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1. Introduction

For modelling the fatigue life of a metal, subject to cyclic stress, Birnbaum and Saunders introduced
a two-parameter lifetime distribution in 1969; see Birnbaum and Saunders [1]. It is named after Z. W.
Birnbaum and S. C. Saunders. This distribution was initially introduced to model failures due to cracks
in the buildings. The BS distribution is unimodal, asymmetric, and has two parameters that modify its
shape and scale. The BS distribution is closed under scalar multiplication and under reciprocation;
its median coincides with the BS scale parameter; it has different shapes for its probability density
function (PDF), which cover high, medium, and low asymmetry levels [29].

After its inception in physics of materials and engineering, the BS distribution has been widely stud-
ied from theoretical and methodological perspectives, and has received special attention in view of its
wide-range applications in many areas of research in applied sciences, such as engineering science,
earth science, environmental science, medical science, material fatigue and reliability studies, among
others. Bhattacharyya et. al. [28], established that a BS distribution can be obtained as an approxima-
tion of an inverse Gaussian (IG) distribution. Desmond [30] examined that a BS distribution can be
viewed as a mixture of an IG distribution and its reciprocal. Further developments continued with the
contributions of many authors and researchers. See, for example, Johnson et al. [2], Athayde et al. [3],
Leiva [4], and Balakrishnan and Kundu [5].

It appears from the literature that despite extensive work already done on the two-parameter
Birnbaum-Saunders distribution, not much attention has been paid to the three-parameter Birnbaum-
Saunders distribution. Motivated by this fact, the objective of this paper is to study a three-parameter
Birnbaum-Saunders distribution, its distributional properties, applications, characterizations and draw
some inferences on it.

The paper divides the work into the following sections: In Section 2, we give a description of the
Birnbaum-Saunders three-parameter distribution, BS (3P). Several new distributional properties are
given in Section 3. The computations of percentage points are provided in Section 4. Some charac-
terizations are given in Section 5. The estimation of the parameters and some real lifetime data to
show the applications of Birnbaum-Saunders distribution are discussed in Section 6. The concluding
remarks are enumerated in Section 7. An appendix defining and explaining the necessary terms from
the statistical literature, and important abbreviation, used in the article, is given at the end of the article.

2. Birnbaum-Saunders Distribution with Three Parameters, BS (3P)

Using the two-parameter Birnbaum and Saunders distribution, BS (2P) [1], we shall derive a three-
parameter Birnbaum and Saunders distribution, BS (3P). Let us consider that a positive continuous
random variable X ∼ BS (α, β), where α, β are parameters of BS(2P). Consider another positive con-
tinuous random variable Y , such that Y = X+λ, where 0≤λ< x. So, Y = G(X). We are interested in
finding the distribution of Y . In this context, we use the method of direct transformation of random
variables. In this method, we first find the CDF, and then PDF of Y . FY(y) = 0 if y < 0. If Y≥0, then
P[Y≤y] = P[X+λ≤Y] = P[X≤Y−λ], thus the CDF of Y is defined by (2.1).
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(2.1)

Since the PDF, FY(y), of Y is given by FY(y) =F
′

Y(y), therefore by the first fundamental theorem of
integral calculus (see APPENDIX ), the PDF of Y is given by
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where y > 0, λ ≥ 0, α > 0, β > 0. We can also express above PDF, FY(y), in terms of standard
normal PDF Φ (.)as follows:

fY (y;α, β, λ) =
1
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(2.2)
We see that the PDF of BS (α, β, λ) given by Equation (2.2) is the right-shift of the PDF of Y given

by Equation (2.2); see Munir et al [8].
Now we first find the PDF of Y , then its CDF. The PDF of Y = X+λ is defined by

fY (y) = fX (x)
dx
dy
= fX (y − λ) ,

which again results in Equation (2.2).
By integrating Equation (2.2) from∞ to y−λ, we get the CDF of the BS (α, β, λ) which again results

in Equation (2.2).
We have concluded that Y has three-parameter Birnbaum-Saunders distribution i.e., Y ∼

BS (α, β, λ). α is the shape, β is the scale and λ is the location/shift parameter.
PDF of BS (α, β, λ) tends to 0 when Y→0 as well as when Y→∞. the PDF is unimodal for all values

of α, β and λ. The graphs of the pdf of BS (α, β, λ) are drawn for different values of α, β and λ in
Figure 1. The BS(3P) is important as it is characterized by three parameter α, β and λ. The first two
α, and β are the same as defined in Birnbaum-Saunders two parameter distribution, whereas the third
one λ, called the location parameter, denots the right shift of the PDF which enlarges the scope of the
application of the BS(α,β,λ).

The effects of parameter values on the PDF of BS (α, β, λ) distribution are easily seen from Figure 1.
The BS (α, β, λ) distribution can have an upside-down bathtub probability density function depending
on the values of its parameters.

We know that if X ∼ BS (α, β), then Z = 1
α

(√
X
β
−

√
β

X

)
∼ N(0, 1). From this relation, we get
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Figure 1. The PDF of BS (α, β, λ) for Different Values of Parameters
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has BS (α, β). Now, if 0 <λ≤X, then

Y = X + λ

= β
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From this relation, we conclude that Y ∼ BS (α, β, λ). The graph of the BS(3P) for different values of
the location parameter λ is given in Figure 1. Now, since

FY(y;α, β, λ) = P
[
Y ≤ y

]
= P

Z ≤ 1
α


√

y − λ
β
−

√
β

y − λ


 , (2.5)

which coincides with the CDF given in Equation (2.1). Thus

FY(y;α, β, λ) = Φ(
1
α
ξ(

x − λ
β

)), (2.6)

where ξ(y) =Y
1
2−Y−

1
2= sinh(log(y)). Also Φ(z) =

∫ z

−∞
ϕ(u)du, z∈R. BS(3P) is positively skewed

(asymmetry to right), unimodal, and continuous as is depicted in Figure 1.
Now we define the quantile function or q × 100th quantile function of BS(3P).
Definition 3 We define the quantile function of Y ∼ BS(3P), which is an indicator in the statistical

analysis, as follows [4]:

tY(q;α, β, λ) = F−1
Y (y;α, β, λ), (2.7)

where FY(y;α, β, λ) is the CDF of Y, respectively given by Equation (2.1).
Definition 4 The Hazard Function(HF) or the failure rate of the Y ∼ BS(3P), which is an important

risk indicator, is defined by Balakrishnan and Kundu [5] as
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hY(y;α, β, λ) =
fY(y;α, β, λ)

1 − FY(y;α, β, λ)
, with y > 0 and 0 ≤ FY(y;α, β, λ) ≤ 1, (2.8)

where fY(y;α, β, λ) and FY(y;α, β, λ) are the PDF and CDF of Y, respectively given by Equation (2.2)
and Equation (2.1).
The location, scale and shape parameters are important as regards the probability distribution is char-
acterized by them. Location and scale parameters are used in modeling applications. In the context of
PDF, the scale parameter β streches or compresses the PDF of the distribution. β= 1 keeps the distrbu-
tion in standard shape. If β> 1, then it streches the PDF. If β< 1, it compresses the PDF. On the other
hand, the location parameter λ= 0 gives the standard shapes of the PDF. If λ> 0, then it shifts the PDF
to the left and if λ< 0, then it shifts the PDF to the right. So without loss of any fear of generality, we
can take β= 1 and λ= 0 in order to discuss the shape of the hazard function of BS(3).

Taking β= 1 and λ= 0, we consider a function defined by Kundu et al., [9],

g(t) = t
1
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1
2 , (2.9)
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and
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The probability density function as given by Equation (2.2) of Y ∼ BS(??) for β= 1 and λ= 0 becomes
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1
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, 0 < x <∞, α> 0. (2.13)

Using Equation (2.13) in conjunction with the CDF given by Equation (2.1) in Equation (2.8), we
get
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(2.14)

The graphs of the hazard function given in Equation (2.14) of BS (α, β, λ) are drawn for different
values of α, β and λ in Figure . 2
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Figure 2. Hazard Function of BS (α, β, λ) for Different Values of Parameters

The effects of parameter values on the HF of BS (α, β, λ) distribution are easily inferred from Figure
2. It is to be noted that the hazard function of the BS (α, β, λ) distribution can have an upside-down
bathtub shape depending on the values of its parameters.

3. Distributional Properties

In this section, we derive various moments of BS (3P) distribution. From now onward, we shall use
j in stead of Y. As such, assume that j is a positive continuous random variable possessing BS (3P)
distribution, j ∼BS(α, β, λ), with the PDF given by Equation (2.2), that is,
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where j > λ ≥ 0, α > 0, β > 0.

3.1. jthMoment of BS (3P) Distribution

The jth moment, a j, j > 0, of the BS (3P) distribution is defined by

α j = E
(

j j
)
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Letting x − λ = u in Equation (3.1), we have
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Now, using the binomial expansion for (u + λ) j in Equation (3.2) and simplifying, we obtain
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Since the integral
∫ ∞

0
u j − m
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√
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du in above Equation (3.3) rep-

resents the ( j − m) th moment of BS (2P) distribution for u ∼BS(α, β), therefore, following Athayde
et al. [3] and Leiva [4], we have
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which is the required expression for the the jth moment of j ∼BS(α, β, λ). Furthermore, the mean
of u ∼BS(α, β)is given by

E (u) =
β

2

(
α2 + 2

)
,

see Athayde et al. [3] or Leiva [4]. Thus, taking j = 1 in Equation (3.4) and after some simplifica-
tion, the first moment (or the mean), α1, of of j ∼BS(α, β, λ) is easily given by

α1 = E ( j) =
β

2

(
α2 + 2

)
+ λ. (3.5)

3.2. jth (Central) Moment

:
The jth (central) moment of X ∼ BS(α, β, λ)can easily be derived as follows:

β j = E[X − E (X)] j =
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λ
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where E
(
X j−m

)
and (E (X))m can be obtained from the Equation (3.4) and Equation (3.5) respec-

tively. Equation (3.6) specifies the second, the third, and the higher central moments for different
values of j.

3.3. Variance, Coefficients of Skewness and Kurtosis

These concepts are defined as follow:
Variance: Taking j = 2 in Equation (3.6), the variance (or the second central moment), β2, after

simplification, is given by

β2 = E[X − E (X)]2 =
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]
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(3.7)
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Coefficients of Skewness and Kurtosis: By taking j = 3 and j = 4 in the Equation (3.6), the
third and the fourth central moments are respectively given by

β3 = E[X − E (X)]3 =

3∑
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and (E (X))m can be obtained from the Equation (3.4) and Equation (3.5) respec-

tively. Thus, using Equation (3.8) and Equation (3.9), the measure of skewness,γ1, and kurtosis, γ2,
after simplification, are respectively given by
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3.4. Moment Generating Function, Characteristic Function and rth Cumulant

For X ∼ BS(α, β, λ), the moment generating respectively the characteristic functions of X aredefined
by

MX(t) = E
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)
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where i =
√
−1 is the imaginary number, i2 = −1, and E

(
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)
, the jth moment of X ∼ BS(α, β, λ) is

given by Equation (3.3).
The rth cumulant, κr, of X ∼ BS(α, β, λ) is given by taking the natural log of the characteristic

function (ϕX (t) in Equation (3.13),

ln (ϕX (t)) =
∞∑

r = 1

κr
(it)r

r!
,
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Taking the Maclaurin series of the left-hand side of the above equation and equating the coefficients
of various terms on both sides (see Equation (26.1.12), Page. 928, of Abramowitz and Stegun [10] or
Stuart and Ord [11]), we get the following required rth cumulant κr:

κr =
1
ir

[
dr (ln (ΦX (t)) )

dtr

]
t=0
, r = 1, 2, . . . , (3.14)

From which, by successive differentiation, it can be easily seen that

κ1 = E ( j) = α1, κ2 = Var ( j) = β2, κ3 = E
[
j − E ( j)

]3
= β3,

etc.,which can easily obtained by using the Equations (3.5), (3.7) and (3.8), respectively.

3.5. jth Incomplete Moment of BS (3P) Distribution

For j > 0, the jth incomplete moment of BS (3P) distribution is descibed by
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Letting t − λ = u in above Equation (3.15), we have

I j (x) =
∫ x − λ

0
(u + λ) j 1

2αu

√u
β
+

√
β

u

 ϕ 1
α


√

u
β
−

√
β

u


du. (3.16)

Now, using the binomial expansion for (u + λ) j in Equation (3.16) and simplifying, we obtain

I j (x) =
j∑

m = 0

(
j

m

)
λm

∫ x − λ

0
u j − m

 1
2αu

√u
β
+

√
β

u

 ϕ 1
α


√

u
β
−

√
β

u



du = P j (x) (3.17)

where the integral
∫ x − λ

0
u j − m

{
1

2αu

[√
u
β
+

√
β

u

]
ϕ
[

1
α

{√
u
β
−

√
β

u

}]}
du in Equation (3.17) represents

the incomplete ( j − m) th moment of BS (2P) distribution for U ∼ BS(α, β), and cannot be evaluated
analytically in closed form and so requires some quadrature formulas for computations. Taking j = 1
in Equation (3.17), then a little simplification gives the first incomplete moment of BS(3P) distribution
is given by

P1 ( j) =
∫ j

λ

t
1

2α (t − λ)


√

t − λ
β
+

√
β

t − λ
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1
α


√

t − λ
β

−

√
β

t − λ


 dt

=

∫ j − λ

0
(u + λ)

1
2αu

√u
β
+

√
β

u

 ϕ 1
α


√

u
β
−

√
β

u


du, Letting(t − λ = u)

= ( j)Φ

1
α


√

j − λ
β

−

√
β

j − λ


 − ∫ j − λ

0
Φ

1
α


√

u − λ
β

−

√
β

u − λ


du

(3.18)
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where Φ (.) denotes the CDF of X ∼ BS(α, β, λ), and the integral
∫ x−λ

0
F

[
1
α

{√
u−λ
β
−

√
β

u−λ

}]
du

in Equation (3.18) cannot be evaluated analytically in closed form and so requires some quadrature
formulas for computations.

3.6. Shannon Entropy:

Referring to [12], the Shannon entropy measure of a continuous real random variable X is given by

HX
[
fX (X)

]
= E

[
−ln( fX (X)

]
= −

∫ ∞

−∞

fX (x) ln
[
fX (x)

]
dx,

Therefore, the Shannon entropy of BS (3P) distribution is defined by

HX
[
fX (X)

]
= −

∫ ∞

λ

 1
2α (x − λ)


√
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β
+

√
β
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α


√
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β

−

√
β

x − λ





×

ln 1
2a (x − λ)


√

x − λ
β
+

√
β

x − λ

Φ
1
α


√

x − λ
β
−

√
β

x − λ



 dx

= ln (2a) + E (ln (x − λ) ) − E

ln

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√

x − λ
β
+

√
β

x − λ

Φ
1
α


√

x − λ
β
−

√
β

x − λ






(3.19)

where the two expected values in Equation (3.19) cannot be evaluated analytically in closed forms and
so requires some quadrature formulas for computations.

4. Percentile Points

The percentage points, xp, of the BS (3P) distribution computed numerically by solving the equation
F(xp) =

∫ xp

λ
fX(u)du = p (say), for any 0 < p < 1, for given different sets of values of the parameters

α, β, λ, are given in Table 1.

Table 1. Percentile Points of BS (3P) Distribution

Parameters Percentiles p 0.75 0.80 0.85 0.90 0.95 0.99
α = 1, β = 1, λ = 1 xp 2.93928 3.26727 3.70443 4.34327 5.48245 8.27443
α = 1.5, β = 1,λ = 1 xp 3.64562 4.28976 5.17756 6.51398 8.96187 15.10587
α = 1.75, β = 1,λ = 1 xp 4.06721 4.91374 6.09339 7.88452 11.18757 19.51993
α = 2, β = 1, λ = 1 xp 4.53702 5.61670 7.13374 9.45117 13.74370 24.60521

α = 0.25, β = 1,λ = 0.25 xp 1.43344 1.48370 1.54484 1.62580 1.75436 2.02480
α = 0.25, β = 1,λ = 0.5 xp 1.68344 1.73370 1.79484 1.87580 2.00436 2.27480
α = 0.25, β = 1,λ = 0.75 xp 1.93344 1.98370 2.04484 2.12580 2.25436 2.52480
α = 0.25, β = 1,λ = 1 xp 2.18343 2.23370 2.29484 2.37580 2.50436 2.77480
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5. Characterizations

In this section, we give some important characterization results of the BS (3P) which are important
as regards that it is the only distribution that satisfies these specified conditions. These methods have
been described in Ahsanullah [13], and references therein.

5.1. Characterization by Truncated Moment:

The following theorems characterize the Birbaum-Sanders (3P) distribution.
Theorem 5.1. If the random variable X satisfies the Assumption 5.1 with ω = λ and δ = ∞, then

E (X |X = x ) = g (x) f (x)
F(x) , where

(x) =
P1 (x)

1
2α(x − λ)

[√
x − λ
β
+

√
β

x − λ

]
ϕ
[

1
α

{√
x − λ
β
−

√
β

x − λ

}] , (5.1)

where P1 (x) is given by Equation (3.18), if and only if X has the pdf

f (x) =
1

2α (x − λ)


√

x − λ
β
+

√
β

x − λ

 ϕ
1
α


√

x − λ
β

−

√
β

x − λ


 . (5.2)

Proof. Suppose thatE (X |X ≤ x ) = g (x) f (x)
F(x) . Then, sinceE (X |X ≤ x ) = ∫

x
λ u f (u) du

F (x) , we

haveg (x) =
∫

x
γ u f (u) du

f (x) . Now, if the random variable X satisfies the Assumption 10 and has the
distribution with the PDF given in Equation (2.1), then we have

g (x) = ∫
x
λ u f (u) du

f (x)

=
P1 (x)
f (x)

=
P1 (x)

1
2α(x − λ)

[√
x − λ
β
+

√
β

x − λ

]
ϕ
[

1
α

{√
x − λ
β
−

√
β

x − λ

}] ,
where P1 (x) is given by Equation (3.18). Consequently, the proof of “if” part of Theorem 5.1 follows
from Lemma A.2. Conversely, suppose that

g (x) =
P1 (x)

1
2α(x − λ)

[√
x − λ
β
+

√
β

x − λ

]
ϕ
[

1
α

{√
x − λ
β
−

√
β

x − λ

}]
where P1 (x) is given by (3.18). Now, from Lemma (A.2), we have
g (x) = ∫

x
λ u f (u) du

f (x) , or
∫

x
λ u f (u) du = f (x)g(x). After differentiating the above equation with respect to respect to x, we

obtain

x f (x) = f ′ (x) g (x) + f (x) g′ (x) ,
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from which, using the definition of PDF (2.2) and f / (x) being given by Equation (5.2), we easily
obtain

g′ (x) = x − g (x)

[√
β

x − λ −

√
x − λ
β

] [√
β

x − λ +
√

x − λ
β

]2

+

[
3

√
β

x − λ +
√

x − λ
β

]
2α2 (x − λ) 1

2α(x − λ)

[√
β

x − λ +
√

x − λ
β

]
or,

x − g/ (x)
g (x)

=

[√
β

x − λ −

√
x − λ
β

] [√
β

x − λ +
√

x − λ
β

]2

+

[
3

√
β

x − λ +
√

x − λ
β

]
2α2 (x − λ) 1

2α(x − λ)

[√
β

x − λ +
√

x − λ
β

] . (5.3)

Since, by Lemma (A.2), we have

x − g/ (x)
g (x)

=
f / (x)
f (x)

, (5.4)

see Shakil, et al. [14]. Therefore, from Equation (5.3) and Equation (5.4), it follows that

f / (x)
f (x)

=

[√
β

x − λ −

√
x − λ
β

] [√
β

x − λ +
√

x − λ
β

]2

+

[
3

√
β

x − λ +
√

x − λ
β

]
2α2 (x − λ) 1

2α(x − λ)

[√
β

x − λ +
√

x − λ
β

] (5.5)

Now, integrating Equation (5.5) with respect to x and simplifying, we easily have

ln ( f (x)) = ln

c 1
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



or

f (x) = c

 1
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+
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β
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β

−

√
β

x − λ


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 , (5.6)

where c is the normalizing constant to be determined. Thus, on integrating the above Equation (5.6)
with respect to x from x = λ to x = ∞, and using the condition ∫

∞

γ f (x) dx = 1, we obtain

1
c
=

∫ ∞

λ

 1
(x − λ)
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√
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+
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α


√

x − λ
β

−

√
β

x − λ



dx. (5.7)

Now, letting x − λ
β
= u in Equation (5.7), we have

1
c
=

∫ ∞

0

1
u

√u +

√
1
u

Φ 1
α

√u −

√
1
u


du
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from which, on multiplying and dividing by 2α, (α > 0), we obtain

1
c
= (2a)

∫ ∞

0

 1
(2a) u

√u +

√
1
u

Φ 1
α

√u −

√
1
u


du (5.8)

Since the expression within the integral on the right side of the Equation (5.8) defines the pdf of the
standard Birnbaum-Saunders (or fatigue life), BS(α), distribution, we easily obtainc = 1

2α . This
completes the proof of Theorem 5.1.

Theorem 5.2. If the random variable X satisfies the Assumption (A.1) with ω = λ andδ = ∞, then
(X/X ≥ x) = h̃(x) f (x)

1−F(x) , where h̃ (x) = (E(X)−g(x) f (x))
f (x) g(x), g(x) being given by Equation (5.1) and E(X)

being given by Equation (3.5), if and only if X has the pdf

f (x) =
1

2α (x − λ)


√

x − λ
β
+

√
β

x − λ

 ϕ
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α


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x − λ
β

−

√
β

x − λ




Proof. Suppose that E (X/X ≥ x) = h̃(x) f (x)
1−F(x) . Then, since E (X/X ≥ x) =

∫ ∞
x u f (u)
1−F(x) du, we have

h̃ (x) =
∫ ∞

x u f (u)
1−F(x) du Now, if the random variable X satisfies the Assumptions (A.1) and has the distribution

with the PDF (2.2), then, using the Theorem 5.1, we have

h̃ (x) =

∫ ∞
x

u f (u)

f (x)
du =

∫ ∞
γ

u f (u)du −
∫ x

γ
u f (u)du

f (x)

=
(E (X) − g(x) f (x))

f (x)
,

where f (x) denotes the PDF of the BS (3P) distribution given by Equation (2.2), g (x) being given
by Equation (5.1) and E (X) being given by Equation (3.5). Consequently, the proof of “if” part of the
Theorem 5.2 follows from Lemma (A.3). Conversely, suppose that h̃ (x) = (E(X)−g(x) f (x))

f (x) . Now, from
Lemma (A.3)., we have

h̃ (x) =

∫ ∞
x

u f (u)

f (x)
du,

or ∫ ∞

x
u f (u) = f (x)h̃ (x) .

Differentiating the above equation with respect to respect to x, we obtain

x f (x) = f ′ (x) h̃ (x) + f (x)
[
h̃ (x)

]′
.

Thus, proceeding in the same way as in Theorem 5.1 and following the similar arguments, we easily
obtain

f (x) = c
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−

√
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 ,
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where c = 1
2α . This completes the proof of Theorem 5.2.

5.2. Characterizations by Order Statistics:

If X1, X2, ... , Xn be the n independent copies of the random variable X with absolutely continuous
distribution function F(x) and PDF f (x), and if X1,n ≤ X2,n ≤ ... ≤ Xn,n be the corresponding order
statistics that is known from Ahsanullah et al. see Shakil, et al. [15], Chapter 5, or Arnold et al. see
Shakil, et al. [16], Chapter 2, that X j,n|Xk,n = x, for 1 ≤ k < j ≤ n, is distributed as the ( j − k) th order
statistics from (n − k) independent observations from the random variable V having the PDF fV(v|x)
where fV(v|x) = f (v)

1−F(x) , 0 ≤ v < x, and Xi.,n|Xk,n = x, 1 ≤ i < k ≤ n, is distributed as ith order statistics
from k independent observations from the random variable W having the pdf fW(w|x) where fW(w|x) =
f (w)
F(x) ,w < x. LetS k−1 =

1
k − 1

(
X1,n + X2,n + ... + Xk−1,n

)
, and Tk,n =

1
n − k

(
Xk+1,n + Xk+2,n + ... + Xn.n

)
.

Theorem 5.3: Suppose the random variable X satisfies the Assumption (A.1) with ω = λ and δ = ∞,
then E(S k − 1|Xk,n = x) = g(x)τ(x), where τ(x) = f (x)

F(x) and g (x) being given by Equation (5.1), if
and only if X has the PDF

f (x) =
1

2α (x − λ)


√

x − λ
β
+

√
β

x − λ

 ϕ
1
α


√

x − λ
β

−

√
β

x − λ


 .

Proof: It is known thatE(S k − 1|Xk,n = x) = E(X|X ≤ x); see Ahsanullah et al. see Shakil, et al. [15],
and David and Nagaraja see Shakil, et al. [17]. Hence, by Theorem 5.1, the result follows.

Theorem 5.4: Suppose the random variable X satisfies Assumption (A.1) with ω = λ and δ = ∞,
then E

(
Tk,n/Xk,n = x

)
= h̃(x) f (x)

1−F(x) , where

h̃ (x) =
(E (X) − g (x) f (x))

f (x)
,

g(x) being given by Equation (5.1) and E (X) being given by Equation (3.5), if and only if X has the
pdf

f (x) =
1

2α (x − λ)


√

x − λ
β
+

√
β

x − λ

 ϕ
1
α


√

x − λ
β

−

√
β

x − λ


 .

Proof: Since E(Tk,n|Xk,n = x) = E(X|X ≥ x), see Ahsanullah et al. see Shakil, et al.
[15], and David and Nagaraja see Shakil, et al. [17], the result follows from Theorem 5.2.5.3.
Characterization by Upper Record Values: For details on record values, see Ahsanullah see
Shakil, et al. [18]. LetX1, X2, ... be a sequence of independent and identically distributed ab-
solutely continuous random variables with distribution function F (x) and PDF f (x). If Yn =

max( X1, X2, ... , Xn) for n ≥ 1 andY j > Y j − 1, j > 1, then X j is called an upper record
value of{Xn, n ≥ 1}. The indices at which the upper records occur are given by the record times{
U (n) > min ( j| j > U (n + 1) , X j > XU(n − 1), n > 1)

}
and U (1) = 1. Let the nth upper record

value be denoted byX (n) = XU(n). Theorem 5.5: Suppose the random variable X satisfies the As-
sumption A.11 with ω = λ and d = 8, then

E(X (n + 1)/X (n) = x) = h̃(x)
f (x)

1 − F (x)
,
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where h̃(x) = (E(X)−g(x) f (x))
f (x) , g(x) being given by Equation (5.1) and E (X) being given by Equation

(3.5), if and only if X has the PDF

f (x) =
1

2α (x − λ)


√

x − λ
β
+

√
β

x − λ

 ϕ
1
α


√

x − λ
β

−

√
β

x − λ


 .

Proof: It is known from Ahsanullah et al. see Shakil, et al. [15], and Nevzorov see Shakil, et al.
[19] thatE(X(n + 1)|X(n) = x) = E(X|X = x). Then, the result follows from Theorem 5.2.

6. Estimation of Parameters and Applications

In this section, we provide the estimation of the parameters of BS (3P) distribution by

1. The method of moment(MOM)- Sub-Section 6.1,
2. The method of maximum likelihood(MLE) - Sub-Section 6.2.

The parameters of BS (3P) distribution are estimated using MLEs by considering two real-world data
set examples in Sub-Section 6.3,. The results are presented in Table 2 by comparing BS (3P) distribu-
tion with some well-known skew distributions for testing the goodness of fit of BS (3P) distribution.

6.1. The Method of Moments:

If {Xi}
n
i = 1 is an iid sample from a distribution with an m-dimensional parameter vector ϕ, then

according to the method of moment (MOM), the estimator Φ∼ is the solution of the following system
of equations:

Eϕ∼
(
X j

)
=

∑n
i = 1 Xi

j

n
, j = 1, 2, 3, . . . ,m (6.1)

Thus, using the above-mentioned Definition (6.1) of the MOM, we can obtain the respective mo-
ments from the Equation (6.1) of the jthmoment, E

(
X j

)
of BS (3P) distribution by taking the respective

values of j, j = 1, 2, 3 and evaluating the respective expressions of the respective moments numerically.
Then, the moment estimations of the respective parameters of BS (3P) distribution can be determined
by solving the system of respective equations thus obtained by Newton-Raphson’s iteration method,
and using some computer packages like Maple, or Mathematica, or R, or MathCad, or other software.

6.2. The Method of Maximum Likelihood:

The parameters of BS (3P) distribution are estimated by the use of the method of maximum likeli-
hood (MLE). Given a sample {xi}, i = 1, 2, 3, . . . , n, the likelihood function of BS (3P) distribution
PDF (??) is given by L =

∏n
i=1 f (xi), that is,

L =
n∏

i=1

1
2α (xi − λ)


√

xi − λ

β
+

√
β

xi − λ

 × ϕ
1
α


√

xi − λ

β
−

√
β

xi − λ


 .

The log-likelihood function of L is given by
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R = ln (L) =
n∑

i=1

ln


√

xi − λ

β
+

√
β

xi − λ

 + n∑
i=1

lnλ

1
α


√

xi − λ

β
−

√
β

xi − λ




−

n∑
i=1

ln (xi − λ) − ln [2a]

(6.2)

After differentiating Equation (6.2) partially with respect to the respective parameters, the system
of maximum likelihood of equations becomes

∂R
∂α
=

n∑
i=1

(xi − λ − β)2

a3β (xi − λ)
−

1
α
= 0,

∂R
∂β
=

n∑
i=1

[
xi

β
−

xi

(xi − λ)
+

λ

(xi − λ)

]
+

n
2a2β

−
nλ

2a2β2 +
n

2β
= 0,

∂R
∂λ
=

1
2

n∑
i=1

(β + λ − xi)
(xi − λ) (β − λ + xi)

−

n∑
i=1

β

2a2(xi − λ)2 −

n∑
i=1

1
(xi − λ)

−
n

2a2β
= 0.

(6.3)

Solving Equation (6.3) numerically by Newton-Raphson’s iteration method using some computer soft-
ware like Maple, or Mathematica, or R, the maximum likelihood estimates (MLE) of the parameters
α, β, and λ are obtained.

6.3. Applications:

In this paper, we consider data from two real-world problems in the context of parameter estimation.
Some more examples on parameter estimation as given in [31, 32, 33, 34, 35] can be considered by
this method. In this sub-section, by considering two real-world data set examples, the goodness of fit
tests of BS (3P) distribution is provided by comparing it with some well-known skew distributions,
namely, BS (2P), log-logistic, lognormal, generalized extreme value, inverse Gaussian, and Weibull
distributions. Probability density functions of these distributions and their parameters are listed in
Table 9.

6.3.1. Example I:

We have a random sample of the “data for weights (pounds) of discarded glass garbage for one
week” as reported in Triola see Shakil, et al. [20], as given in Table 2. We tested the chi-squared
goodness-of-fit of BS (3P) distribution to this data and compared it with some well-known skew dis-
tributions, namely, BS (2P), log-logistic, lognormal and Weibull distributions, using the Kolmogorov-
Smirnov, Anderson-Darling, and Chi-Squared goodness-of-fit (GOF) tests. Details on GOF tests can be
seen in Massey [21] , and Stephens [22]. Moreover, for details on log-logistic, lognormal and Weibull
distributions, the interested readers are referred to Patel et al. [23], Johnson et al. [2], Balakrishnan
and Nevzorov [24], and Forbes et al.[25].

From Figure 3, it is obvious that the shape of the data is skewed to the right. This is also con-
firmed from the skewness (2.2477) and kurtosis (6.7303) of the data. Since fitting of any probability
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Table 2. Weights (Pounds) of Discarded Glass Garbage for One Week(Sample Size: n = 62)

0.86, 3.46, 4.52, 4.92, 6.31, 2.49, 0.51, 5.81, 1.96, 17.67, 3.21,
4.94, 3.10, 1.39, 5.21, 2.03, 1.74, 3.99, 6.26, 3.52, 2.01, 2.21,
0.25, 0.09, 6.85, 2.33, 5.45, 2.04, 4.98, 3.54, 1.06, 2.70, 1.14,
12.24, 5.67, 2.43, 4.02, 6.45, 1.89, 1.78, 2.93, 1.82, 2.89, 0.99,
1.93, 3.61, 2.53, 3.76, 1.32, 2.64, 12.33, 1.79, 3.99, 4.44, 9.25,
4.02, 1.38, 1.59, 0.85, 8.87, 3.64, 3.03

Figure 3. Histogram (left), Normal Quantile Plot (center) and Empirical CDF (right)

distribution to the data for a specific period is generally useful in predicting the probability of data
or forecasting the frequency of occurrence of that data set, it is, therefore, imperative that the weights
(pounds), y, of the discarded glass garbage for a one week, could possibly be modeled by some skewed
distributions. Moreover, our data are skewed in nature, we fit the BS (3P) distribution to this data and
make its comparison with some well-known skew distributions, viz., BS (2P), log-logistic, lognor-
mal and Weibull distributions, based on Kolmogorov-Smirnov, Anderson-Darling, and Chi-Squared
goodness-of-fit (GOF) tests.

Table 3. Fitting Results for Glass Garbage data

# Distributions Parameter Estimates
1 BS (3P) α= 0.61813, β= 3.8231, λ = - 0.79923
2 Weibull α = 1.362, β = 3.9985
3 Lognormal σ= 0.87317, µ= 1.0109
4 Log-Logistic α = 1.8814, β = 2.6654
5 BS (2P) α = 1.0616, β = 2.3278

From Table 4, we observed that the BS (3P), BS (2P), log-logistic, lognormal and Weibull distri-
butions fitted reasonably well to the weights (pounds) of discarded glass garbage for one week data.
However, based on these three tests, the BS (3P) distribution model produces the highest P-Value and
the smallest test statistic value, and therefore fitted better than the BS (2P), log-logistic, lognormal and
Weibull distributions. For the parameters estimated in Table 3, the probability density functions of the
BS (3P), BS (2P), log-logistic, lognormal and Weibull distributions have been superimposed on the
histogram of the weights (pounds) of discarded glass garbage for one week data, as given in Figure 4,
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Table 4. Comparison Criteria and Ranking of Fitted Distributions (Test Statistics, Critical
Value and P-Value at Level of Significance = 0.05) for Glass Garbage data

# Distribution KolmogorovSmirnov AndersonDarling Chi-Squared
Level of Significance = 0.05 Level of Significance = 0.05 Level of Significance = 0.05

1 BS (3P) Test Statistic: 0.06335, Criti-
cal Value: 0.16956, P-Value:
0.95123

Test Statistic: 0.2518, Criti-
cal Value: 2.5018, P-Value:
0.98993

Test Statistic: 1.613, Critical
Value: 11.07, P-Value: 0.89967

2 Weibull Test Statistic: 0.08175, Criti-
cal Value: 0.16956, P-Value:
0.77097

Test Statistic: 0.57526, Crit-
ical Value: 2.5018, P-Value:
0.93117

Test Statistic: 2.6225, Critical
Value: 11.07, P-Value: 0.75795

3 Lognormal Test Statistic: 0.10682, Criti-
cal Value: 0.16956, P-Value:
0.44811

Test Statistic: 0.77256 , Crit-
ical Value: 2.5018, P-Value:
0.92692

Test Statistic: 2.806, Critical
Value: 11.07, P-Value: 0.72987

4 Log-Logistic Test Statistic: 0.11598, Criti-
cal Value: 0.16956, P-Value:
0.34774

Test Statistic: 0.88457, Crit-
ical Value: 2.5018, P-Value:
0.88847

Test Statistic: 3.294, Critical
Value: 11.07, P-Value: 0.65475

5 BS (2P) Test Statistic: 0.19806, Criti-
cal Value: 0.16956, P-Value:
0.99843

Test Statistic: 2.9197 , Crit-
ical Value: 2.5018, P-Value:
0.41532

Test Statistic: 9.7515 , Critical
Value: 11.07, P-Value: 0.07109

from which we have also observed that BS (3P) distribution models the weights (pounds) of discarded
glass garbage for one week data reasonably well by BS (3P).

Figure 4. Fitting of the pdfs of the BS (3P), BS (2P), Log-Logistic, Lognormal and Weibull
Distributions

6.3.2. Example II:

In this example, we considers a random sample of the data for the white blood cell counts (1000
cells / µ L) for females” as reported in Triola see Shakil, et al. [20], and depicted in Table 5. We have
tested the goodness-of-fit of BS (3P) distribution to this data and compared it with some well-known
skew distributions, namely, generalized extreme value, inverse Gaussian, lognormal and Weibull dis-
tributions, based on the Kolmogorov-Smirnov, Anderson-Darling, and Chi-Squared goodness-of-fit
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(GOF) tests.

Table 5. White Blood Cell Counts (1000 cells /µ L) for Females (Sample Size: n = 40)

9.6, 7.1, 7.5, 6.8, 5.6, 5.4, 6.7, 8.6, 10.2, 4.1, 13.0,
9.2, 5.9, 8.0, 7.0, 9.1, 5.7, 4.6, 6.0, 5.7, 8.9, 6.4, 8.1,
7.9, 4.4, 4.9, 5.3, 5.3, 4.7, 9.8, 5.3, 4.9, 6.3, 5.4, 7.0,
13.5, 10.0, 10.3, 5.1, 6.6

The histogram and the normal quantile plot and empirical CDF (cumulative distributive function)
of data for the white blood cell counts (1000 cells / µ L) for females are provided in Figure 6.

Figure 5. Histogram (left), Normal Quantile Plot (center) and Empirical CDF (right) for
White Blood Cell

From Figure 5, it is obvious that the shape of the data for the white blood cell counts (1000 cells
/ µ L) for females is skewed to the right. This is also confirmed from the skewness (1.0171) and kur-
tosis (0.71481) of the data. Since fitting of a probability distribution to the data for the white blood
cell counts (1000 cells / µ L) for females may be helpful in predicting the probability or forecasting
the frequency of occurrence of the data for the white blood cell counts (1000 cells / µ L) for females,
this suggests that y, the white blood cell counts (1000 cells / µ L) for females, can be modeled by
some skewed distributions. Moreover, our data for the white blood cell counts (1000 cells / µ L) for
females are skewed in nature, we fit BS (3P) distribution to this data and made its comparison with
some well-known skew distributions, namely, generalized extreme value, inverse Gaussian, lognor-
mal and Weibull distributions, based on the Kolmogorov-Smirnov, Anderson-Darling, and Chi-Squared
goodness-of-fit (GOF) tests. The parameters estimated for the BS (3P), generalized extreme value, in-
verse Gaussian, lognormal and Weibull distributions are provided in Table6.

Goodness of Fit (Chi-Squared Test): The goodness-of-fit test results, based on the chi-squared test,
using the P-Values and test statistics analysis, are provided in Table 7.

Based on the chi-squared test for goodness-of-fit in Table 7, BS (3P) distribution was found to be
the best fit (Rank 1) for the white blood cell counts (1000 cells / µ L) for females’ data, followed by
Gen. Extreme Value (Rank 2), Lognormal (Rank 3), Inv. Gaussian (Rank 4) and Weibull (Rank 5).

Goodness of Fit (Kolmogorov-Smirnov and Anderson-Darling Tests): The goodness-of-fit test re-
sults, based on the Kolmogorov-Smirnov and Anderson-Darling Tests, are provided in Table8.

Based on the Kolmogorov-Smirnov and Anderson-Darling tests for goodness-of-fit as given in Table
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Table 6. Fitting Results fir White Blood Cell data

# Distributions Parameter Estimates
1 BS (3P) α= 0.60371, β= 3.3158, λ = 3.2258
2 Gen. Extreme Value k = 0.08116, σ= 1.6735, µ= 6.0363
3 Inv. Gaussian λ= 70.519, µ= 7.1475
4 Lognormal σ= 0.2956, µ= 1.9216
5 Weibull α = 3.8932, β = 7.7181

Table 7. Comparison Criteria and Ranking of Fitted Distributions (Based on the Chi-Squared
Test for Goodness-of-Fit at the Level of Significance = 0.05)(P-Value and Test Statistic Anal-
ysis)

BS (3P) Gen. Ex-
treme Value

Log-normal Inv. Gaussian Weibull

Rank 1 2 3 4 5

Test Statistic 2.2572 2.4862 2.6512 3.4236 5.3854

Critical Value 5.9886 5.9886 5.9886 5.9886 5.9886

P-Value 0.68857 0.64711 0.61777 0.4896 0.24999

Table 8. Comparison Criteria and Ranking of Fitted Distributions: Based on Kolmogorov-
Smirnov and Anderson-Darling Tests of Goodness-of-Fit at the Level of Significance = 0.05

# Distribution KolmogorovSmirnov AndersonDarling
Statistic Rank Statistic Rank

1 BS (3P) 0.06618 1 0.19933 1
2 Gen. Extreme Value 0.08112 2 0.28121 2
3 Inv. Gaussian 0.08905 3 0.38007 3
4 Lognormal 0.10494 4 0.45884 4
5 Weibull 0.11217 5 1.2661 5

8, BS (3P) distribution was found to be the best fit (Rank 1) for the white blood cell counts (1000
cells / µ L) for females data, followed by Gen. Extreme Value (Rank 2), Inv. Gaussian (Rank 3),
Lognormal (Rank 4) and Weibull (Rank 5).For the parameters estimated in Table 6, the probability
density functions (PDF’s) of the BS (3P), generalized extreme value, inverse Gaussian, lognormal and
Weibull distributions respectively have been superimposed on the histogram of the white blood cell
counts (1000 cells / µ L) for females data, which is provided in Figure 6 below.

7. Conclusion

The main points of the research article are enumerated as follow:

1. We have considered the BS (3P) distribution. We have reviewed the BS (3P) distribution first, and
then established its several new statistical properties, including the estimation of the parameters,
computations of percentage points and characterizations.

2. We have shown the applications of the BS (3P) distribution by considering two real-world data
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Figure 6. Fitting of PDF’s to the Females’ White Blood Cell Data

set examples, namely the “data for weights (pounds) of discarded glass garbage for one week”
and the “data for the white blood cell counts (1000 cells / µ L) for females”.

3. The goodness of fit tests of BS (3P) distribution is provided by comparing it with some well-
known skew distributions, namely, BS (2P), log-logistic, lognormal, generalized extreme value,
inverse Gaussian, and Weibull distributions. Based on the Kolmogorov-Smirnov, Anderson-
Darling, and Chi-Squared goodness-of-fit (GOF) tests. SB (3P) distribution was found to be
the best fit (Rank 1) for these data sets.

4. The findings of this paper will be quite helpful to the researchers and practitioners in various
fields.

5. We can develop bootstrap control charts for the percentiles of the SB (3P) distribution, which is
an important area of studies in quality and reliability engineering.
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Definition 1 If X has a Birbaum-Saunders distribution with two parameters denoted by X∼BS(α,β),

then its CDF is defined by FX(x;α,β) =Φ
(

1
α

[(
x
β

) 1
2
−
(
β

x

) 1
2
])
, 0 < y <∞, α,β> 0. (A.1)

Here α is the shape parameter and β is the scale parameter.
Definition 2 The Probability Density Function(PDF) of X∼BS(α,β) is given by

fX
(
x;α,β

)
= 1

2
√

2παβ

[(
β

x

) 1
2
+
(
β

x

) 3
2
]

exp
[
− 1

2α2

(
x
β
+
β

x−2
)]
, (A.2)

0 < x <∞, α,β> 0. For details on the BS(2P) distribution, the interested readers are referred to Birn-
baum and Saunders [1, 7], Johnson et al. [2], and Balakrishnan and Kundu [5].
Let X and Y be two random variables taking values respectively from the sets U and V , and g:U→V be
a function defined by g(X) =Y . Moreover, the distribution of X is known, we are interested in finding
the distribution of Y .
Definition 2 Let B⊆V , then the inverse image of B under g, denoted by g−1[B], is defined by
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g−1[B] ={x∈U:g(x)∈B}. (A.3)
Let X have a known distribution function F, and probability density function f , and those of Y are

the G and g, then
Definition 3 Letting x=r−1(y) , then by change of variables formula

g (y)= f (x)
∣∣∣∣dx

dy

∣∣∣∣ (A.4)
In this formula, x is to be written explicitly in terms of y.
Definition 4 Letting Y = a + bX, a,0, b∈R, then the probabilty distribution function, g(y), is given by

g
(
y
)
=

∣∣∣ 1
b

∣∣∣ f (
y−a

b

)
. (A.5)

This transformation is called affine transformation. The multivariate analogue of this result can be
obtained similaly.
Assumption A.1. Suppose the random variable X is absolutely continuous with the cumulative distri-
bution function F(x) and the probability density function f (x). We assume thatω = in f {x|F (x) > 0} ,
andd = sup {x|F (x) < 1} .
We also assume that f (x) is a differentiable for allx, andE(X) exists.
Lemma A.2. If the random variable X satisfies the Assumption 5.1 with ω = λ and δ = ∞, where
0 < λ < +∞, and if E (X|X ≤ x) = g (x) τ (x), where τ (x) = f (x)

F(x) and g (x) is a continuous

differentiable function of x with the condition that
∫ x

λ

u − g/(u)
g(u) du is finite for λ ≤ x, 0 < λ < +∞, then

f (x) = ce
∫ x
λ

u − g/(u)
g(u) du, where c is a constant determined by the condition ∫

∞

λ f (x)dx = 1.
Proof. See Shakil et al. [14].

Lemma A.3. If the random variable X satisfies the Assumption 5.1 with ω = λ and δ = ∞, and
if E (X/X ≥ x) = h̃(x)r(x), where r (x) = f (x)

1 − F(x) and h̃(x) is a continuous differentiable function of x

with the condition that
∫ ∞

x
u+[h̃(x)]′

h̃(x) du is finite for λ ≤ x, 0 < λ < +∞, then f (x) = ce−
∫ ∞

x
u+[h̃(x)]′

h̃(x)
du, where

c is a constant such that ∫
∞

λ f (x)dx = 1.
Proof. See Shakil et al. [14].
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Table 9. Distributions Used in Our Data Analysis

S.
No.

Distributions f (x) Parameters

1 Birnbaum-
Saunders (or
Fatigue-Life)
(3P)or BS (3P)

f (x) =

1
2α(x − λ)

[√
x − λ
β
+

√
β

x − λ

]
×

ϕ
[

1
α

{√
x − λ
β
−

√
β

x − λ

}]
, where

Φ () denotes the standard normal
pdf.

α (> 0): shape
parameterβ (> 0):
scale parameter γ

(real): location param-
eter, where λ = x < ∞

2 Birnbaum-
Saunders (2P)or BS
(2P)

f (x) = 1
2αx

[√
x
β
+

√
β

x

]
×

ϕ
[

1
α

{√
x
β
−

√
β

x

}]
, where Φ () de-

notes the standard normal pdf.

α (> 0): shape
parameterβ (> 0):
scale parameterand
0 ≤ x < +∞

3 Log-Logistic (2P) f (x) = a
β

(
x
β

)a−1(
1 +

(
x
β

)a)−2
a (> 0): shape param-
eter
β (> 0): scale parame-
terand 0 ≤ x < +∞

4 GeneralizedExtreme
Value

f (x) =
1
σ

exp
(
− (1 + kz)

−1
k
)

× (1 + kz)−1− 1
k , k , 0

1
σ

exp (−z − exp (−z) ) , k = 0
where z = (x−µ)

s

k (real): Shape
Parameterσ (> 0):
Scale Parameter
µ (real): Location
ParameterDomain:1 +
k (x−µ)
σ
> 0, for k ,

0−∞ < x < +∞, for
k = 0

5 Lognormal (2P) f (x) = 1
(x)s
√

2p
×exp

(
−1

2

(
ln(x) −µ

s

)2
)

σ (> 0): scale
parameterµ (real):
location parameterand
0 < x < +∞

6 Inverse Gaus-
sian(2P)

f (x) =
√

λ

2p(x)3 exp
(
−
λ((x)−µ)2

2µ2(x)

)
λ (> 0): scale parame-
ter
µ (> 0): location pa-
rameterand 0 < x <
+∞

7 Weibull f (x) = a
β

(
x
β

)a−1
exp

(
−
(

x
β

)a)
a (> 0): shape param-
eter
β (> 0): scale parame-
ter, and 0 ≤ x < +∞
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Table 10. Abbreviations and their Meanings

S.No. Abbreviations Meanings
1. BS (3P) Three parameters Birnbaum-Saunders

distribution
2. BS (2P) Two parameters Birnbaum-Saunders

distribution
3. BS(α,β) Birnbaum-Saunders distribution with

parameters α, and β
4. BS(α,β,λ) Birnbaum-Saunders distribution with

parameters α, β, and λ
6. CDF Cumulative Distribution Function
7. PDF Probabilty Density Function
8. HF Hazard Function
9 MOM Method ogf Moments
10 MLE The Method of Maximum Likelihood
11 GOF goodness-of-fit
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