
1. Introduction

A binary logistic regression model is commonly used to explain the relationship between 
a binary response variable (dichotomous outcome variable) and one or more independent 
variables  which  are  either continuous or categorical. This model is often used in applied 
sciences such as business, finance, biostatistics, machine learning, biology, and medical 
research. One  of   the  most common and frequent methods to estimate the parameters in 
a logistic regression model is the maximum likelihood estimation (MLE) method. Since the 
likelihood equation is nonlinear in β , there is no closed-form expression  for estimate     . 
Therefore, the ML estimator  MLβ

∧
can be obtained by using numerical iterative methods such 

as iteratively re-weighted least squares (IRLS) by Newton–Raphson algorithm, which is an 
asymptotically unbiased estimate of   .

β

β
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However, in the existence of the multicollinearity problem, the logistic regression model 

becomes unstable and the ML estimator of regression coefficients may be statistically 

insignificant with wrong signs and inflated variances.  

To overcome the effect of multicollinearity in the logistic regression model, many 

biased estimators instead of the ML estimator have been proposed in the literature. The most 

popular estimator to handle multicollinearity is called the ridge logistic estimator (RLE) which 

was proposed by Schaefer et al. (1984). Later, Aguilera et al. (2006) proposed the principal 

component logistic estimator (PCLE), Kibria et al. (2012) evaluated some biasing ridge 

parameters )(k , Mansson et al. (2012) introduced the Liu-estimator in logistic regression, and 

Nja et al. (2013) introduced the modified logistic ridge regression estimator (MLRE). 

In addition, Inan and Erdogan (2013) proposed Liu-type estimator, Wu and Asar (2016) 

proposed the almost unbiased ridge logistic estimator (AURLE), Asar and Genc (2017) 

introduced the two-parameter ridge estimator in logistic regression, Lukman et al. (2020) 

suggested the modified ridge type logistic estimator, Abdel-Fattah (2022) developed a new 

class of binomial ridge-type (RT) regression estimators, Varathan (2022) proposed an improved 

ridge type estimator for logistic regression, and Abonazel et al. (2023) introduced the probit 

modified ridge type (PROMRT) and probit Dawoud −Kibria (PRODK)  estimators for the 

probit regression model.  

Recently, Roozbeh et al. (2016) proposed a modified biased estimator based on the QR 

decomposition technique to remedy the multicollinearity problem of the design matrix in linear 

regression models. This technique depends on decompose the design data matrix )( X  into two 

matrices; the isometric matrix )( Q  and the upper triangular matrix )( R , such that QRX = . 

They suggested positive scalar values )( i  added to small elements of diagonal matrix R .  

The main objective of this paper is to propose a modified ridge estimator based on the 

singular value decomposition (SVD) technique of the design matrix )( X  to combat 

multicollinearity in the binary logistic model. In addition, the statistical properties of this 

estimator such as bias, variance-covariance, and matrix mean squared error (MSE) were 

derived. Finally, a simulation study and an empirical application were conducted to evaluate 

the performance of this estimator and to illustrate its potential benefits in a real-life data 

application.  

The rest of this paper is organized as follows; In Section 2, we review the logistic 

regression model and maximum likelihood estimator (MLE), and some biased estimators with 

their asymptotic mean squared error (MSE) are presented. Section 3 introduces the proposed 

modified ridge logistic estimator based on the singular value decomposition technique. Then, 

we drive the asymptotic statistical properties of the proposed estimators in Section 4. The 

choice of scalar parameter for this estimator is discussed in Section 5. In Section 6, a Monte 

Carlo simulation study is done. In addition, an empirical application is conducted in Section 7. 

Finally, in Section 8, we present a summary and conclusions. 
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2. Logistic Regression Model  

The general form of the logistic regression model can be written as follows 

                                                niiiiy  ..., ,2 ,1           , =+=                                             (1) 

where i  are independent random errors such that 0)( =iE   and )1()( iiiVar  −= , iy  

is a dichotomous random variable follows a Bernoulli distribution with parameter i  which is 

the expected value of the response variable iy  and defined as  
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where ix  is the ith row of the design matrix X  has an )1( +pn  dimension with p  

explanatory variables, and   is a 1)1( +p  vector of regression parameters.  

The maximum likelihood estimation method is the most common technique applied to 

estimate the logistic regression parameter vector )( . Therefore, the maximum likelihood 

estimator (MLE) of   is given as follows 
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variance-covariance matrix of the ML estimator )ˆ( ML  is 

                                                        ( ) 1 ˆ 
−

= SCov ML .                                                              (4) 

Since ML estimator is an asymptotically unbiased estimate of  , the asymptotic matrix 

mean squared error (MMSE) of ML̂  is 

                                                     ( ) 1
  

 ˆ −
= SMMSE ML .                                                        (5) 

Consequently, the scalar mean squared error (SMSE) of ML̂  is 

                                            ( ) ( )1
  

 

 ˆ −
= StraceSMSE ML  

+

=

=

1   

1   
 

1
p

j jλ
,                                       (6) 

where jλ  is the jth eigenvalues of the information matrix )  ( S . In the presence of a 

multicollinearity problem, the logistic regression model becomes unstable and the estimated 

parameters become inaccurate. Furthermore, the mean squared error value (MSE) of the 

regression estimate produced by the ML estimator is inflated and leads to inefficient estimates. 
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As a result, there are many alternative biased estimators are introduced in the literature 

instead of the ML estimator to overcome the effect of multicollinearity in the logistic regression 

model. Schaefer et al. (1984) extended the ridge regression to the logistic model by adding a 

small positive value to the main diagonal of the information matrix S. The ridge logistic 

estimator (RLE) is defined as 

                                          ( ) MLRLE SIkS  ˆˆ  
1

 

−
+= ,         0k                                          (7) 

where k  is the ridge parameter. A lot of literature mainly focused on different ways of 

estimating the ridge parameter k . The common ways to estimate the ridge parameters used for 

the logistic regression model are listed as follows [see, Schaefer et al. (1984) & Smith et al. 

(1991) & Kibria et al. (2012)] 

                       

MLML

k
 ˆˆ

1
1


= , 

MLML

p
k

 ˆˆ
 2


= , 

MLML

p
k

 ˆˆ

1
 3


+
= .                            (8) 

The asymptotic variance-covariance matrix of RLÊ  is defined as  follows 
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1
    

ˆ −−
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Also, the asymptotic matrix and scalar mean squared error (MSE) RLÊ  are defined as 

( ) ( ) ( ) ( )( ) ( )( )IIkSSISIkSIkSSIkSMMSE RLE −+−++++=
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where the first term in (11) is the asymptotic variance of RLÊ  and the second term is its 

squared bias, ML ˆˆ 2 =  and   is an orthogonal matrix whose columns are the eigenvectors 

corresponding to the ordered eigenvalues of the S  matrix.  

Mansson et al. (2012) generalized a Liu estimator in the linear regression for the 

logistic regression model. This estimator was called the logistic Liu estimator (LLE) and was 

defined as follows 

                                        ( ) ( ) ,ˆ ˆ   
1

MLLLE IdSIS  ++=
−

                                              (12) 

where d  is the shrinkage parameter, 10  d . 

Inan and Erdogan (2013) introduced the Liu-type logistic regression estimator, which is 

defined  as 

                                                    ( ) ( ) MLLLTE IdSIkS  ˆˆ   
1

 −+=
−

.                               (13) 
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Lukman et al. (2020) developed the logistic version of the modified ridge-type estimator 

in the linear regression model which is proposed by Lukman et al. (2019). The logistic 

modified ridge-type estimator is given as 

                                            ( )( ) MLLMRT SIdkS  ˆ1ˆ  
1

  

−
++= ,                               (14) 

where 0k  and 10  d . 

Recently, Roozbeh et al. (2016) proposed a new biased estimator based on the QR  

decomposition to overcome the multicollinearity in linear regression models. They used the 

QR  decomposition technique to factorize the ill-conditional design matrix )( X  into the 

isometric matrix Q  with orthonormal columns and the upper triangular matrix R . They 

mentioned that, when multicollinearity occurs for the matrix )( X , some diagonal entries of the 

matrix R  become too small, and more closeness of the small entries values of the R  matrix 

leads to more strength of the multicollinearity.  

To overcome the multicollinearity problem, they added a positive scalars )(  to the 

small diagonal entries of the upper triangular matrix R , and a modified version of the R  

matrix becomes ) ..., , ,0 ..., ,0(diag 1)( prRR  ++= . Consequently, the new biased 

estimator based on QR  decomposition, which is called the QR -based least-squares estimator 

)(QRLSE  for linear regression model, is defined as 

                                                  ( ) YXXX  ˆ 1
 )(

=
−

 ,                                                     (15) 

where )( QRX =  is a modified design matrix obtained from )(R . 

In the following section, we introduce a modified ridge estimator to overcome the 

multicollinearity problem in the binary logistic regression model, which is an extension to RLE 

proposed by Schaefer et al. (1984) and (QRLSE) for the linear regression model introduced by 

Roozbeh et al. (2016). While our proposed estimator is based on the singular value 

decomposition technique (SVD) which is applied on the design matrix )( X  to overcome the 

multicollinearity problem for the binary logistic regression model.  

 

3. Construction of the Proposed Estimator 

In this section, we introduce the proposed estimator, and some helpful definitions and 

theories will be briefly presented. The proposed estimator is constructed by considering the 

ridge logistic estimator (RLE) introduced by Schaefer et al. (1984) and based on the work of 

Roozbeh et al. (2016), by using singular value decomposition (SVD) technique applied for the 

design matrix )( X .   

Theorem 1. (Watkins, 2002): Let 
mn

A


R  be a nonzero matrix with rank 𝑟, it is possible to 

factorize A  as a product  
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T
VUA = , 

where 
nn

U


R  and 
mm

V


R  are orthogonal matrices such as IVVUU ==
  , and 

mn
 R  is a rectangular diagonal matrix its elements called the singular values, which are 

listed in descending order such as 0... min2max1 ==  r .  

By using Theorem 1, the pn  design matrix X  can be factorized into the product of 

three matrices as follows 

                                                   pppnnnpnX 
= VDU ,                                             (16) 

where U  and V  are orthogonal matrices, and  D  is diagonal matrix with elements called the 

uniquely singular values )s'( , which are listed in descending order as 

0... min2max1 ==  p , p  is the number of explanatory variables which 

refers to the exact rank of the full column rank matrix X . 

In the existence of multicollinearity, the design matrix )( X  becomes an ill-conditioned 

matrix, and the diagonal matrix D  becomes having r  large singular values, while the others 

are relatively small which perhaps close to zero [see, e.g. Kibria et al. (2012) & Roozbeh et al. 

(2016)]. To identify which singular values of D  are small, we need to determine a cutoff value 

or a positive constant )(  that separates the large and small singular values [see, e.g. Watkins 

(2002), pp. 269-272], such as 

                           prr   + ...... 121 ,                            (17) 

where r  is the numerical rank of ill-conditioned matrix X , which is defined as the number of 

singular values of X  that are substantially larger than  . Cattell (1966) introduced the scree 

plot that draws the singular values in a coordinate system and then r  is chosen as the “large 

gap” or “elbow”  of the graph.  

 To reduce the effect of the multicollinearity, we can keep the large singular values 

)...( 21 r   as they are because they are large enough.  On the other hand, it is 

reasonable to increase the small singular values )...( 1 pr  +  of the diagonal matrix D  

by some positive scalar values )( i  as follows 

                                            priiii  ..., ,1       , +=+  ,                                      (18) 

 

where i  are positive scalar parameters will be discussed in following section. Therefore, we 

get a modified version of the ill-conditioned design matrix )( X  such as  

                                                           VUD = ττX ,                                                         (19)             

where ),..., ,0 ..., ,0(diag 1 pr  ++=DD .  
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Consequently, the modified information matrix becomes as follows   

                                                              XWXS τ  

ˆ= ,                                                           (20)             

where )]1( ˆˆ[diagˆ
iiW  −=  which is a weight matrix estimated based on MLE. Hence, 

considering the ridge logistic estimator of Schaefer et al. (1984) and the modified information 

matrix )( τS , the proposed estimator can be obtained. The proposed estimator called a modified 

ridge logistic estimator based on singular value decomposition and denoted (MRLSVDE) can 

be defined as follows  

                                              ( ) ML 
MRL

SVD βSkISβ  

ˆˆ  
1−

+=  ,          0k                                  (21)            

where k  is the ridge parameter, i  are positive scalar values. 

Lemma 1. The proposed estimator is considered a general case, such as 
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Since the proposed estimator is a modification of the ridge logistic estimator, we hope 

that this estimator reduces the mean squared error (MSE) of the logistic regression estimation 

and makes our estimator more efficient than other biased estimators. 

 

4. Asymptotic properties of the proposed estimator 

In this section, we consider some statistical properties of the proposed modified ridge 

logistic estimator )ˆ(
MRL

SVDβ . The bias, variance-covariance matrix, and mean squares error 

(MSE) are derived.   

The asymptotic bias of )(ˆ 
ML
SVD  can be obtained as follows 

                          ( ) ( ) −=  ˆˆ MRL

SVD

MRL

SVD βEβBias  

                                                 ( )( )  −+=
−

  ˆ 
1

ML βSkISE   

                                                 ( ) ( )  −+=
−

  ˆ  
1

ML βESkIS  

Since ML̂  estimator is an asymptotically unbiased estimate of  . Therefore, the 

asymptotic bias of the proposed 
MRL

SVDβ̂  estimator can be obtained as 

                                     ( ) ( )( )  ˆ 1
 ISkISβBias   

MRL

SVD −+=
−

.                                       (22) 
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The asymptotic variance-covariance matrix of 
MRL

SVDβ̂  can be derived as follows   

                            ( ) ( )( )ML 
MRL

SVD βSkISCovβCov  

ˆˆ  
1−

+=   
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= Sβ Cov ML , then  
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++= kISSkISβCov   

MRL

SVD  . 

Consequently, the asymptotic matrix mean squared error (MMSE) of  proposed 

estimator )ˆ(
MRL

SVDβ  can be obtained as 
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where ( )( )    
1

ISkI S −+=
−

. While, the asymptotic scalar mean squared error (SMSE) 

of 
MRL

SVDβ̂  can be presented as 

              ( ) ( )( )MRL

SVD

MRL

SVD βMMSEtraceβSMSE ˆ ˆ   =       

                             ( )( ) ( )( ) ( )MRL

SVD

MRL

SVD
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+= , 

where )(jλ  is the eigenvalues of S  matrix. 

5. The Choice of the Scalar Parameter (𝝉) 

It is reasonable to conclude that the performance of the proposed estimator is affected 

by the values of scalar parameters as well as the ridge parameter )(k . Whereas, Roozbeh et al. 

(2016) pointed out that there is no closed-form expression for the scalar parameter in their 

QRLSE for the linear regression model, and they conducted some simulation and graphical 

results to find the best scalar parameter. So, we believe that the construction of the best formula 

for the scalar parameters perhaps depends on the following points  

1. The range between any small singular value and the next one of matrixD . 

2. The ridge parameter )(k , which is somewhat similar to the scalar parameters )( i . Since 

ridge parameter )(k  is added to all diagonal elements of the matrix S  while the scalar 

parameters )( i  are added to the last small singular values only of the matrix D . 

3. The number of explanatory variables (p) in the logistic model. 

4. The eigenvalues of S  matrix.   
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 In this context, by means of Monte Carlo simulations based on the mean squared error 

(MSE), we suggest that the scalar parameter may be defined as follows 
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where min  is the minimum eigenvalue of S  matrix, p  is the number of explanatory 

variables, k  is ridge parameter and s'  are singular values of the matrix D . 

The proposed estimator ( 
MRL

SVDβ̂ ) with the suggested scalar parameter formula is 

evaluated by means of Monte Carlo simulations in the scalar mean squared error (SMSE) 

criterion. 

In literature, multicollinearity is a concern when the condition index or condition 

number is greater than 15. Since the condition number is the square of the largest condition 

index, we suggest using the square of the condition index of the S  matrix to determine the 

small singular values ( s' ) in the D  matrix which are increasing by scalar parameters 

s)'( i . Such that the small singular values for which square of whose condition index is 

greater than 15. 

 

6. Simulation Study  

In this section, we conduct a Monte-Carlo simulation to compare the performance of the 

proposed MRLSVDE estimator with the well-known MLE and RLE estimators based on the 

mean squared error (MSE) criteria. The explanatory variables are generated at different 

strengths of the correlation using the simulation equations presented in Kibria (2003) and 

Lukman et al. (2019) as follows 

                        ( ) , ..., ,2 ,1  ; ..., ,2 ,1     ,  1
212

pjnix ipijij ww ==+−=                 (25) 

where ijw  are pseudo-random numbers from the standard normal distribution and   is the 

degree of correlation between the explanatory variables. We consider five different levels of 

correlations such as  = 0.85, 0.90, 0.95, 0.99, and 0.999. Then, the observations of the 

response variable are generated from the Be( i ) distribution where 
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where   is the true parameter vector which is restricted in many simulation studies to be 

chosen as the normalized eigenvector corresponding to the largest eigenvalue of  XX  

  so that 

 =
=

p

j
j

1

2
1 . To illustrate the effect of the sample size n , four various samples 75, 100, 150, 

and 200 are taken. Further, we consider different numbers of explanatory variables )( p  
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corresponding to 4, 6, and 8. In this study, we choose different values of ridge parameter ( 1k , 

2k , and 3k ) defined in Eq. [8], and its corresponding scalar parameters ( 1 , 2 , and 3 )  

respectively, defined in Eq. [24] for the proposed estimator (MRLSVDE). 

All computations were conducted using the R packages version 4.3.0, and the used 

packages and required libraries in the source file were “dplyr”,  “blorr”, “MASS”, “Metrix”, 

“glmnet”, “pracma” and “car”. Then the simulation experiment is replicated 1000 times, and 

the estimated MSE values of the estimators are obtained according to the following formula 

                                          ( ) )ˆ()ˆ(
1000

1ˆ
1000

 −−= 
=

r

rj

rMSE ,                            (27) 

where r̂  are the estimated parameters in the rth replication. The estimated mean squared 

errors (MSEs) of the MLE, RLE with 1k , 2k , & 3k , and its corresponding proposed 

MRLSVDE estimator with 1 , 2 , & 3 ,  are summarized for different values of  , n  and 

p  in Tables 6.1-6.3. 

Table 6.1. The estimated MSE values of the estimators for different 𝝆 when  𝒑 = 𝟒 

 

  

MLE RLE  MRLSVDE 

  with 1k  with 2k  with 3k   with 1  with 2  with 3  

75=n  0.85 2.1118 1.5025 0.7760 0.6650   0.7763 0.4713 0.4194 

0.90 4.0616 2.7703 1.3571 1.1463   0.7508 0.4820 0.4355 

0.95 6.1141 3.9052 1.7583 1.4522   0.9387 0.5329 0.4655 

0.99 35.7219 20.941 8.8256 7.2124   0.1279 0.1142 0.1107 

0.999 365.107 212.748 90.1339 73.8182   0.1144 0.1139 0.1137 

100=n
 

0.85 1.5715 1.1460 0.6030 0.5162  0.6765 0.3812 0.3320 

0.90 2.7489 2.0194 1.1139 0.9666  0.5823 0.4987 0.4535 

0.95 4.3455 2.7889 1.2631 1.0444  0.4389 0.2336 0.2028 

0.99 26.1301 15.5392 6.7102 5.5122  0.0684 0.0637 0.0624 

0.999 269.2637 153.954 65.3283 53.6403  0.0555 0.0550 0.0549 

150=n
 

0.85 0.9394 0.7079 0.3878 0.3337   0.4883 0.2655 0.2306 

0.90 1.1707 0.8584 0.4499 0.3828   0.5534 0.2961 0.2550 

0.95 2.4960 1.7324 0.8442 0.7060   0.4021 0.1784 0.1493 

0.99 12.8202 7.9133 3.5472 2.9354   0.0752 0.0526 0.0482 

0.999 128.9405 76.673 32.8409 26.8846   0.0410 0.0405 0.0404 

200=n
 

0.85 0.7196 0.5879 0.3844 0.3476   0.4325 0.2512 0.2290 

0.90 0.9191 0.7001 0.3891 0.3346   0.4781 0.2682 0.2323 

0.95 1.9356 1.3566 0.6737 0.5661   0.2636 0.1107 0.092 

0.99 8.5420 5.3628 2.4377 2.0215   0.0971 0.0414 0.0365 

0.999 100.8600 58.9659 25.7827 21.3102   0.0243 0.0240 0.0239 
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Table 6.2. The estimated MSE values of the estimators for different 𝝆 when  𝒑 = 𝟔 

 

  

MLE RLE  MRLSVDE 

  with 1k  with 2k  with 3k   with 1  with 2  with 3  

75=n  0.85 4.9615 3.6534 1.3387 1.1589   2.4379 0.9837 0.8628 

0.90 8.6089 5.8759 1.9445 1.6696   4.5585 1.9558 1.7210 

0.95 12.0540 8.2471 2.8217 2.4340   1.5918 0.7133 0.6350 

0.99 37.0153 24.0343 7.6824 6.5945   0.1566 0.1319 0.1293 

0.999 943.0959 615.829 203.5419 175.7291   0.2571 0.2552 0.2548 

100=n
 

0.85 2.3096 1.7251 0.7025 0.6192   1.1090 0.5475 0.4909 

0.90 5.3987 3.9050 1.4324 1.2410   1.3670 0.5074 0.4470 

0.95 10.8337 7.4726 2.7037 2.3507   0.7678 0.3393 0.3071 

0.99 67.1738 43.0526 14.7624 12.8511   0.1319 0.1234 0.1219 

0.999 512.5147 334.493 115.0579 99.8651   0.0992 0.0985 0.0983 

150=n
 

0.85 1.5525 1.2007 0.5199 0.4611   0.7713 0.3848 0.3466 

0.90 2.3951 1.7907 0.7261 0.6386   0.9336 0.4367 0.3912 

0.95 4.5332 3.2746 1.2669 1.1086   0.6497 0.2133 0.1897 

0.99 28.2067 18.7235 6.7686 5.9115   0.1442 0.059 0.0546 

0.999 316.2853 208.066 73.7943 64.2931   0.0396 0.0388 0.0386 

200=n
 

0.85 1.1460 0.9190 0.4305 0.3844   0.6283 0.3247 0.2932 

0.90 1.7732 1.3679 0.5954 0.5276   0.8064 0.3954 0.3552 

0.95 3.7565 2.7232 1.0874 0.9566   0.4425 0.1375 0.1228 

0.99 23.2268 15.4990 5.6722 4.9613   0.3081 0.0539 0.0479 

0.999 219.9348 142.716 51.2684 44.872   0.0298 0.0296 0.0295 

Table 6.3. The estimated MSE values of the estimators for different 𝝆 when  𝒑 = 𝟖 

 

  

MLE RLE  MRLSVDE 

  with 1k  with 2k  with 3k   with 1  with 2  with 3  

75=n  0.85 7.9062 5.5000 1.5429 1.3742   3.0143 1.2532 1.1427 

0.90 16.5145 11.5143 3.0522 2.6993   5.1181 1.8840 1.7050 

0.95 34.0302 21.3293 5.2128 4.6121   14.833 4.6984 4.1819 

0.99 115.5238 78.0677 21.9662 19.6202   0.6249 0.4404 0.4264 

0.999 1155.39 813.130 232.096 206.7431   0.2832 0.2817 0.2815 

100=n
 

0.85 4.6352 3.5247 1.1732 1.0563   2.0966 0.9254 0.8495 

0.90 8.9893 6.4909 1.9451 1.7368   2.6833 1.1481 1.0526 

0.95 25.4968 17.3581 4.8819 4.3585   2.4150 1.2443 1.1610 

0.99 94.7457 65.2526 19.2361 17.2334   0.4094 0.3273 0.3228 

0.999 1161.465 768.186 225.2209 202.4131   0.2305 0.2292 0.2290 

150=n
 

0.85 2.9898 2.3397 0.8410 0.7600   1.3419 0.5909 0.5417 

0.90 3.8156 2.9500 1.0378 0.9356   1.6025 0.6622 0.6048 

0.95 10.7659 7.7908 2.5542 2.3001   0.8507 0.2939 0.2713 

0.99 45.4548 31.3182 9.8785 8.9038   0.1393 0.0580 0.0560 

0.999 435.3315 303.825 95.9183 86.3507   0.0779 0.0764 0.0762 

200=n
 

0.85 1.6816 1.3751 0.5766 0.5299   0.8992 0.4401 0.4096 

0.90 2.9559 2.2929 0.8470 0.7677   1.2463 0.5536 0.5086 

0.95 6.6218 4.9375 1.6881 1.5230   0.6921 0.1115 0.1016 

0.99 28.1343 20.2552 6.6225 5.9681   0.1943 0.0430 0.0407 

0.999 288.9609 200.662 63.5103 57.2252   0.0434 0.0382 0.0378 

          Source: by the researcher from R outputs. 
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Tables 6.1-6.3. show that the proposed MRLSVDE estimator outperforms the classical 

MLE and RLE in the sense of minimum mean squared error criterion for all scenarios. The 

superiority of the MRLSVDE estimator appears clearly in the presence of high correlation 

degrees among the explanatory variables. 

Although an increase in the degree of correlation among explanatory variables has a 

negative effect on the MLE and RLE estimators, the MRLSVDE estimator works very well 

with high correlation degrees. Also, with more explanatory variables included in the model, the 

values of MSEs for all estimators increase, while the performance of the MRLSVDE estimator 

remains the best estimator. On the other hand, increasing the sample size has a positive effect 

on all estimators and the values of MSEs decrease for any correlation degree or each number of 

explanatory variables. 

Finally, it is important to note that with each improvement in the performance of the 

ridge estimator, the proposed MRLSVDE estimator also improves. Where the RLE estimator 

performs better with ridge parameter 3k  than 1k  and 2k  for all scenarios, therefore 

MRLSVDE estimator performs better with the corresponding scalar parameter 3  than 1  and 

2 .  

 

7. Empirical Application 

In this section, we conduct an empirical application in order to illustrate the performance 

of the proposed MRLSVD estimator with the existing MLE and RLE estimators. In addition, 

the potential benefits of this estimator in real-life fields are shown. Also, the results and 

conclusions are discussed. 

The real data used in this paper is secondary data which was taken from the 

http://paulblanche.com/files/DataFramingham.html website. This data was prepared by the 

famous "Framingham Heart Study”, which initially planned as a 20 years team study of 

residents aged 30-59 in Framingham town, Massachusetts, in 1948. The used data in our paper 

is a sample consists of 150 persons only. The data set contains variables that are indicated to be 

associated with the heart disease. We fit a logistics regression model where the heart disease is 

a response variable y  and defined as: 





=
otherwise.      0

 ,occured diseaseheart  if  1
iy  

We fit a logistic regression model where the response variable is explained by some 

explanatory variables defined as 

1X :  (AGE) Age of the person in years, 

2X :  (FRW) Framingham relative weight, 

3X :  (SBP) Systolic blood pressure at baseline mmHg, 

4X :  (DBP) Diastolic blood pressure at baseline mmHg, 

5X :  (CHOL) Cholesterol at baseline mg/100ml. 

http://paulblanche.com/files/DataFramingham.html
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The condition number can be used to detect the multicollinearity among explanatory 

variables. According to the literature, if the condition index or condition number is 15, 

multicollinearity is a concern; if it is greater than 30, multicollinearity is a serious concern.  

        Table 7.1 gives the eigenvalues, condition indices (CI), condition number )(  of the S  

matrix, eigenvalues and singular values of  XX   matrix, where 

jλ

λ
CI max

=  and 
min

max

λ

λ
= ,          , ..., p, j 21=  

where maxλ  and minλ  are the maximum and minimum eigenvalues of the information matrix 

)(S  respectively [see, e.g. Weissfeld and Sereika (1991), Lukman et al. (2020) & Awwad 

(2022)].   

Table 7.1. Condition indices & number of  𝑿′�̂�𝑿, and singular values of 𝑿′𝑿 matrix 

 𝑿′�̂�𝑿 𝑿′𝑿 

𝝀 Eigenvalue 
Condition 

index 
Condition 

index square 
Eigenvalue 

Singular values 

Dof  

1 1724915.213 1 1 13839189.89 3720.106 

2 29236.97 7.680999 58.99775 240769.109 490.6823 

3 3411.1505 22.4871 505.6697 28531.224 168.9119 

4 605.2539 53.38449 2849.904 4852.193 69.65768 

5 547.3829 56.13559 3151.204 4323.587 65.75399 

         Condition Number   3151.204  

                  Source: by the researcher through R outputs. 

Table 7.1. Shows a high value of the condition number 30)(  . Hence, this indicates 

that a serious multicollinearity problem exists in this data set. 

We determine the small singular values in the D  matrix which are increasing by scalar 

parameters s)'( i  using the square of condition index of the S  matrix. Table 7.1. indicates 

that, there is three of squared condition indices are greater than 15. Consequently, we can 

conclude that there are three small singular values in the D  matrix which can be increased by 

the positive scalars )( i  values to obtain the adjusted D  and then a modified X  matrix. 

In the literature, there are many rules on how to choose the ridge parameter )(k  for the 

ridge logistic estimator. In this paper, we take different values of k , such as 1k , 2k , and 3k , 

which are defined in Eq. [8]. In addition, we consider the best value of k  ( optk ) that produces 

the minimum SMSE value for the ridge logistic estimator. By plotting the SMSE of the ridge 

logistic estimator with lots of ridge parameters k . With every value of k , we consider a 
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corresponding scalar parameter )( i  for the proposed MRLSVDE estimator, which is defined 

in Eq. [24]. In the same way, the optimal scalar parameter )( opt  is considered.  

 
Fig. 7.1. The best value of 𝒌 (𝒌𝒐𝒑𝒕) for the RLE and best 𝝉 (𝝉𝒐𝒑𝒕) for the MRLSVDE. 

 

In Figure 1, we found the best values of k  ( 2570=optk ) and   ( 111=opt ) by 

plotting the scalar mean squared errors (SMSEs) for the RLE and MRLSVDE estimators with 

different values of k  and   respectively, from zero to 3000. 

Table 7.2 gives the regression coefficients, standard errors, and the MSE values of 

MLE, RLE, and the proposed MRLSVDE for the considered values of ridge parameter ( k ) and 

corresponding scalar parameters )( i  for the MRLSVDE estimator. 
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Table 7.2. The coefficients, standard errors and SMSE values (in 10−4) of estimators. 

  1̂  2̂  3̂  4̂  5̂  SMSE 

with 𝒌𝟏= 825.9584 and corresponding 𝝉𝒊= 18.10707 

MLE 
Estimate -225.651 -119.655 -58.5847 227.8569 -22.0159 

38.0701 
Std. Error 405.8625 177.8478 208.1953 373.0396 42.9335 

RLE 
Estimate -102.41 -104.113 -17.3716 84.9596 -27.2454 

11.8439 
Std. Error 166.8251 123.7467 111.3083 154.4226 38.5235 

MRLSVDE 
Estimate -87.0192 -102.144 -27.8154 96.0183 -29.6284 

9.1945 
Std. Error 133.8219 104.6177 92.3867 123.9459 35.8049 

with 𝒌𝟐= 4129.792 and corresponding 𝝉𝒊= 90.5353 

MLE 
Estimate -225.651 -119.655 -58.5847 227.8569 -22.0159 

38.0701 
Std. Error 405.8625 177.8478 208.1953 373.0396 42.9335 

RLE 
Estimate -41.276 -69.5567 -14.2775 13.7718 -31.0967 

9.8266 
Std. Error 50.6966 67.9458 55.56 49.4351 34.1553 

MRLSVDE 
Estimate -32.7652 -67.7184 -27.1831 41.8286 -37.0564 

8.1724 
Std. Error 32.9381 43.4181 36.324 32.4686 25.6649 

with 𝒌𝟑= 4955.75 and corresponding 𝝉𝒊= 108.6424 

MLE 
Estimate -225.651 -119.655 -58.5847 227.8569 -22.0159 

38.0701 
Std. Error 405.8625 177.8478 208.1953 373.0396 42.9335 

RLE 
Estimate -37.0992 -65.0015 -15.4367 9.0482 -31.5383 

9.9564 
Std. Error 43.3376 61.5476 50.7384 42.9432 33.3315 

MRLSVDE 
Estimate -29.3434 -63.625 -27.3463 37.8697 -38.0518 

8.3501 
Std. Error 27.1862 37.7272 31.8787 27.269 23.973 

with 𝒌𝒐𝒑𝒕= 2570 and corresponding 𝝉𝒊= 56.3408 

MLE 
Estimate -225.651 -119.655 -58.5847 227.8569 -22.0159 

38.0701 
Std. Error 405.8625 177.8478 208.1953 373.0396 42.9335 

RLE 
Estimate -54.6805 -81.4251 -12.1947 29.183 -29.9665 

9.6498 
Std. Error 75.1159 85.2459 69.6362 71.2248 35.8794 

MRLSVDE 
Estimate -44.035 -78.6605 -26.5002 53.7733 -34.575 

7.8432 
Std. Error 52.6652 60.1795 49.7803 50.2707 29.5739 

with 𝒌𝒐𝒑𝒕= 2570 and corresponding 𝝉𝒐𝒑𝒕= 111 

MLE 
Estimate -225.651 -119.655 -58.5847 227.8569 -22.0159 

38.0701 
Std. Error 405.8625 177.8478 208.1953 373.0396 42.9335 

RLE 
Estimate -54.6805 -81.4251 -12.1947 29.183 -29.9665 

9.6498 
Std. Error 75.1159 85.2459 69.6362 71.2248 35.8794 

MRLSVDE 
Estimate -35.3947 -73.2228 -31.1846 57.4988 -37.7964 

7.4898 
Std. Error 36.2705 44.3761 36.9389 35.3311 24.9955 

                  Source: by the researcher through R outputs. 
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According to Table 7.2, it is observed that the MRLSVD estimator has less SMSE than 

the MLE and RLE estimators. Therefore, the results reveal that the proposed estimator works 

well and outperforms the MLE and LRE in the SMSE sense. In addition, the parameters of the 

proposed estimator have fewer standard errors than all parameters of MLE and some 

parameters of RLE. One can note that, if the positive scalar )( i  values equal zero, we obtain 

the ML estimator. 

We can note that, with an improvement in the ridge estimator performance, the proposed 

MRLSVDE estimator also improves. For instance, at the optimal ridge parameter ( optk ), the 

RLE estimator gives its minimum SMSE over the other ridge parameters ( 1k , 2k , & 3k ), and 

the MRLSVDE estimator performs better than the corresponding  1 , 2 , and 3 . Also, with 

the optimal ridge parameter ( optk ) and optimal scalar parameter )( opt , the RLE and 

MRLSVDE estimators have their minimum SMSE, while the performance of the MRLSVDE 

estimator remains the best estimator. 

Finally, the results of the empirical study are similar to the simulation results and they 

verify the theoretical findings. 

 

8. Conclusion  

This paper proposed a new estimator to combat the multicollinearity in the binary 

logistic model which is called a modified ridge logistic based on SVD estimator denoted as 

(MRLSVDE). This proposed estimator based on the singular value decomposition (SVD) 

technique for the design matrix (X) in logistic regression. It is summarized by adding the 

positive scalars )( i  to the last )( rp −  singular values only, which are too small of the 

diagonal matrix D . Also, we derived some statistical properties of this estimator such as bias, 

variance-covariance matrix, and scalar mean squared error (SMSE).  

The results of the simulation study and the real data application reveal that the proposed 

estimator outperforms the MLE and RLE estimators in the SMSE criterion. Furthermore, 

choosing the ridge parameter )(k  and then the corresponding scalar parameters )( i  affects the 

performance of the MRLSVDE estimator.  

Moreover, the benefits of using the MRLSVDE estimator increase in the presence of 

high multicollinearity among the explanatory variables. In contrast, the results show that the 

ML estimator provides the least performance as expected when multicollinearity exists. So, the 

ML estimator should not be used in the presence of a multicollinearity problem since the 

parameter becomes unstable and it has a large SMSE. This problem is especially severe when 

the correlation between explanatory variables is high and the data size is small. 

There may be a potential limitation in this paper. There is no closed-form expression for 

the scalar parameter ( i ), such as Roozbeh et al. (2016) pointed out in their study about 

QRLSE estimator for the linear regression model. This is due to the scalar parameter ( i ) being 
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built in the D  matrix which is also built into the X matrix. Therefore, it is difficult to 

differentiate SMSE with respect to i  in order to obtain the optimal one. 

So, following Roozbeh et al. (2016) we carried out some numerical comparisons and 

graphical results by estimating the proposed MRLSVD estimator with many i  (say from 1 to 

10000) and finding the optimal scalar parameter )( opt  which is corresponding to the minimum 

SMSE value. Hence, we found that the suggested scalar parameter formula in Eq. [24] for our 

proposed estimator and the optimal scalar parameter )( opt  which is considered in the empirical 

application, yield the minimum MSE values and gain some benefits. 
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