144234,
05=3-28447 1.1344 | 1.01125 | 4566.47 | 1.11996
[=60.3374 ‘

200 | 80 | 49 | 31 | $=0.50550 | 0.084315 | 0.0093125 | 0.0045704 | 0.111634
p=0.ss8s7 | 0096839 | 0.0126951 | 0.0121487 | 0.124043
- 0.586244 | 0.414761 | 2.07248 | 0.635978
@ =226362 | 0557829 | 0.428765 | 589.843 | 0.566612
S =42.863

300 [ 121 | 73 | 46 | $=0.606024 | 0.0759871 | 0.0100401 | 0.0034325 | 0.0966753
5 =0.89489 0.0846725 | 0.0056757 | 0.0093151 | 0. 107851
e 0.46873 | 0275506 | 1.2174 | 0.540648
@ =2.04081 | 0438146 | 0.287185 | 362.247 | 0.492879
[ =38.6156

400 [ 160 | 97 | 62 | $=0.603205 | 0.0682417 | 0.0053409 | 0.0028660 | 0.0887509
p—0.89345 | 0:0735566 | 0.0072751 | 0.0077635 0.0986184
A 0433795 | 0.257245 12026 | 0.545156
ff=2-01159 0387257 | 0.247558 | 360.874 | 0.507570
B =37.4267

500 | 200 { 122 | 77 | $=0.601554 | 0.0610528 | 0.0025901 | 0.0021315 | 0.076749
5=0.88825 0.0663584 | 0.0130584 | 0.0057230 | 0.0851687
e 0355289 | 0.188529 | 0.667454 | 0.429617
05=1-90164 0319755 | 0.180714 | 187.195 | 0.386262
F=35.4214

30

VoY




Table(2): Asymptotic Variances and Covariances of Estimates for

Different Samples Size of the Parameters

v=0.6, p=0.9 0 = 1.6, § = 30 Using Type-I Censoring

n Variance-Covarianc Matrix
v P a B
100 0.0012647 -0.0000418 -0.0018824 0.139304
~0.0000418 0.0233747 —0.0007417 -0.018308
-0.0018824 -0.0007417 0.0975838 2.26091
0.139304 -0.018308 2.26091 . - 107.422
200 0.000916 -0.0000407 -0.0021869 0.0847654
-0.0000407 0.0123173 -0.0001817 -0.0092713
-0.0021869 -0.0001817 0.085435 1.86178
0.0847654 -0.0092713 1.86178 73.6862
300 0.00068928 -0.00002084 -0.00194728 0.0510573
-0.00002084 0.00843148 -0.00024963 -0.0085341
-0.00194728 -0.00024963 0.0654723 1.40466
0.0510573 -0.0085341 1.40466 51.5389
400 0.00056689 -0.00001166 -0.00195202 0.0339775
-0.00001166 0.00636904 -0.00020653 - -0.00612068
-0.00195202 -0.00020653 0.0596891 1.24747
0.0339775 -0.00612068 1.24747 42.9935
500 0.60050886 -0.00000724 -0,00211494 0.0212025
-0.00000724 0.00533451 -0.00019042 -0.00541578
-0.00211494 -0.00019042 0.0586785 1.17434
0.0212025 -0.00541578 1.17434 37.2923
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Table(3): The Estimated Scale Parameter and Reliability Under
Use Condition at Different Samples Size When
v=006,p=09a=16and f=30

n ¢” to R, (to) Relative Bias

100 141174 3.6 0.723812 0.0188026
3.8 0.711647 0.0211551
4 0.694646 0.023662

200 1.41287 3.6 0.735624 0.00424657
3.8 | 0.723308 0.005115

4 0.707165 0.00606656

300 1.42243 36 0.738474 0.00579526

' 38 0.722117 0.00675373

4 0.705944 0.00778216

400 1.41387 3.6 0.737479 0.007134338

3.8 0.727027 0.00801894

4 0.705106 0.0089599

500 1.40302 3.6 0.741508 0.00170966

3.8 0.725602 - 0.00196072

4 0.709885 0.00224339
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Table(4):Confidence Bounds of the Estimates at Confidence Level
95% Whenv=06,p=09a=1.6and f =30

Voo

a [parameter | Bsimas | Sonied | Lover | oo

100 v 0.610601 0.0355623 0.540898 0.680303

p 0.879089 0.152888 0.579429 1.17875

(4 3.28447 0.312384 2.6722 3.89675

i 60.3374 10.3644 40.0231 80.6517

200 v 0.605587 0.030266 0.546266 0.664909
1 P 0.888574 0.110983 0.671047 1.1061
a 2.26362 0.292293 1.69072 2.83651

ﬁ 42.863 8.58407 26.0382 59.6877

300 v 0.606024 0.0262541 0.554566 0.657482
r 0.894392 0.0918231 0.714919 1.07487

o 2.04081 0.255876 1.53929 2.54233

ﬁ 38.6156 7.17906 24.5446 52.6865

400 v 0.603205 0.0238095 0.556538 0.649871
P 0.893452 0.0798062 0.737032 1.04987

o 2.0115%9 0.244313 1.53274 2.49045

ﬁ 374267 6.55695 24,5751 50.2784

500 vy 0.601554 0.0225579 0.557341 0.645767
r 0.888247 0.0730377 0.745093 " 1.0314

a 1.90164 0.242237 1.42686 2.37643

'6' 354214 6.10674 23.4522 47.3906
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Table(5):The Results of Optimal ]jesign of the Life Test for
Different Sized Samples Under Type-I Censoring in Constant-
Stress FALT Given [, =185, J,,=2000 and [ ,=12000

— — — x * * * * *

n | 71| Fa | P3| I L Ly | F1 |72 |F3| GAV

100 ] 40 | 24 | 15 | 25241 | 886.43 185395 [ 42 21 | 19 | 0.000076

200 | B0 | 49 131 | 141.30 [ 1007.58 | 344323 | 76 44 | 34 | 0.000012

300121 ) 73 |46 | 128.07 | 841.02 | 261833 | 11l | 64 | 50 | 0.000003

400 [ 160 | 97 | 62 | 12235 | 84125 | 20139.9 | 146 | 85 | 65 | 0.000001

500 ) 200 | 122 | 77 [ 11571 | 820.84 | 16845.8 | 180 | 106 | 80 | 0.0000006
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