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Abstract

Testing zero variance components in linear mixed models can be performed using an
exact F-test. The test statistic is derived using a decomposition that is valid regardless of
the unknown covariance structure of the random effects. The decomposition splits the
log-likelihood function into two functions that represent the between and within cluster
variability in a traditional analysis of variance problem. Results from numerical
simulation studies reveal that the F-test has a competing power compared to distribution-
free permutation tests. An application to a real data set is provided.
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1. Introduction

Linear mixed models (LMM) represent a popular class of models that contain both fixed
and random effects and are practicaily used in various longitudinal studies. The outcome
variable usually takes on correlated observations within the same individual or cluster
due to the presence of random effects in the model. Checking whether the random effects
are needed is ofien translated to a hypothesis testing problem of zero variance
components. However, the difficulty in testing for zero variance components lies in the
fact that the null value of the variance components lies on the boundary of the parameter

space. Thus, the chi-square approximation to the classical score, and likelihood ratio tests
is not appropriate.

One way to classify the relevant tests that exist in the literature is as tests for models with
a single variance component and models including multiple variance components in the
same model. Tests for a single variance component use mixtures of chi-square
distribution (Self and Liang, 1987; Stram and Lee, 1994), an exact simulation-based
distribution (Crainiceanu and Ruppert, 2004), an exact F-test (El-Horbaty, 2017) or using
parametric bootstrap tests (Datta et al., 2011). Tests for multiple variance components use
distribution-free permutation tests based on the variance components (Drikvandi et al,
2013), restricted likelihood ratio tests via permutation tests (Lee and Braun, 2012),
restricted likelihood ratio tests using parametric bootstrap (Greven et al., 2008). Focus in
this paper is devoted to models involving muliiple variance components.
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Both the restricted likelihood ratio test via permutation tests or parametric bootstrap
suffer from two basic difficulties. The first difficulty is the extensive running time of
their procedures due to the need to evaluate higher number of integrals as the number of
random effects increase. The second difficulty can be summarized as the possibility to
obtain unstable results in terms of the estimates of the profile or quasi-likelihood when
more and more variance components are set at the boundary of their parameter space.

The interesting feature in considering an F-test is that it avoids the estimation of the
variance components meanwhile can detect the departure from the null hypothesis of zero
variance components. Thus, beside the exactness of the distribution of the test statistic
under the null hypothesis, the test does not suffer from the computational complexities
that are present under some likelihood-based tests. The objective of this article is to

derive the exact F-test and assess its capability of capturing the presence of the random
effects when all the variance components are tested altogether.

As will be shown in the sequel, the log-likelihood function of LMM can be decomposed
into two. functions that represent the between-cluster variability and within-cluster
variability in the traditional analysis of variance problem in some way. This
decomposition is provided in Section 3 and is utilized in testing zero variance
components. Under the null hypothesis, each of the two decomposed functions is
individually evaluated at its maximum likelihood estimates and is independent of the
other function. This can be used to formulate the construction of an exact test.

Both El-Horbaty (2017) and Datta et al. (201 1) provide a special representation of the test
statistic for models with single vartance components. The test statistic represented in
Section 3 can be shown as a natural extension of F-test that had been proposed under the
balanced one-way mixed ANOVA model (Searle et al, 1992). Importantly, a simulation
study is needed to compare the performance of the F-test. We focus on the comparison
with a recently introduced permutation test in Drikvandi et al. (2013} as it requires only
minimal assumptions about the estimation of the variance components. Indeed, the test
depends on a distribution-free estimation of the covariance structure under the alternative
hypothesis. The test, for example, avoids the problem that stems from the failure to
evaluate the log-likelihood function under the alternative hypothesis specially when the
random effects are correlated as is the case with likelihood-based tests.

El-Horbaty (2017) conducted simulation comparisons including the permutation test in
Lee and Braun (2012) under models with single variance component. The F-test in those
comparisons has shown a competing performance. Thus, we focus in this article on
models involving more than one variance components to assess the F-test.

The rest of this paper is organized as follows. The LMM is presented in Section 2 and
Section 3 introduces the general decomposition of the likelihood function in a way that
serves the testing problem. Section 4 provides an explicit formula of the test statistic
under models involving a single variance component. The resuits of the simulation study
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are given in Section 5. An application to a real data set is provided in Section 6 and the
article is concluded in Section 7.

2. Linear Mixed Models

Consider a quite general class of LMM. At the cluster level, the model is given by

[1] YiinB+Ziuf+ei

where [ = 1,...,m clusters and, for the i** cluster, Y, is a vector of responses of order
nX1,n=3"n, X, is a design matrix for the fixed effects of order n; X p , Z; is a
matrix for the random effects of order n; X ¢ , B is a vector of fixed effects of order
p X1, is a vector of random cluster effects of order g X 1, and e; is a vector of
residual errors of order n; x 1. Further, let G be a ¢ X ¢ positive definite matrix such that
u;~N(0,G) and let u; be independent from e; where e;~N(0,0%1,) and I, is the
n; X ng identity matrix. The covariance matrix of ¥; becomes

[2] Var(Yy) = Z;GZ] + oI, = 0%V,

where V; = 072Z,GZ7 + 1 n,- Model [1] can be compacily represented for all clusters as
31 Y=XB+Zu+e

where ¥ = [YT, .., Y217, X = [X], .., X017, Z = diag(Zy, -, Zm), w = [u], ., ul]",
and e = [el,....eL]7. It is further assumed that u~N (0, G*), G* is a block diagonal of m
matrices, each equal to G, and e ~N (0, 02I). The covariance matrix of Y is

[4] Var(Y) = ZG'Z" + o1 = o2V

where V = ¢~2ZG*Z" + I. Based on the normality assumption of both the random

effects and the residual errors, the loglikelihood function underlying model [3] is
represented next.

3. Likelihood Decomposition for Testing the Random Effects

3.1 Likelihood Decomposition

Let f(Y|B,0% G) be the marginal density of ¥, then

—2logf(Y|B,0%G) = e ,
nlog(2mo?) + N, loglVi| + T, (Y, ~ X BYVIH (Y — XiB) [o
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Since Vit = I, — Z;(¢%I, + GZ] Z;)*GZ], the above expression of the likelihood
function can be decomposed into

(5] —2log f(Y|B, 0%, G) = g1 (YIB,0?) + g2 (Y1B,0%, G)
where
9:(¥[B.¢%) = (N —m) log(2ra?) + LT, B] B, /a?,
g2(Y|B,0%) = mlog(2no?) + X, log|V;| + ¥, CTv7ic; /o2,
By = K(Y;~ X,f),C; = Py(Y; ~ XB),K; = I, - P, , P, = Z,(ZTZ)*Z].
This decomposition utilizes the fact that K;V;' = K; and thus, g,(Y|B,0?) doesn’t

depend on G. The result holds because BY V;1C; = 0. A hypothesis test for the need for
all random effects in {3] can be developed by utilizing this result as shown below.

3.2 Testing Random Effects

The following hypothesis testing problem about the variance components is of concern,
Let

(6] Hy: G=0 against H;: G>0

The development of an exact F-test is motivated by the decomposition in [5]. Under the
null hypothesis [6], note that from [4] and [5] we have Vi' =1, and PVi' =P,
Further, the following three results hold.

First, X BB, /o?=31.(Y; - X:B,)TK.(Y; — X.B,) /o? follows chi-square
distribution with trace(M,,) degrees of freedom where §,, = X7, (XT K, X;) " X] K.V;,
M, = K — KX(XTKX)"X"K and K = diag(Ky, .., K).

Second, XML, CTVC; fo?=X12 (Y, — X, Be)" P, (Y, — X, Bg) /o? follows chi-square
distribution with trace(Mg) degrees of freedom where g = Y%, X'{'P.;Xil-X}'P iYi,
Mg =P —PX(X"TPX)"X"P and P = diag(P,, ..., P;,). Note that f,, and Bg are the
maximum likelihood estimators under the null hypothesis of no random effects.

Third, F, = XL, B[B;/o* and Fy =31, CVC; /o? are independent quadratic
forms because Mz and My, are orthogonal. Thus, the test statistic
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7] Fo= Fp/trace(Mg)  YTMgY/trace(Mp)
T Fy/trace(My) — YTMyY/trace(My)

has F distribution where the degrees of freedom are trace(Mp) and trace(M,)
respectively. It is easy to show that the Eo(Fg) < Ey(F) where Ey(.) and E,(.) denote
the expected value under the null and the alternative hypothesis respectively. See for
example the analytical evaluation of Eq(Fs) and E;(Fg) under the random intercept
model in El-Horbaty (2017). Observing that E(F,) remains unchanged under both the
null and the alternative hypothesis, the test statistic in [7] provides a useful test for the
need for random effects in LMM. An illustration of the decomposition and the derivation
of test statistic in explicit formulas is given under the famous NER modei as shown next.

4. Formulations under the Nested Error Regression Model

The NER model is a popular example of LMM that appears in many fields of biomedical,
demographic, and small area estimation applications. The standard analysis of variance
method for evaluating the need for clustering, which is equivalent to testing zero variance
components, is obvious when applied under this model. Closely related tests that already
exist in the literature of NER models are addressed in the sequel.

The NER model is given by
8] Y= XiB + s+
where jn, = (1, ..., 1)T and 4;~N(0, 62). The covariance matrix of ¥, is
9] Var(v) = ojnfh + 02l = 5V, ()
where V;() = Pjnjh, + I, and ¢ = oﬁ/az.' Le't Z = diag(n,, .~ Jny)» the NER
model reduces to [3] with covariance matrix Var(Y) = ¢2ZZ7 + g%l = g*V({) where
V() = diag[V,(¥). s V()]
Let f(Y|B,0%, 02) bethe marginal density of ¥, it can be shown that
~2log f(Y|B,0?,05) = g1(Y|B,0?) + g(¥|B, 0% 07)

where for y; = y;(¥) = 1/(1 + ) and ¥ = (§y,...,,7,)" and ¥, represents the
arithmetic mean of the i*® cluster. Then, the two functions

91Y|B.6%) = (n — m) log(2na?) + T, WL {(vy — 71) — (xy — XDTBY? /02, and
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9:T1B,0%,62) = mlog(2ra?) — L1, logy,(¥) + Iy ny vip) (5 — %" B)? /0%,

correspond to the within and between parts of analysis of variance, respectively. This
result has been utilized under the context of small area estimation in Kubokawa and
Erdembat (2010). Under the null hypothesis [6], which now reduces to Hy : g2 = 0, note
that the above two functions are, respectively, proportional to

o*Fy = S B { Oy = 70) = (- fc)Tﬁ}2~ =Y.V~ XiB) K(Y; — XiB)
o2F, =X (i — % B)? = XR,(Yi - XiB)TPi(Y; — XiB)

where P; = j, 'ajnl)“l,"ﬁI and K; = I, — P;. Based on the above representation, then
the above two quadratic forms are independent and each follows a chi-square

distribution. Thus, the construction of the F-test is analogously given by defining the
statistic

F /(m—(p+m—rank(Q)))
Fy [/(n—rank(Q))

[10]

FNER

where the augmented design matrix @ is such that @ = [X Z]. Thus, under the null

hypothesis, Fygz has an F distribution with m — (p + m — rank(Q)) and n — rank(Q)
degrees of freedom.

The decomposition in Section 3 and the consequent construction of test statistic
highlights the fact that testing zero variance components can be shown as an analysis of
variance problem in a simple fashion. Thus, this result extends the work in Searle et al.
(1992) under the balanced a one-way mixed ANOVA model. El-Horbaty (2017)
emphasizes that the test statistic is derived for testing random effects and cannot be
applied to test for absent fixed effects. However, the model transformation used therein is
valid under the restriction that the covariance matrix of the random effects is known up to
a constant. The constant is ¢;Z in this case.

Datta et al. (201 I} consider only the numerator of Fygzp in [10] as another test statistic for
testing the same hypothesis. The test statistic is given by Fpaere = F2(m— (P +m-—
rank(Q))). Since B and o2 are unknown, their estimates are given by Bows =
(XTX)"1XTY and 6%, = YT MyY/tr(My) where My = I —X(X"X)"'X". Since the
asymptotic distribution of  Fpge is unknown, this problem is overcome by
approximating the distribution using the method of parametric bootstrap.

A numerical investigation of the comparative performance of the F-test to recent
resampling-based tests doesn’t exist except under the NER model context in El-Horbaty
(2017) and Drikvandi et al. (2013). We bridge this gap in the next section by conducting
extensive simulation studies under LMM involving multiple random effects.
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5. Simulation Study

In order to distinguish the numerical study conducted in this section from other stpdies
that involved the use of the F-test in under models involving only a single variance
Component, we take two points into consideration. First, we run the test that is presente.d
in Section 3 to models involving multiple variance components. Specifically, the test is
applied to a linear trend model involving two random effects as well as to a LMM
involving three random effects. Second, the test is compared to a recently prppose:d
permutation test (Drikvandi et al., 2013) to show how the F-test is more reliab.le in
detecting the presence of the random effects. Note that both tests are reliable even if the
distribution of the random effects is misspecified. The latter fact is emphasized in the
runs as shown in the next paragraphs.

5.1 Models with two random effects
First consider the linear trend model with random intercepts and random slopes

fL1] Vi = ay + agityy + gy
G =Prtuy, au=PF+tuy i=1..,m j=1,.,n

where £;; is the /™ observation time for the i individual, 8, and B, are fixed effects, and
Uy; and uy; are the random intercept and the random slope, respectively. For this model,

the objective is to test for the need of both the random intercept u,; and random slope uy;
in the model.

In the simulations, let Br =1, B, =2, tyy = j , and assume that g; ~ N(0,1). Let

11 G2
““lg on
u; = (uqy, )7, First, a bivariate normal distribution with zero mean and covariance
matrix G and, second, a bivariate Student’s t-distribution with a zero mean, degree of
freedom df =3, and scale matrix (df — 2/df)G. Under each of these two
distributions, 1000 Monte Carlo samples are generated from model [11] with different
vatues of G for m = 10,15 groups and n = 3,5 observations per group. Specifically,

], and consider two types of distributions for the random effects vector

we set the covariance matrix G, equal to [g g] to compute the size of the tests, G, =

0.05 0.02 ~[0-08 002) - _101 005] . . _[01 0.09 o
[0.02 0.05]’ G3—[0.02 0.08F " ~ lo.gs 0.1] and % =1p.09 01

investigate the empirical power of the test at a nominal level a =0.05. B =1000 is

chosen as the number of permutation samples for the permutation test in Drikvandi et al.
(2013) denoted by T.
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Table (1): Size and power of the T-test and the F-test in model {11] with &;~N (0,1) and bivariate normal
distribution for (byy, by)™

Covariance m=10 m=15

maftrix of n=3 n=5 . . n=3 n=>5

(bye ba))T T F T F T F T F
G,y 5.6 5.7 4.0 5.8 5.4 5.8 5.6 5.8
G, 13.0 16.6 474 73.3 18.0 73.3 58.6 73.3
G; i7.0 22.9 59.6 87.8 24.6 87.8 71.6 87.8
G, 21.8 33.5 67.6 95.1 326 95.1 77.8 95.1
G 27.2 388 67.4 96.5 38.4 96.5 76.6 96.5

- T represent the permutation test.
F represent the exact F-test.

Table (2): Size and power of the T-test and the F-test in model [1 1] with &;~N (0,1) and bivariate
Student’s t distribution for (By;, byi)™

Covariance m=10 m=15

matrix of n=3 n=5 n=3 _ n=>5

by by)T T ¥ T F T F T F
Gy 4.6 5.2 6.0 54 4.6 6.4 34 5.0
G, 3.2 154 39.8 57.7 15.6 20.4 46.2 73.9
G, 10.2 20.7 50.0 72.0 21.0 27.5 60.4 87.7
G, 15.2 26.7 56.0 81.5 25.8 36.9 68.4 92.8 :
Gs 17.2 30.7 58.2 84.7 27.6 43.2 68.2 96.0

- T represent the permutation test.
- Frepresent the exact F-test.

The results from Table | and 2 indicate that the F-test is superior to the T-test under all
settings. Although the difference in the power between the two tests could be quite small
when the group size and the number of groups are both small, for example m = [0 and n
= 3, the F-test shows larger power as the G departs from its null vaiue. This is observed
by comparing the power of the two tests as G moves from G up to Gs. As bothmand n
increase the gap between the powers increases to about 30% difference between the two
tests. Whether the random effects follow multivariate normal distribution or a
multivariate -distribution does not change the above conclusion.

5.2 Models with three random effects

Next, we perform a simulation study for the LMM given by

[12] YU = ﬁ]_ + Bzxij + bli + bziZle + b3izij2 -+ E,:j ’ i=1,....m j =
1, ""nl':
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11 J1z2 913
G= |91z Y22 Y23

13 G223 G33

The performance of the F-test and the permutation test is assessed when all the random
effects u;;, uy;, and uy, are tested under model (12]. In the simulations, letf; =1,
B2 =2, and assume that gij ~ N(0,1). The covariates xj;, z;, and z;j, are all
generated from U/ (0, 1).

Considered a multivariate normal distribution and a multivariate Student’s ¢ distribution
for the vector of random effects 1; = (uy;, U us;)T. Under each distribution, we
generated 1000 Monte Carlo samples from model [12] with different values of G for

0 00
m =7,15 andn = 5,10. We set the covariance matrix G, equal to [O 0 O] to
0 00

02 01 0.1 05 01 01
0.1 0.2 0.1], G; =101 05 0.1}, and

01 01 02 0.1 0.1 05

calculate the size of the tests, G =

1 02 02
Gy = [0.2 1 0.2] to evaluate the empirical power of the tests at 2 nominal level of

02 02 1
a = 0.05.

Table (3): Size and power of the T-test and the F-test in model [12] with &,y~N(0,1) and multivariate
normal distribution for (byy, by, byy)”

Covariance m="7 m=15
matrix of n=>5 n=10 n=5 n=10
(byi. bay, by)T T F T F T F T F
Gy 4.6 4.3 5.6 4.9 3.4 5.1 5.0 4.9
G, 2L0 259 34.2 74.7 27.8 58.2 492 96.7
G; 30.6 47.2 55.2 92.1 39.0 86.2 68.8 99.9
Gy 434 734 78.8 98.5 458 99 80.4 100

T represent the permutation test.
F represent the exact F-test.

The results from Table 3 and 4 confirm the previous conclusion made under the linear
trend model. Under a the LMM with three random effects in [12], the F-test is superior to
the T-test under all settings. The only case where the two tests show a quite small
difference in power is when the number of groups, group size, and the matrix G > 0 are
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set at their smallest values. As both m and #n increase the gap between the powers can
increase to about 46% between the two tests as is the case when m = {5 and n=5.

Table (4): Size and power of the T-test and the F-test in model [12] with g~N (0,1} and multivariate
Student’s t distribution for (by;, by, b3)7

Covariance m=17 m=15
matrix of n=5 n=10 n=35 n=10
(bys by, bag)™ T F T F T F T F
Gy 3.8 49 5.0 4.9 4.8 4.8 5.0 5.1
Gy 12.8 23 30.4 57.3 20.0 439 | 44.8 85.4
G 19.8 36.8 472 77.1 3.8 67.3 61.0 |1 969
G, 29.2 58.6 66.0 919 | 416 90 73.6 99.8

T represent the permutation test.
F represent the exact F-test.

6. Application

The F-test is applied to a data on the plasma inorganic phosphate flux. The data set is
obtained from a study of the association of hyperglycemia and relative hyperinsulinemia
performed in the Pediatric Clinical Research Ward of the University of Colorado Medical
Center (Zerbe and Murphy, 1986). In that study, standard glucose tolerance tests were
administered to three groups of subjects: 13 controls, 12 non-hyperinsulinemic obese
patients, and 8 hyperinsulinemic obese patients. Plasma inorganic phosphate
measurements were obtained from blood samples drawn at 0, 0.5,1, 1.5, 2, 3, 4and 5
hours after a standard-dose oral glucose chatlenge. The objective of the study is to
investigate the changes of plasma level over time and to see whether these changes are

treatment-dependent. The individual profiles are presented in Figure | for each group
separately.

The assessment of the heterogeneity among patients with respect to the overall mean and
evolutions over time is particularly important for the sake of assessing the impact- o.f the
treatment on the plasma level. The profiles show that the plasma level exhﬂ_:nts a
quadratic response as a function of hours. Thus, the LMM suggested below is similar to
that in Verbeke and Molenberghs, (2000, p. 25).

Each individual profile (subject) shown in Figure | is modelled by a quadratic function

over time, where time is expressed as hours. Thus, the proposed regression model in the
first stage is

[13] Yij = By + Baityy + Bai th + &)
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where Yy, is the j* plasma level for the i** subject (patient) at time ¢;; (in hours). In the
second stage, the subject-specific intercept and a linear as well as a quadratic time effects
are related to the glucose tolerance groups of subjects (controls, non-hyperinsulinemic
patients and hyperinsulinemic). Then the model in the second stage becomes

Bii = B1Cy + BoNy + B7H, + by,
[14] Bai = B2Cy + BsNy + BgH; + by,
Bar = B3C; + BeN; + BoH; + by,

where Cj, N;, and H; are indicator functions such that C, refers to i*® subject in control
group, N; represents the i** subject in non-hyperinsulinemic group and H; is the i
subject in hyperinsulinemic group.

Cantral Non-hypersullnemis obese
= o —
w = w
3 w
g =9 k) .
3 E~
g & -4
o o~ -4
T T T T T T T T T T T
o 1 2 3 a 5 o L] 2 3 4
Hourg aftar glucose chakenge Hours pftar glucese chalienge

Hypersulinemic obese

Plasma leyels

T T T T
4} 1 2 3 4 ]

Hours after glucose chaltenge

Figure-1: Individual profiles of control and obese patients in the ptasma
inorganic phosphate experiment
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Combining the models [13] and [14] for a two-stage analysis of the plasma inorganic
phosphate data yields

[151  Yij = (ByCi + BulN; + By Hy + by) + (B2 + BsNi + BeHi + bap)ty;
+ (B3C; + BNy + BoH; + badth + &

which can be reformulated as

(B + bay) + ( Bz + by ty + (B3 + ba)tf + ¢, if Control,
Y, = (Ba + by} + (Bs + bty + (B + b3i)tfj + &; if Non — Hyperinsulinemic,
(B7 + b)) + (Bg + bty + (Bo + b3i)tizj +g; if Hyperinsulinemic

where B = (By. B2 B3 B Bs. B Bz B, o)’ is the veotor of fixed-effects
parameters, by; is a random intercept representing the heterogeneity between sub:|ects
with respect to baseline values, b,; and by; are, respectively, a random slope for tk!e linear
time effect and a random slope for the quadratic time effect representing the

heterogeneity between subjects with respect to evolutions over time, and g; is the
random error term.

Employing the variance least squares estimator of matrix G defined for the vector of
random effects u; = (uy; ,Ua Uzi)T

11 Gz Gz 0364 —0.074 0.008
€ =g G2z Gu3)=|-0074 008 —0.011
Gz G2z 33 0.008 -—0.011 0.001

is essential to apply the T-test. Nevertheless, this is not required under the F-test as it
employs the test statistic only under the null hypothesis of no random effcctg The
independence of estimating G in calculating the F statistic is explicitly shown in [7],
which does not depend on G. The estimate of o? is & = 0.17. Also, the estimates of the

fixed-effects parameters are fy = 3.69, B, =—-0.72, B, =0.16, B, =428, Bs=

—0.819, B = 0.158, 3, = 4.78, B = —0.95 and 35 = 0.161 respectively. The previous
estimates are based on the presence of the variance components.

Using 1000 as the number of permutations, the T-test yields a test statistic equal_to ?..49_6
with a p-value of 0.001. Thus, the test suggests that the variance components estimates in
© are nontrivial. The F-test produces a test statistic value equal to 5.84, with the degrees
of freedom are 90 and 165, with a p-value less than 0.0001. Hence, both tests conclude
that the variance components deviate from zero and that the random individual effects are

needed in the proposed model. The conclusion is made at any nominal level of bigger
than or equal to 0.1%.
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6. Conclusion

This article provides a new derivation to the exact F-test that is applicable under
unbalanced LMM. The relation between the derived statistic and existing methods for the
same testing problem in the literature is clarified. The main focus is given to the situation
where all the random effects are tested under the null hypothesis to have zero variances.
Simulation studies show that the F-test is superior to a distribution-free permutation test

by significant power difference. This result shows the reliability of the F-test even if the
random effects distribution is not normal.

However, this exact test suffers from two basic problems that might be met in practice.
One problem is the need to assume the normality ef the residual error terms under the
null hypothesis. The other problem is its incapability for testing only a subset of variance
components for a wide range of LMM. Since it is common to test all random effects at
once, the second problem does not deprive the test from its popularity and usefuiness.
The users of LMM are to be advised to use the exact F-test if it possesses a reasonably
good power relative to the other tests that are based on computed-intensive methods.
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On the performance of the exact F-test in linear mixed
models involving multiple variance components
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Abstract

Testing zero variance components in linear mixed models can be performed using an
exact F-test. The test statistic is derived using a.decomposition that is valid regardless
of the unknown covariance structure of the random effects. The decomposition splits
the log-likelihood function into two functions that represent the between and within
cluster variability in a traditional analysis of variance problem. Results from
numerical simulation studies reveal that the F-test has a competing power compared
to distribution-free permutation tests. An application to a rea! data set is provided.
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