
1. Introduction

Inference for fixed effects in normal linear mixed models can be conducted using a test 
statistic that follows an exact F or t test when the data are balanced, and the random 
effects are not correlated. When the data is not balanced or the random effects are 
correlated, the test statistic follows an F distribution approximately. In both cases, the 
inference depends on the estimates of the variance components of the random effects. 
Most of variance components estimation procedures e.g., analysis of variance ANOVA, 
maximum likelihood (ML), and restricted maximum likelihood (REML), sometimes 
produce negative estimates (see Searl and Gruber 2016; Searl et al. 2006, chapter 2),

The Egyptian Statistical Journal
No.1 - Volume (67) , 2023

journal homepage: www.esju.journals.ekb.eg
Print ISSN 0542-1748  -  Online ISSN 2786-0086

Impact of Negative Variance Component Estimates on the Kenward-Roger 
Test for Fixed Effects in Linear Mixed Models

Waseem Alnosaier 
 Department of Statistics, Institute of Public Administration,Riyadh,Saudi Arabia.

A B S T R A C T

A well-known procedure to make inference for fixed effects in a normal mixed linear model 
is the Kenward-Roger procedure (Kenward and Roger 1997), where a scaled Wald type 
statistic follows approximately an F distribution, and in special cases the test has an exact F 
test. In the procedure, the estimated denominator degrees of freedom of the F distribution, 
the estimated scale factor, and the scaled test statistic are calculated based on the data. 
The variance components of the random terms in the model are estimated by the restricted 
maximum likelihood (REML) method, in which sometimes the estimates produced are 
negative. Two methods are usually considered to resolve the issue of negative variance 
component estimates: to set the negative estimates as zero or to allow them remain negative. 
Assessing the performance of the procedure with each method based on the test level and 
power was done analytically and by a simulation study for four different designs. The estimates 
of the denominator degrees of freedom and scale factor were also calculated and compared 
for the procedure with each method. We showed that the Kenward-Roger procedure with 
the method that doesn’t constrain the variance component estimates to be non-negative was 
instable for some data sets with negative variance component estimates, and was excessively 
conservative for some designs. By setting the negative variance component estimates as zero, 
the procedure became stable and more adequate than with allowing the estimates remain 
negative for the designs considered in the simulation study. 
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although variances should be positive by definition. The reasons of obtaining negative variance 

component estimates have been addressed by many researchers (see, e.g., Searl et al. 2006; Littell et al. 

2006; Wu 1992; Zhang et al. 2000; Searl and Gruber 2016; Gao et al. 2008; Sjoberg 1995). Verdooren 

(1982) discussed the probability of having negative ANOVA estimates of the variance components and 

showed that this depends on the ratio of the variance components and the degrees of freedom in the 

ANOVA table. Since the variance components are positive by definition, a common practice among 

data analysts is to set the negative estimates as zero (Stroup and Littell 2002). However, setting the 

negative variance component estimates as zero requires attention and might affect the inference of 

fixed effects since it affects the estimates of other variance components, test statistic, and other 

estimates involved in the inference procedure. The impact of setting negative variance component 

estimates as zero and comparing this with allowing the estimates to remain negative for several 

procedures have been studies by several researchers. Stroup and Littell (2002) studied the impact of 

negative estimates of the variance components on the inference of fixed effects in unbalanced mixed 

linear models. They compared the performance of several procedures based on their rejection rates 

including the theoretical power proposed by Stroup (1999). However, studying the impact of negative 

variance component estimates on procedures that employs adjustment algorithms, e.g., Kenward-Roger 

(KR) procedure and the impact of negative estimates on the performance of the procedure has not 

received enough attention.  

Based on the results of Kackar and Harville (1984), and Harville and Jeske (1992), Kenward and Roger 

(1997) improved the estimator of the variance of the fixed effects. Besides using the adjusted estimator 

of the variance of the fixed effects, Kenward and Roger developed their test by allowing the Wald-type 

test statistic to be scaled, and distributed approximately as F distribution under the null distribution. 

The scale factor of the test statistic and the denominator degrees of freedom of F distribution are 

estimated by matching moments, and the approximation is modified in such a way that the estimates 

match the known values for two special cases when the test is exact. Since, the KR procedure uses the 

REML method to estimate the variance components in the model, it is expected that the procedure 

sometimes produces negative variance components. In their simulation study, Kenward and Roger 

(1997) stated that the REML estimates of the variance components were not constrained to be non-

negative. However, studying the effect of allowing the variance component estimates to remain 

negative on the procedure performance did not receive enough attention.  

In this paper, we show that the KR procedure with negative variance component estimates as suggested 

by Kenward and Roger (1997) is not appropriate for all cases, and the procedure encounters a 

computational problem for some data sets where the procedure produces outlier estimates of the 

denominator degrees of freedom and the scale factor. On the other hand, we show that setting the 

estimates as zero for these data sets resolves the computational problem and makes the procedure 

perform adequately. In fact, when the only non-negative variance component estimate is the variance of 

the residual error, setting the negative variance estimates as zero makes the procedure not affected by 

the data characteristic, and the degrees of freedom and scale estimates produced are fixed. The method 

of setting the negative variance component estimates as zero will be called the “restricted” method, and 

the method of allowing the negative variance component estimates to remain negative will be called the 

“unrestricted” method. For the data sets with negative variance component estimates that the KR 
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procedure with the unrestricted method does not encounter any computational problems, we assess and 

compare the performance of the two methods of the KR procedure.  

The model, notation, assumptions and the KR procedure are presented in section 2, and the issue of 

obtaining negative variance component estimates including some analytical results related to the KR 

procedure with the unrestricted and restricted methods are presented in section 3. Since the 

characteristic of the REML estimates of the variance components with both methods cannot be 

assessed analytically, a simulation study is presented in section 4 to assess and compare the 

performance of the KR procedure with the two methods. Four designs are considered in the simulation 

study: a balanced incomplete block design, a partial balanced incomplete block design, a random 

complete block design with missing data, and a crossover design, where the comparison is based on the 

level and power of the procedure with each method. The estimates of the denominator degrees of 

freedom, scale factors, and test statistics are calculated and compared for each method.   

 

2. Testing the fixed effects in linear mixed models 

Consider a multivariate normal data vector y  with mean Xβ , and variance covariance Σ  which is a 

linear function of unknown variance components σ . X  is a known n p  matrix of full column rank, 

and β  is a 1p  matrix of the fixed effects parameters. Suppose that we are interested in testing the 

linear hypothesis 0H :  L β 0  where L is a fixed p  matrix. Also, suppose that the test is 

performed by using the KR procedure as presented in Kenward and Roger (1997), and the test statistic 

is a Wald-type statistic of the form: 

11 ˆ ˆ ˆˆ[ Var( ) ]F    β L L β L L β ,                                                 (1) 

where β̂  is the estimated generalized least-squares estimator (EGLSE) of β  , which is  

1 1 1ˆ ˆ ˆ( )   β X Σ X X Σ y                                                          (2) 

where ˆ ˆ( )Σ Σ σ , and σ̂  is the restricted likelihood estimator (REML) of the variance components σ . 

Kenward and Roger improved the estimator of the ˆVar( )β based on the results of Kackar and Harville 

(1984), and Harville and Jeske (1992) to be the adjusted estimator of ˆVar( )β  which is  

                                
1 1

1ˆ ˆˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆˆVar( ) 2 ( )
4

r r

ij ij i j ij

i j

w
 

 
    

 
β Φ Φ Q Ρ ΦΡ R Φ ,                                   (3) 

 where
2

1 1 1 1 1 1 1 1( ) ,  ,  ,  ,i ij ij

i i j i j    

           
       

    

1 Σ Σ Σ Σ
Φ Χ Σ Χ Ρ Χ Σ Σ Χ Q Χ Σ Σ Σ Χ R Χ Σ Σ Χ and 

these quantities to be estimated by substituting the REML estimates of the variance components, and 

ˆ ˆCov( , )ij i jw    to be estimated by using the inverse of the observed information matrix. In addition, 

Kenward and Roger used a scaled form of F, say F F  that is distributed approximately as F( , )m  

under the null hypothesis. Using Taylor series approximations and some convenient assumptions, and 
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matching the moments of F
 to the moments of an F distribution, they obtained formulas for both the 

denominator degrees of freedom m, and the scale factor .   

2
4 ,   and   

1 ( 2)

m
m

E m





  

 
                                                       (4)                                                                   

2
where                                 .

2

V

E
   

E and V are the modified approximation of the expectation and variance of F so the approach produces 

the estimates of m and  that match the exact known values for two special cases.  

                           
1

2 1

2

2 3

12
1 ,  and  ,

(1 ) (1 )
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d B d B


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where                                           1 2

1
6 ,
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1 1 1 1

1
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3. The issue of negative estimates of variance components 

The estimators of the variance components of the random effects in the model might be classified into 

two types: canonical and non-canonical estimators. While the canonical estimators are always non-

negative, the non-canonical estimators e.g., Anova, maximum likelihood, and restricted maximum 

likelihood (REML) estimators, sometimes produce negative estimates. This happens because the 

calculation formulas used to produce the estimates do not ensure that the estimates are non-negative. 

Since the KR procedure uses the REML estimates of the variance components, sometimes the estimates 

of the variance components produced by the procedure are negative. A useful iteration form to compute 

the variance component estimates is equation (90) on p. 252 of Searl and et. all. (2006).  

    
1, 1

tr ,
r r

i j i ii j

    


D G D G σ  y G D G y                                      (6) 

where                                        
1 1 1 1 1( ) ,      G Σ Σ Χ Χ Σ Χ Χ Σ  

and                       2

1

Var( ) ,  for '  known symmetric matrices.
r

i i i

i

s


 y Σ D D  
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 is  with the equation solution  used in place of . 
G G σ σ  

The iteration equation above to compute the REML estimates of the variance components clearly does 

not guarantee that the solutions 
σ  fall in the parameter space of the variance components ,σ and one 

or more of the variance component estimates might be negative based on the data characteristics. In 

fact, the problematic issue of obtaining negative variance component estimates can happen in theory 

for the estimates of 
2

i  for 2i  , where the estimate of 
2 2

1e   cannot be negative. See the remark 

below. 

Remark 

The model presented in section 2 can be written in the form 

                                                 ,  y Xβ Zu e                                                                    (7) 

where u represents the random effects, Z is the corresponding matrix, and e is the residual errors. 

Hartley and Rao (1967) developed two equations to calculate the maximum likelihood estimates of the 

variance components in terms of matrix H , where 
2 ,eΣ H and thus H  is a function of the ratios

2 2/  for all 2i e i   . Corbiel and Searle (1976) developed the equations for the REML estimators, and 

the iterative form to calculate the REML estimates of the residual errors is 
1

2 ( )
,e

n p


 
   




y K KH K Ky
                                                 (8) 

where Ky is the data vector used instead of the original data vector y  to calculate the REML estimates 

of the fixed effects in the model, and  is  with  used in place of . 
H H σ σ  

Notice that 
1( ) K KHK K  is a non-negative definite matrix, and 

1( )  y K KHK Ky is a non-negative 

value (Harville 2008, theorem 14.2.9). Since typically the initial values of 2 2, and  for all 2e i i     to 

perform the iteration are non-negative, then 
1( )   y K KH K Ky will stay non-negative for all the 

iteration process, and hence the REML solution cannot be negative.     

 

The analysis of the KR procedure might be performed by using the PROC MIXED procedure of SAS 

with adding option DDFM KR  in the model statement (SAS Institute Inc 2021). Although the 

original KR procedure presented in Kenward and Roger (1997) did not constrain the REML estimates 

of the variance components to be non-negative, the PROC MIXED procedure set the negative estimates 

as zero by default. By using option “NOBOND” in the PROC MIXED procedure, SAS allows the 

negative variance component estimates to remain negative. However, as will be seen in the simulation 

study in section 4, the KR procedure with the unrestricted method encounters a computational problem 

for some data sets with negative variance component estimates based on the data characteristics. In 

particular, for these data sets with negative variance component estimates, the estimate of the quantity

2A  (as defined in section 2) is inflated in such a way that 2A  , and hence the obtained estimate of E 

(as defined in equation 5, section 2) becomes negative. This leads to outlier estimates of the 

denominator degrees of freedom, and the scale factor. For these data sets, the KR procedure with the 

unrestricted method, which is obtained in SAS by using option “NOBOND” in the PROC MIXED 

procedure, SAS only produces the variance component estimates, and does not perform any further 
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computations for the KR procedure. However, the KR procedure with the restricted method in which 

the negative variance component estimates set as zero, the PROC MIXED procedure performs the KR 

procedure and provides the result of the inference of the fixed effects including the estimates of the 

denominator degrees of freedom and the scale.  

If the only non-negative variance component estimate is the estimate of the variance of the residual 

error, then the estimates of the denominator degrees of freedom and the scale factor produced by KR 

procedure with the restricted method are fixed and do not rely on the data characteristics. See the 

lemma below.     

Lemma 

For the model considered in section 2, and when all variance component estimates are negative except 

the variance of residual error, then the estimates of the denominator degrees of freedom and the scale 

factor produced by the KR procedure with the restricted method are n p  and 1 respectively. 

Proof: By setting 2 0i  for all 2i  ,  it can be seen that 1 2 and A A (as defined in equation 5) reduced 

to  

              
2

2 11
1 11 1 2 2

 [tr( )]
( )e

w
A w


 ΘΦΡ Φ         and       11

2 11 1 1 2 2
      tr( )

( )e

w
A w


 ΘΦΡ ΦΘΦΡ Φ  

Since 1 2=  ,A A then the estimates of the denominator degrees of freedom and the scale factor for the 

KR procedure are  22 ,A  and 1 respectively (Alnosaier and Birkes, 2019, lemma1). 

To compute the estimate of
ijw , we used the inverse of the information matrix as in equation (95) on p. 

253 of Searl et all. (2006). 

                                   
, 1

r

ij i j
w


≈   

1

, 1
2 tr ,

r

i j
i j





 
  

D GD G                                           (9) 

and                                                               11w ≈  2 tr GG  

By straightforward calculation, we can see that: 

  1

112 2 2 2

1
tr tr ( ) ,  

( ) ( )
n

e e

n p
w

 

 
     GG I X X X X ≈

2 22( )
,e

n p




 and hence 

22 = .A n p  

 

4. Simulation study 

To assess and compare the performance of the KR procedure with the restricted and unrestricted 

methods to make inference of the fixed effects in mixed linear models, a simulation study was 

conducted for four different designs:   

Design 1: A design with twenty-one observations, nine treatments, seven blocks, and the maximum 

block size is three, obtained from a partial incomplete block design on p. 329 of Kuehl (2000), and 

deleting blocks 8 and 9. 

Design 2: A design with twenty-one observations, four treatments, nine blocks, and the maximum 

block size is three, obtained from a balanced incomplete block design on p. 317 of Kuehl (2000), and 

deleting run 10, and treatment 550.  

Design 3: A design with forty observations, obtained from a complete block design with six treatments, 

seven blocks, and deleting two observations from different blocks and different treatments.  
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Design 4: A crossover design with four treatments, two periods, and twelve sequences, obtained  

from section 4.1 of Kenward and Roger (1997). 

The model for designs 1, 2 and 3 can be written as  

                                                     ijk i j ijky b e      

for 1,..., , 1,..., ,i t j s  1,..., ijk n  and all ijn  are 0 or 1, where is the mean, i  is the fixed 

treatment effects, jb  is the random block effects, and ijke  is the residual errors. The jb and ijke  are all 

independent with jb ~ 
2N(0, )b  and ijke ~

2N(0, ).e   To have the design matrix of the fixed effects a full 

column rank to satisfy the assumptions of the model in section 2, the model can be reparametrized by 

setting i i t     for 1,..., 1,i t  and t     . Hence, i i        for 1,..., 1,i t  and 

1 1t t      

    . Then the model can be expressed as  

    ijk i j ijky b e      , for 1,..., 1,i t   

and 1 1tjk t j tjky b e    

     for i t  

and the null hypothesis of testing that there are no treatment effects in terms of the reparametrized  

model is * *

0 1 -1H : 0t    .  

The model for design 4 can be written as  

[ , ]ij i j k i j ijy s e        

for 1,...,12,  1,2,  1,..., 4i j k   , where is the mean, is  is the random sequence effects, j  is 

the fixed period effects, k  is the fixed treatment effects, and ije is the residual errors. The is  and ije are 

all independent with is ~ 2N(0, ),s  and ije ~
2N(0, ).e  Similar to the model for designs 1, 2 and 3, the 

model is reparametrized so the design matrix of the fixed effects is a full column rank by setting

2 4       ,
*

1 1 2    , and 4k k     for 1, 2,3.k  Then, the terms of the fixed effects in the 

model can be expressed as: 

                                              
* *

1 1 ,k k            

                                             
* *

2 1k k          ,    for 1, 2,3,k   

and                                       
* * * *

1 4 1 1 2 3              , 

                                            
* * * *

2 4 1 1 2 3              . 

Then the model is expressed as  

                                            1 1 1i i k iy s e         ,   

                           2 1 2i i k iy s e         , for 1,...,12,  and 1,  2,  3,i k   

and                                      1 1 1 2 3 1i i iy s e               , 

                            2 1 1 2 3 2i i iy s e                for 1,...,12,  and 4i k   
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and the null hypothesis of testing that there are no treatment effects in terms of the reparametrized 

model is 
* * *

0 1 2 3H : 0     .   

For each design, we considered five settings of the ratio  , where b e    for designs 1, 2, and  

3, and s e   for design 4, namely 0.25,  0.5,  1,  2,  4,  and for each setting of , 10,000  

data sets have been simulated under the null distribution with no treatment effects. The simulation was 

done by generating the random terms in each design with each setting of ,  where, it was assumed 

that 0  . Similarly, 10,000 data sets have been simulated under the alternative distribution where 

there were some treatment effects. In particular, we set 
1 0,    and 

2 3 0.3     were added to the 

generated data sets of designs 2 and 4. For designs 1 and 3, we set 
1 2 3 0,         and for 3i  , 0.3i

   

were added to the generated data sets.. 

The REML estimates of the variance components were computed by the iteration algorithm presented 

in equation (6). The iteration algorithm did not converge for some data sets, and the convergence rates 

(rounded to one decimal place) were reported in table 1. The convergence rate increased as 

increased for each design, and it also increased as the design size increased. Almost 100% of all 

generated data sets for the largest design (i.e., design 3) converged except few data sets for 0.25.   

For smaller designs (i.e., designs 1 and 2), almost all generated data sets converged for 2  and 4. 

For the restricted method, the negative variance component estimates set as zero, and the iteration 

algorithm was re-performed and the REML estimates of the variance of the residual errors were re-

computed accordingly.    

 

   
Design 1 Design 2 Design 3 Design 4 

0.25 89.6 96.3 99.9 99.8 

0.5 92.8 97.8 100.0 99.9 

1 97.7 99.6 100.0 99.9 

2 99.8 100.0 100.0 100.0 

4 100.0 100.0 100.0 100.0 

       Table 1 The percentage of 10,000 generated data sets under the null hypothesis for which the REML iteration algorithm converged  

 

 

4.1 Instable estimates with the unrestricted method 

For some generated data sets, a computational problem was noted with the KR procedure where the 

procedure was not numerically stable, and the estimates of m and  were outliers. In particular, the 

computational problem occurred for models with smaller designs (i.e., designs 1 and 2) with smaller 

values of . In fact, it was noted that the instability occurred with some (not all) of the data sets with 

negative variance component estimates, and when the estimates allowed to remain negative as 

suggested by Kenward and Roger (1997) (i.e., with the unrestricted method). Because of the data 

characteristics of those data sets, it was also noted that the estimate of the quantity 2A  (as defined in 

section 2) was inflated in such unusual way in which 
2A  . This implies that the obtained estimate of 

the expectation, as in equation 5, 
21/ (1 )E A    to be negative (and also the estimate of the variance 
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V and   , as in equation 5, were noted to be negative). Typically, the estimates of  E and V are 

expected to be positive since they are the estimates of the expectation and variance of the test statistic 

F, as in equation 1, which follows approximately the F distribution. The unexpected negative value of 

the estimate of   leads to negative value of ( 2) / ( 1)  , and hence unexpected estimate of the 

denominator degrees of freedom, as in equation 4, 4 ( 2) / ( 1)m     , which is less than 4. In fact, 

most of the cases the estimate of m found to be negative, and this yields a negative estimate of the 

scale, as in equation 4, / [ ( 2)]m E m   . These estimates of the denominator degrees of freedom and 

scale factor were outliers comparing to the estimates produced by other data sets. In fact, the KR 

procedure was derived based on matching the first two moments of F distribution which assumes that 

the denominator degrees of freedom is greater than 4, and the typical estimate of the scale factor to be 

positive and less than one. When the estimate of the quantity 2A does not exceed the value of but so 

close to it, the quantity 21 ,A which is the denominator of E, becomes close to zero leading to 

inflated value of the estimate of E. For other data sets with negative variance component estimates, but 

usual estimate of the quantity 2A , no computational problem was noted. 

On the other hand, this numerical instability was not noted with the restricted method for the data sets 

with negative variance component estimates even when the estimate of the quantity 2A was inflated. In 

fact, the estimates of m and  with the restricted method were not affected by the data characteristics, 

and were fixed values and equal to n p and 1 respectively for all generated data sets for all models 

(see the lemma presented in section 3). To illustrate the computational instability of the KR procedure 

with the unrestricted method comparing with the restricted method, an example of some data sets is 

presented below. 

 

Example 

Two data sets are considered: a data set (say data 1) generated for the model with design 1, and other 

data set (say data 2) for the model with design 2. Both data sets were generated under the null 

distribution, and 0.25.  The data vectors of 21 observations for each data set are attached in the 

appendix. The estimates 2 2ˆ ˆ,  b e   , 2
ˆ ˆˆ ˆ ˆ,  ,  ,  ,  and A E V m  were presented in table 2, where 2ˆ

b  was 

negative. For the unrestricted method, where 2ˆ
b was allowed to remain negative, the estimate of 

quantity 2A was inflated for both data sets. It was found that 2
ˆ 10.4075 8A    , and 

2
ˆ 12.1683 3A    for data 1 and data 2 respectively. Then, 2

ˆˆ 1/ (1 ) 3.1434,E A     and 0.0439 , 

and  ˆ 0.6844,  and 01 2 0. 4V    for data 1 and data 2 respectively. Those unusual values of the estimates 

lead to outlier estimates of ˆˆ 4.0132,  and 0.2008m     for data 1, and ˆˆ 0.1716,  and 0.2414m    

for data 2. On the other hand, with the restricted method, when 2ˆ
b set as zero, the procedure became 

stable and produced ˆˆ 12,  and 1m    for data 1 and ˆˆ 17,  and 1m    for data 2. Also, It was noted 

that when 2ˆ
b set as zero, 

2ˆ
e tended to be underestimated.  
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The estimating method Data sets 2ˆ
b  

2ˆ
e  

2Â  Ê  V̂  m̂  ̂  

The unrestricted 

method 

Data 1 -0.4766 1.4357 10.4075 -3.3230 -0.6844 -4.0132 -0.2008 

Data 2 -0.3692 1.0835 12.1683 -0.3272 -0.0142 -0.1716 -0.2414 

The Restricted method Data 1 0.0000 0.9181 1.3333 1.2000 0.8100 12.0000 1.0000 

Data 2 0.0000 0.6464 0.3529 1.1333 1.1856 17.0000 1.0000 

         Table 2 The estimates of 2 2ˆ ˆ,  b e   , 
2

ˆ ˆˆ ˆ ˆ,  ,  ,  ,  and A E V m  for data 1 and data 2. 

 

4.2 Comparison of the two methods 

For the purpose of assessing the performance of the KR procedure with the two methods, and to  

exclude data sets with outlier estimates, we limited the comparison to well-behaved data sets as defined 

by (Alnosaier and Birkes, 2019) that is the generated data set satisfied: (1) The REML algorithm to 

estimate the variance components converges, (2) the estimated expectation E is positive, and (3) the 

estimated denominator degrees of freedom m 4 . Table 3 presents the percentage of well-behaved 

data sets among the generated data sets (rounded to one decimal place) for the twenty models (four 

designs for all values of  ) under the null distribution. It was noted that the percentage of will-

behaved data sets increased as  increased for each design, it also increased as the design size 

increased. The percentages of will-behaved data sets for all designs were almost 100% for 2  and 4. 

For each of 0.25  , 0.5, and 1, the percentages increased as the design size increased. All generated 

data sets for the model with the largest design (i.e., design 3) were well-behaved except only few ill-

behaved data sets for 0.25  .  

 

   
Design 1 Design 2 Design 3 Design 4 

0.25 72.4 91.4 99.9 99.8 

0.50 80.9 95.0 100.0 99.9 

1.00 93.8 99.0 100.0 99.9 

2.00 99.5 100.0 100.0 100.0 

4.00 100.0 100.0 100.0 100.0 

      Table 3 The percentage of well-behaved data sets among 10,000 data sets generated under the null hypothesis 

 

The performance of the unrestricted and restricted methods of the KR procedure was compared based 

on the level and power of the procedure. The averages of the denominator degrees of freedom 

estimates, scale factor estimates, and test statistics were also calculated. For each model, the p-value of 

the test with each method was approximated to be the proportion Prob[ F( , ) ]m F  for each 

generated data set under the null hypothesis. The observed level of the test is the proportion of these p-

values that less than the nominal level 0.05. The adequacy of the method to be evaluated based on the 

observed percentage of p-values that are less than 0.05, and typically it is desirable to be close to the 

nominal level of the test 0.05. Similarly, the observed power of the test is the proportion of p-values 

that less than the nominal level 0.5 under the alternative distribution. 



No.1 - Volume (67), 2023 

11 
 

The percentage of well-behaved data sets with negative variance component estimates for all models 

(rounded to one decimal place) are shown in table 4. It was noted that for each design, the percentage 

of well-behaved data sets with negative variance component estimates among the generated data sets 

decreased as the value of  increased. This was expected since for smaller values of  , the real 

variance of the random terms (blocks for designs 1, 2 and 3, and sequences for design 4) were closer to 

zero, and hence their estimates were closer to be negative. Alnosaier and Birkes (2019) proved in 

lemma 4 that the residual errors can be simulated with 0  , and 2 1e  , and the other random term 

simulated with 0  , and variance equal to .  The percentages for the largest design (i.e., design 3) 

were smaller than for other designs for most values of  . In fact, for 4  , all well-behaved data sets 

for the four designs had no negative variance component estimates, and typically the two methods are 

identical. For the purpose of assessing both the methods, and comparing their performance, we 

considered the designs with the settings of the ratio   that had significant numbers of negative 

variance component estimates, namely 0.25 and 0.5.      

 

  Design 1 Design 2 Design 3 Design 4 

0.25 20.1 36.2 37.7 42.2 

0.50 15.7 24.0 13.7 28.5 

1.00 6.2 5.8 1.2 6.2 

2.00 0.6 0.3 0.2 0.2 

4.00 0.0 0.0 0.0 0.0 

       Table 4 The percentage of well-behaved data sets among10,000 data sets generated under the null hypothesis and noted to have      

negative variance component estimates 

 

4.2.1 The estimates of m, , and the test statistics with each method 

To compare the performance of the KR procedure with both methods based on the true level, and to get 

better understanding for the possible differences, we should study the differences of the estimates of the 

denominator degrees of freedom, the scale factors, and the test statistics since the inner working of the 

KR procedure depends on these estimates. The average of the estimates of the denominator degrees of 

freedom m, and the average of the estimates of the scale factors  for the eight models for all well-

behaved data sets, and for the well-behaved data sets with negative variance component estimates were 

calculated as presented in tables 7 and 8 (in the appendix) respectively. The averages of the estimates 

of m were rounded to one decimal place, and the averages of the estimates of scale factors were 

rounded to three decimal places. 

When all well-behaved data sets were considered in the comparison, as presented in table 7 (in the 

appendix), the average of the estimates of m with the restricted method was larger than with the 

unrestricted method. For each design, the average of the estimates of m for 0.25  tended to be larger 

than for 0.5    with both methods. This was expected since as  increases as the information from 

between blocks (or sequences) utilized to estimate the fixed effects and their variances decreased.  

When the comparison was restricted only to the well-behaved data sets with negative variance 

component estimates, it was noted that the average of the estimates of m was inflated and larger than 

for all well-behaved data sets with both methods, except model 1 where the estimates almost the same. 
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Similar to all well-behaved data sets, it was noted that the average of the estimates of m for the well-

behaved data sets with negative variance component estimates with the restricted method was larger 

than for the unrestricted method for all models. In fact, the estimates of m for the well-behaved data 

sets with negative variance component estimates with the restricted method were fixed for all data sets 

of each model, and equal to 12, 17, 34, and 19 for models 1, 2, 3, and 4 respectively, and this coincides 

with the lemma presented in section 3. 

When all well-behaved data sets were considered in the computation, the average of the estimates of 

the scale factors   were close to 1 for all models, and they were exactly the same or very close to one 

another for each design as presented in table 8 (in the appendix). The average with the restricted 

method were equal to 1, and this coincides with the lemma presented in section 3, and this slightly 

larger than for the unrestricted method for each model by at most 0.011. Similarly, when the 

comparison was limited to the well-behaved data sets with negative variance component estimates, the 

average with the restricted method was equal to 1 (the lemma in section 3), and except for model 1, this 

was slightly larger than for the unrestricted method for all models by at most 0.005. For the unrestricted 

method, the average of the estimates of   for model 1 (small design size with 9 treatments fixed 

effects) was the smallest average, 0.959, and it was equal to 1 for the model with largest design (i.e., 

design 3).  

The average of the test statistics for all well-behaved data sets, and also for the well-behaved data with 

negative variance component estimates was presented in table 9 (in the appendix). The averages of the 

estimates were rounded to three decimal places. It was noted that the test statistic was underestimated 

for the well-behaved data sets with negative variance component estimates. However, with the 

restricted method, and by setting the negative variance components as zero, 2ˆ
e tended to be 

underestimated (as illustrated in the example of section 4.1), and also, it is worth mentioning that the 

test statistic is scaled by which is 1 with the restricted method. This inflated the test statistics for the 

restricted method comparing to the unrestricted method. On other words, the test statistic for the well-

behaved data sets with negative variance component estimates found to be underestimated, but with the 

restricted method tend to be less underestimated than with the unrestricted method.            

 

4.2.2 Comparison of the test level for each method 

The observed percentage of p-values that were less than 0.05 under the null distribution for all well-

behaved simulated data sets, and for the well-behaved data sets with negative variance component 

estimates for the 8 models (4 designs with two values of  ) with both methods are presented in table 

5. Typically, because of the simulation error, the observed percentage of p-values was not expected to 

be exactly 0.05, and the simulation error is 22% n  where n is the number of data sets considered in the 

computation.  

When all well-behaved simulated data sets considered in the comparison, it was noted that 13 out of 16 

of the observed percentages of p-values were liberal (i.e., significantly larger than 0.05). For the model 

with the largest design (i.e., design 3), there was no significant difference between the observed 

percentage and 0.05 with both methods for the case 0.5.   Assuming that 0.2% as unimportant 

difference between two observed percentages, the KR procedure “appeared” to perform similarly for 

both methods based on the test observed level, for 3 models out of 8. For the other five models, the 
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procedure with the unrestricted method “appeared” to perform more adequately. Moreover, the 

observed percentage was more liberal for all well-behaved data sets than for well-behaved data sets 

with negative variance component estimates.  

However, when restricting the comparison of the two methods to the only the well-behaved data sets 

with negative variance component estimates, the situation reversed in some ways. It was noted that the 

observed percentage with the unrestricted method was excessively conservative for all models except 

the crossover models. On the other hand, except the models with designs 2 and 3 for 0.5,   the 

performance of the restricted methods was adequate where there was no significant difference between 

the observed percentage and 0.05. For models with designs 2 and 3, for 0.5,   the observed 

percentage was conservative with the restricted method; however, it was not excessively conservative 

as for the unrestricted method. In fact, this explains why the observed level with the unrestricted 

method “appeared” to be less inflated than for the restricted method when all well-behaved data sets 

above was considered in the comparison.  

The excessively conservative observed level for the well-behaved data sets with negative variance 

component estimates for the unrestricted method are due to the underestimated test statistics as seen in 

section 4.2.2, and seemed not affected by the larger estimated denominator degrees of freedom. For the 

restricted method, as seen in section 4.2.2, the test statistic found to be less underestimated, and the 

estimated degrees of freedom larger. This yielded less excessively conservative observed level. The KR 

procedure with the restricted method found to be more adequate for the models with block designs 

based on the observed level. For the model with the crossover design, both methods found adequate 

and performed similarly.  

 

 
The estimating 

method   

 

 

  

 

All well-behaved data sets 

well-behaved data sets with negative 

estimates of variance components 

 

Design 1 Design 2 Design 3 Design 4 Design 1 Design 2 Design 3 Design 4 

The unrestricted 

method 

0.25 6.54 5.29 5.46 6.27 0.78 2.60 4.24 5.10 

0.50 6.15 5.76 5.10 5.75 0.72 2.76 2.62 4.95 

The Restricted 

method 

0.25 7.27 6.11 5.84 6.13 5.30 4.84 5.25 4.77 

0.50  6.59 6.16 5.22 5.79 4.64 4.52 3.50 5.09 

   Table 5 The observed percentage of p-values that were less than 0.05 under the null hypothesis for all well-behaved simulated data  

   sets  and well-behaved data sets with negative estimates of variance components 

 

 4.2.3 Comparison of the test power with each method 

To compare the performance of the two methods based on the test power, the percentage of p-values 

that were less than 0.05 under the alternative distribution for all well-behaved data sets, and the well-

behaved data sets with negative variance component estimates for both methods are presented in table 

6. When all well-behaved data sets were considered in the comparison, it was noted that the test was 

more powerful with the restricted method. This was expected because of the so liberal observed test 

level with the restricted method as noted in section 4.2.2. The test for 0.5  was significantly more 

powerful than for 0.25  for both methods, and the model with largest design (i.e., design 3) had the 

most powerful test with the restricted method, 94.88%. Also, except the models with the smaller 
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designs (i.e., design 1 and 2) with 0.5  , the test tended to be more powerful when all well-behaved data 

sets considered in the computation than for the well-behaved data sets with negative variance 

component estimates. This was also expected based on our findings in section 4.2.2 that the observed 

level for all well-behaved data sets was more liberal than for well-behaved data sets with negative 

variance component estimates for each model with both methods.   

Similarly, when restricting the comparison to the well-behaved data sets with negative variance 

component estimates, the test was more powerful with the restricted method for all models. This was 

expected because the test was excessively conservative with the unrestricted method as seen in section 

4.2.2. The test, as expected, for models with large designs found to be more powerful, and with 

0.5  was more powerful than with 0.25.  for all models, the KR procedure found to be more 

powerful with the restricted method.    

 

 

The estimating 

method 

 

 

  

 

All well-behaved data sets 

well-behaved data sets with negative estimates 

of variance components 

 

Design 

1 

Design 

2 

Design 

3 

Design 

4 

Design 

1 

Design2 Design 3 Design 4 

The unrestricted 

method 

0.25 21.82 26.11 35.66 34.97 5.94 18.64 28.99 28.29 

0.50 70.7 78.27 94.60 88.99 48.93 69.40 91.42 84.13 

The Restricted 

method 

0.25 27.62 30.35 37.57 38.65 27.47 29.30 34.02 37.00 

0.50 78.25 81.85 94.88 91.09 84.30 83.57 93.44 91.57 

         Table 6 The observed percentage of p-values that were less than 0.05 under the alternative hypotheses for all well-behaved  

         simulated   data sets and well-behaved data sets with negative estimates of variance components 

 

5. Discussions and conclusions 

Like most of variance component estimation methods, the (REML) method sometimes produces 

negative estimates, although variances should be positive by definition. This is true because the method 

equations do not guarantee the estimates to be non-negative. In the simulation study, it was found that 

the negative variance component estimates occurred more often with smaller values of the ratios of the 

variance components  and small size designs. The negative variance component estimates in normal 

mixed linear models found to have an impact on the performance of the KR test for the inference of 

fixed effects since they affected the estimates of the denominator degrees of freedom, the scale factors, 

and the test statistics, and eventually affected the test level and power. The KR procedure with the 

restricted method found to overcome the procedure with the unrestricted method in two ways. First, the 

procedure with the unrestricted method found to be instable for some data sets with negative variance 

component estimates, especially for models with small size designs. Second, when the procedure was 

stable, the procedure with the restricted method found to perform better based on the test level and 

power.  

When the KR procedure with the unrestricted method was instable, the procedure produced outlier 

estimates for both the denominator degrees of freedom and scale factor, and the procedure performed 

poorly. When the procedure was stable with the unrestricted method, the estimated denominator 

degrees of freedom tended to be larger with negative variance component estimates, and the scale 
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factor tended to be slightly smaller. On the other hand, the test statistic was underestimated. Because of 

the underestimated test statistics, the observed level of the test was excessively conservative for the 

data sets with negative variance component estimates, and it appeared not affected significantly by the 

enlarged estimated degrees of freedom. Typically, the observed power became less powerful with 

negative variance component estimates. For the crossover design in the simulation study, the test was 

adequate based on the test level. However, the test was so excessively conservative for the block 

designs.  

By setting the negative variance component estimates as zero with the restricted method, the KR test 

found to be stable for data sets that the procedure was instable with the unrestricted method. By setting 

the negative variance component estimates as zero, the simulation study showed that the other variance 

component estimates (i.e., the variance of the residual error) was deflated as expected. This altered the 

test statistic values, the estimates of the denominator degrees of freedom, and the scale factors, and 

eventually altered the observed level and power of the test. The denominator degrees of freedom and 

scale estimates found to be fixed and not rely on the data character. In fact, the test statistic became 

larger than with the unrestricted method (i.e., less underestimated). The larger estimate of denominator 

degrees of freedom, scale of 1, and larger test statistic made the observed level less excessively 

conservative than with the unrestricted method, and eventually the test tended to be more powerful.    

For the crossover design, the test with the restricted method was as adequate as with the unrestricted 

method based on the test observed level, however, the test was more powerful with the restricted 

method. For the block designs, the observed level with the restricted method was less excessively 

conservative and the test was more powerful.   

The adequacy of the restricted method for the KR test found here might be limited to the similar 

designs presented in this paper, and more studied and investigation for the KR test with both methods 

for other designs is suggested.      
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Appendix 

 

Data sets for the example in section 4 

 

The data rounded to four decimal places, and they are in blocks order.  

Data 1: [0.8773, -0.2444, 1.2805, 0.3426, -0.2859, -0.2334, 0.8470, -0.1763, 0.1673, -0.3426, 0.5562, 0.7307, 0.9014, 

0.6246, 0.3213, -2.043, 1.0356, 0.9406, 1.3180, -0.8350, -0.0956] 

Data 2: [-0.750, 0.7134, 0.3750, 0.2506, -0.1666, -0.1719, -0.4631, -1.2781, -0.4384, -1.0419, -0.4703, 1.5861, 

-0.524, -0.8910, 0.3684, 0.3383, -0.3487, -0.0774, 1.6013, 0.6131, 0.9513] 

 

 

 

The estimating 

method 

 

 

  

 

All well-behaved data sets 

well-behaved data sets with negative estimates 

of variance components 

 

Design1 Design2 Design3 Design 4 Design1 Design2 Design3 Design4 

The unrestricted 

method 

0.25 7.8 13.4 28.5 14.4 7.5 15.0 28.8 16.3 

0.50 7.7 12.8 28.3 13.6 7.5 15.1 28.7 16.3 

The Restricted 

method 

0.25 9.6 14.3 30.5 15.5 12.0 17.0 34.0 19.0 

0.50 9.0 13.4 29.0 14.4 12.0 17.0 34.0 19.0 

Table 7 The averages of the estimated denominator degrees of freedom for all well-behaved simulated data sets and     

 well-behaved data sets with negative estimates of variance components. 

 

 

 

The estimating 

method  

 

 

  

 

All well-behaved data sets 

well-behaved data sets with negative 

estimates of variance components 

 

Design1 Design2 Design3 Design4 Design1 Design2 Design3 Design4 

The unrestricted 

method 

0.25 0.989 0.998 1.000 0.992 0.959 0.995 1.000 0.988 

0.50 0.992 0.999 1.000 0.994 0.959 0.996 1.000 0.988 

The Restricted 

method 

0.25 1.000 1.000 1.000 0.997 1.000 1.000 1.000 1.000 

0.50 1.000 1.000 1.000 0.997  1.000 1.000 1.000 1.000 

Table 8 The averages of the estimated scales for all well-behaved simulated data sets and well-behaved data sets with 

 negative estimates of variance components. 

 

 

 

The estimating 

method  

 

 

  

 

All well-behaved data sets 

well-behaved data sets with negative 

estimates of variance components 

 

Design1 Design2 Design3 Design4 Design1 Design2 Design3 Design4 

The unrestricted 

method 

0.25 1.4 77 1.247 1.079 1.277 0.875 0.944 0.976 1.115 

0.50 1.485 1.244 1.082 1.284 0.900 0.956 0.961 1.126 

The Restricted 

method 

0.25 1.496 1.301 1.103 1.276 1.210 1.108 1.038 1.111 

0.50 1.498 1.272 1.088 1.284 1.207 1.090 1.013 1.125 

Table 9 The averages of the test statistics for all well-behaved simulated data sets and well-behaved data sets with negative 

estimates of variance components. 
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