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Abstract 

Orthogonal frequency division multiplexing (OFDM) wireless systems 

rely heavily on channel state estimation (CSE) to mitigate the effects of 

multipath channel fading. Achieving a high data rate with OFDM 

technology requires efficient CSE and accurate signal detection. In 

contrast to more traditional CSE methods that depend on a model-based 

strategy, machine learning (ML)-based CSE techniques have attracted 

increased interest in recent years due to their data-driven, learning-based 

flexibility. In light of this, a deep learning (DL) convolutional neural 

network (CNN) is utilized to acquire reliable CSE over OFDM wireless 

system Rayleigh-fading channels. The suggested CSE utilizes offline 

training to gather channel information from transmit/receive pairs. In 

addition, it employs pilots to provide additional guidance on channels of 

communication. The proposed CNN-based estimator is compared to 

conventional estimation approaches and state-of-the-art DL channel 

estimators using SER analysis. The simulation results show that the 

proposed CNN estimator provides far superior SER performance 

compared to the conventional LS and MMSE estimation methods. Also, 

the proposed CNN CSE performs similarly to the DL BiLSTM estimator 

with restricted training pilots (8). Furthermore, CNN CSE beats DL 

BiLSTM with enough training pilots (64). The simulation findings also 

confirm that the suggested CNN-based CSE is efficient/reliable with (16 

and 8) or without cycle prefixes (CP). This, in turn, reduces the 

bandwidth required to convey the same quantity of data. In addition, there 

is no background knowledge of the channel's statistics in the proposed 

estimator. Consequently, the proposed method shows potential for 

addressing CSE issues in OFDM systems with a significant spectrum 

resource reduction. 
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1. Background and Motivation  

 

OFDM is a crucial technology in the 4G and 5G standards for communications over wireless 

networks. It provides higher spectrum efficiency and supports the increasing need for data 

throughput and capacity [1]. Because of its importance in a wide variety of wireless communication 

network tasks, including signal recovery, interference mitigation, channel equalization, and resource 

allocation, CSE is an important problem that must be addressed [2], [3]. The communication 

efficiency of a wireless system relies heavily on the quality of the CE method. Using precise 

channel state information (CSI), it is possible to attain high levels of efficiency/reliability in 

wireless communications. 

Generally, CSE techniques fall into one of three groups depending on whether or not preceding 

knowledge is used: pilot-based estimates, blind estimations, and semi-blind estimations [4]. Pilot-

based estimation approaches, in particular, assign a portion of wireless resources to send known 

signals to acquire CSI. Pilot-based channel estimators are applicable to any wireless communication 

system because of their minimal computational complexity. Nonetheless, their primary drawback 

lies in reducing the transmission rate due to the insertion of pilot signals. By exploiting the 

incoming signal's statistics and structure, blind estimations methods perform CSI without requiring 

pilots, resulting in improved transmission. Despite the potential for superior performance, most 

wireless standards prefer Pilot-based channel estimators. This choice may be due to the blind 

channel estimations techniques' poor results [5]. Semi-blind estimation methods combine the 

benefits of both pilot-based/blind estimation methods, leading to improved performance with 

minimal training sequence or pilot transmission [6]. 

The least squares (LS) and minimum mean square error (MMSE) channel estimator algorithms are 

commonly employed for pilot-based CSE. Because it is easy to implement and is independent of 

any previous information regarding the channel state, the LS approach has seen extensive 

application. However, degradation in performance caused by estimation errors due to noise reduces 

its usefulness [7]. In contrast, the MMSE estimator improves estimation results by exploiting the 

noise variance and the channel's statistical features, but at the expense of increased complexity. 

Furthermore, in real-world wireless applications, precisely estimating channel statistical 

characteristics might be challenging [8]. The evolution of wireless networks has resulted in an ever-

increasing level of complexity. However, the majority of modern wireless systems are conceived 

using mathematical models. The potential for general solutions is reduced because these 

mathematical models differ depending on the scenarios and, in many cases, do not learn from the 

past or system patterns. 

To overcome the above restrictions, applying ML techniques to wireless communication networks 

is the subject of extensive research [9]. A general learning system independent of any specified 

model can be created using the ML-based design's prediction/estimation capabilities [10]. Recently, 

DL, a prominent form of ML, has become an attractive choice for wireless transmission scenarios 

with uncertain [11] or complex channel circumstances [12]. Due to the variable nature of channel 

circumstances as well as the need for estimation/training required to determine channel coefficients, 

DL is well-suited to issues like CSE. In the realm of DL, CNN ranks among the most essential 

networks [13]. CNN excels in numerous fields, particularly the processing of natural languages [14] 

and computer vision [15]. A CNN-based solution is chosen in the current study since the CSE issue 

can be represented as an image-processing problem. Because it uses parameter sharing/sparse 
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connections to minimize the number of parameters in the weight matrix compared to a fully 

connected neural network (FCNN) model, the CNN-based DL approach has proven effective for 

handling image processing challenges [16]. 

 

 

2. Related Work and Our Contribution 

 

Numerous wireless communications applications have benefited from the utilization of DL 

algorithms [17]-[22]. Within the context of the CSE application, with the integration of a CNN plus 

a batch normalization layer, the authors in [23] offered a recurrent neural network (RNN) for signal 

detection tasks in a time-varying OFDM system using a bidirectional long short-term memory 

(BiLSTM) framework. Findings from simulations proved that the recommended method could 

improve detection efficiency compared to traditional CE algorithms. To execute combined CSE and 

signal detection in a multiple input multiple outputs (MIMO)-OFDM system, the authors in [24] 

presented a system that integrates compression sensing (CS) with a DL BiLSTM framework. The 

findings of the investigation showed that the suggested technique exceeded standard approaches.  

For the IEEE 802.11p standard, the authors in [25] presented a DL-based CE method. The 

introduced estimator first estimates the channel utilizing a long short-term memory (LSTM) unit, 

then uses temporally average (TA) processing to reduce noise. Experimental results demonstrated 

that the suggested techniques outperform the latest presented DL-based estimators. In [26], a DL-

based CE network (ChanEstNet) was utilized to extract the feature vectors from channel responses 

using a CNN-based technique, and then those features fed into a LSTM RNN for the CE task. The 

outcomes of the simulations demonstrated that the suggested technique provides superior CE 

quality in high-speed mobile scenarios. Using LSTMs, the authors of [27] presented a DL CE 

technique applicable to OFDM systems across many different models of channels. According to 

simulation outcomes, the proposed DL estimation method obtains superior CE accuracy compared 

to the traditional MMSE and LS estimators. The authors in [28] presented two deep neural network 

(DNN) structures for the CE task in a 5G MIMO-OFDM system under the scenario of frequency 

selective fading. The simulation findings showed that the suggested DL-based CE approach 

performed better than traditional linear MMSE (LMMSE) and LS methods.  

To aid in the CE task in 5G MIMO-OFDM systems under various fading multi-path channel 

scenarios, the authors in [29] used multiple DNN designs, including CNN, FCNN, and Bi-LTSM. 

Compared to the conventional CE methods, the proposed DL-based framework showed superiority 

in the simulation results. In [30], the authors offered DeepRx, a fully CNN framework to develop an 

outstanding-performance OFDM receiver from the data that complies with 5G standards. The 

outcomes of the simulations showed that the suggested DL framework outperformed traditional 

methods for the CE task. In study [31], the authors proposed using a DL-gated recurrent unit (GRU) 

neural network for CE in an OFDM wireless system. The simulation results demonstrated that the 

suggested DL-based CE provides outstanding performance compared with conventional and other 

channel estimators in a limited number of pilots. In [32], a DL-based CE approach was proposed for 

OFDM systems operating over phase-noisy and selective fading channels. For efficient learning and 

tracking of channel change in the time/frequency domains, two-dimensional (2D) CNNs have been 

employed. The numerical results show that robust OFDM performance is achieved even with a 

degree of phase noise using the suggested framework. A one-dimension (1D) CNN-based channel 
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estimation/equalization technique for OFDM systems was introduced in [33]. The outcomes of the 

simulations indicated that the proposed structure is more effective for both conventional and feed-

forward neural network (FFNN) estimators. Table 1 presents a summary of the relevant state-of-the-

art techniques included in this study. 

 

Table 1: Summary of relevant literature 

Reference DL Method Performance Limitations 

[23] 

CNN + Batch 

Normalization + 

BiLSTM 

Improved detection 

efficiency in time-

varying OFDM 

The complexity of the overall model 

architecture is increased by incorporating 

CNN, BN, and RNN in the proposed 

approach, known as CNN-BN-RNN 

Network (CBR-Net). Specifically, they 

employed a signal detection task. 

[24] 

DL BiLSTM + 

Compression Sensing 

(CS) 

Exceeded standard 

approaches in 

MIMO-OFDM 

The proposed approach, combining the 

compressed sensing method and the Bi-

LSTM approach, demands substantial 

computational resources, particularly when 

implementing it in real-time scenarios. 

[25] 

DL-based CE with 

LSTM + Temporally 

Average (TA) 

processing 

Outperformed latest 

DL-based estimators 

for IEEE 802.11p 

The suggested technique uses Temporally 

Averaged (TA) processing with the LSTM 

approach, which requires a lot of 

computational capacity, especially in real-

time applications. 

[26] 
ChanEstNet (CNN + 

LSTM) 

Superior CE quality 

in high-speed 

mobile scenarios 

The complex structure of ChanEstNet 

combines CNN for channel response feature 

extraction and LSTM for channel estimation. 

[27] 
DL CE technique with 

LSTMs 

Superior CE 

accuracy compared 

to MMSE and LS 

estimators for 

OFDM systems 

Inadequate performance is shown by the 

proposed DL channel estimation method, 

which achieves results on par with the 

MMSE estimator. 

[28] 

Two DNN structures 

for CE in 5G MIMO-

OFDM 

Outperformed 

LMMSE and LS 

methods under 

frequency selective 

fading 

The solution that has been proposed does not 

make full use of DL and instead uses LS 

estimate as the input. 

[29] 

Multiple DNN designs 

(CNN, FCNN, Bi-

LSTM) for CE in 5G 

MIMO-OFDM 

Superiority over 

conventional CE 

methods 

The suggested channel estimation 

approaches involve integrating a general 

DNN with a conventional channel estimation 

method, resulting in increased complexity. 

[30] 
DeepRx (Fully CNN 

framework) 

Outstanding CE 

performance for 5G 

OFDM 

The main emphasis of the suggested channel 

estimation scheme is on the performance 

improvements obtained through DL, with 

limited consideration given to the potential 

high computational complexity involved. 

[31] 

DL-gated recurrent 

unit (GRU) neural 

network for CE in 

OFDM 

Excellent 

performance with 

limited pilots over 

typical CE 

approaches 

Challenges related to data generation, 

generalization, and model optimization need 

to be carefully addressed to ensure the 

reliable and robust performance of the 

estimator in practical scenarios. 

[32] 
DL-based CE with 2D 

CNNs for OFDM over 

Robust OFDM 

performance even 

Estimating channel variations in both the 

frequency/time domains adds complexity to 
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Reference DL Method Performance Limitations 

phase-noisy and fading 

channels 

with phase noise the learning process, as it requires the 

network to capture temporal and spatial 

dependencies effectively. 

[33] 

1D CNN-based 

channel 

estimation/equalization 

technique for OFDM 

More effective than 

conventional and 

FFNN estimators 

The proposed approach heavily relies on 

appropriate network architecture and 

sufficient training information for efficient 

performance. 

 

In this study, we propose using CNN to create a DL-based CSE for symbol categorization in OFDM 

systems. The suggested CNN architecture is offline-trained for CE using simulated data. Once the 

DL model has been trained, it can be utilized online to extract the sent data without relying on 

explicit CSI estimation. We analyze how well the suggested structure for channel estimation works 

in various scenarios with varying CP lengths and pilots’ density. Moreover, a priori knowledge of 

channel information is unnecessary for the proposed CSE. To the authors' knowledge, it is the first 

work to offer and assess CNN-based CSE without merging additional deep NN techniques 

employing short/without cyclic prefixes. 

Symbol error rate (SER) simulations are utilized to assess the accuracy of the suggested estimator 

and compare it with conventional estimation algorithms. In addition, the suggested framework's 

efficiency is evaluated against existing data-driven techniques, such as the DL BiLSTM model 

utilized in [23, 24]. The adaptive moment estimation (Adam) algorithm trains the proposed 

estimator on synthetic datasets. Also, a loss function based on cross-entropy is employed. 

Based on the results of the simulations, the suggested CNN framework significantly outperforms 

the traditional LS and MMSE estimation techniques regarding SER performance in all scenarios. 

Additionally, while using restricted training pilots, its performance is on par with the DL BiLSTM 

structure used in [23, 24]. When sufficient training pilots are used, the CP is missed, and no prior 

knowledge of CSI is used, the proposed CNN CSE outperforms its competitor, DL BiLSTM. 

The remaining sections of this work are structured as follows. The OFDM system model is 

presented and discussed in Section 3. Then, in Section 4, we describe the suggested CNN CSE and 

its learning methods. In addition, Section 5 analyzes the SER performance of the considered 

estimators and illustrates the resulting simulation findings. In the end, Section 6 summarizes this 

study. 

 

 

3. System Description 

 

Figure 1 shows the architecture of an OFDM system that utilizes the proposed DL-based CSE. The 

OFDM baseband system is identical to the traditional ones. On the transmitting end, a serial-to-

parallel (S/P) converter first converts the serial stream of symbols and pilot signals into a parallel 

stream of data. After processing by an inverse discrete Fourier transform (IDFT), the data is now in 

the time domain rather than the frequency domain employed by the transmitter. Then, a cyclic 

prefix (CP) is appended to the symbol string to reduce inter-symbol interference (ISI). 

The multipath channel of a sample space characterized by complex random variables ( ) 
1

0

N

n
h n

−

=
 is 

considering. The signal received ( )y n  can be represented as [34]: 

 

                                                     ( ) ( ) ( ) ( ),y n x n h n w n= +e                                                     (1) 
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Where the vectors ( )x n  and ( )h n  are the time domain transmitted and channel coefficients, the 

operator e  represents a circular convolution, and the vector ( )w n  represents zero-mean additive 

white Gaussian noise (AWGN). Once the CP has been eliminated and discrete Fourier transform 

(DFT) has been performed, the resulting frequency-domain signal is: 

 

                                                           ( ) ( ) ( ) ( ),Y k X k H k W k= +                                                  (2) 

 

Where the vectors ( ) ( ) ( ), ,X k H k W k  and ( )Y k  are the DFT of ( ) ( ) ( ), ,x n h n w n  and ( )y n , 

respectively. 

 

 
Fig.1: OFDM transmitter/receiver structure diagram. 

 

 

4. The proposed CNN CSE and its learning methods 

 

4.1. The proposed CNN structures 

The CNNs are a globally utilized algorithm for identification/classification, particularly in pattern 

recognition and image processing. It has evolved to the point that it is now considered one of the 

most representative NNs in the DL field [35]. By integrating numerous layers of processing—such 

as convolution layers, pooling layers, and fully connected layers—a CNN can 

automatically/adaptively learn from low- to high-level spatial hierarchies of features via 

backpropagation. Features are retrieved by the first two layers (convolution and pooling) and then 

mapped to the final output (classification, for example) by the third layer (a fully connected one) 

[36]. 

The proposed CNN framework uses an array of layers, including a single 2D input layer initially, 

two convolution layers, two-layer batch normalization, two nonlinear activation layers, a single 

fully connected layer, and, at last, a single SoftMax and classifier layer to provide probabilities for 

each output class. Figure 2 illustrates the components of the implemented architecture for the 

proposed DL CNN-based CSE. 

After conducting extensive research using various architectures containing different numbers of 

convolutional layers, we decided to incorporate only two convolutional layers in the proposed 

design. Our decision was based on finding a balance between efficiency/complexity.  
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Several benefits may result from CNN-based architectures that employ just a few convolutional 

layers. One of these advantages is efficiency, which CNN-based designs may be able to improve by 

using fewer convolutional layers because they learn more quickly. Because there are fewer 

parameters to learn/compute, this model is well suited for application in real time. Another 

advantage is that more straightforward architectures are less complex and require less time to learn 

and analyse. In addition, a simpler model with fewer convolutional layers may be less likely to 

overfit and have lower memory requirements [13]. 

 A quick summary of the numerous layers included in the proposed CNN model's framework is 

provided in the following subsections: 

 

 
Fig.2: The proposed CNN estimator's layer layout. 

 

4.1.1. Convolutional Layer (CL) 

One of the fundamental components of a CNN is a CL, which extracts essential features from the 

input image by convolving it with the learnable filters (kernels). After the convolution with the 

input image, each filter generates an activation map. 

Consider that sN  defines the number of inputs,  thl denotes the specified input length,  
l

sL   

describes the layers of convolution of the proposed CNN estimator, 
l

kL  represents the length of the 

filters in the thl  layer, and 
l

kN  symbolizes the number of filters in the thl layer. For the thl  layer, 

the convolutional process is mathematically represented as follows [37]: 

 

                                              ( ) ,l l l l

k k kh f x w b=  +                                                                     (3) 

Where ( ).f denotes the selected activation function,  
l

s sN L
x R


  defines the input feature map of 

layer l ,  
sN

b R  indicates the bias terms associated with the outputs,  
l l
k kN Lw R   describes a 

collection of filters for the thl layer, and 
l l
k sN Llh R


  symbolizes the feature map, which is the set of 

output feature maps for layer l  . Also, the value of the outcomes of the thk filter can be expressed 

as: 

     ( )( ) ( ) ( ) ,l l l

k k

a

x w i x a w i a


=−

 = −                                              (4) 
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The above equation describes how the convolution operation is applied to compute the value of the 

output for each position i  in the feature map produced by the thk  filter in layer l . 

 

4.1.2. Batch Normalization (BN) Layer 

Many challenges must be overcome when training DNNs. Although they have tremendous 

potential, they are sometimes slow and susceptible to overfitting. Therefore, there is a continuous 

effort in DL research toward discovering solutions to these issues. One of these methods is known 

as "batch normalization". The BN layer aims to speed up the process of training the DNNs by 

minimizing the change in the network's internal covariance and enhancing its overall efficiency. 

Typically, the BN layer is placed between the convolution and activation layers. 

 

4.1.3. Pooling Layer 

Using pooling layers in CNNs is intended to decrease the total number of parameters and, 

consequently, the model's complexity by gradually decreasing the dimensionality of the 

representation. Additionally, the pooling layer boosts the efficiency of the model. Among the most 

common types of pooling operation, "max pooling", which returns the highest value detected in the 

pooling filter, is utilized in this study. 

 

4.1.4. Rectified Linear Unit (ReLU) Layer 

An essential part of a CNN is the activation function. Typically, a nonlinear activation function is 

utilized for mapping the obtained features, thus preventing the problem of insufficient expression 

resulting from the linear operation. One of the most well-known nonlinear activation functions, 

known as ReLU, is used in the proposed model, and is described as: 

 

                                                                                   
,       0

( )
0,        x 0

x x
f x


= 


                                                               (5) 

 

4.1.5. Fully Connected (FC) Layer 

A FC layer for the ultimate justification and classification may be present following the stacking 

of many layers for feature extraction tasks. The FC layer is precisely what its name implies since 

each FC layer output node connects directly to a previous layer node. A single FC layer is used after 

the convolutional layer in this study. The result of the extraction of features process is a feature map 

in the form of a multidimensional array, which must be flattened or transformed into a vector before 

it can be used as the input for the FC layer. For CSE issues, the FC layer plays a vital role as it 

integrates the features gained from lower-level layers over the entire transmission channel to 

estimate channel state information. 

 

4.1.6. Output Layers (Softmax/Classification) 

The softmax layer is highly regarded as an effective tool for representing class distribution. In tasks 

that require classification, a softmax layer typically comes before the classification layer. Using a 

softmax function, the outcome of the previous FC layer turns into a normalized estimated 

probability in the range [0, 1]. The softmax function can be represented as follows: 
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1

, 1,...,
xj

j N
xn

n

e
p j N

e
=

= =


                                                            (6) 

Where jp  denotes the likelihood of the thi  class between the j  classes. 

The classification layer frequently appears after the layer of softmax in standard classifiers. The 

classification layer receives the softmax function's outcome and utilizes a specified loss function, 

cross-entropy in this study, to assign each value to one of the possible classes. The primary loss 

function employed in the current study for speeding up training is cross-entropy, which can be 

represented for the k mutually exclusive categories as [38]: 

 

                                                       ( ) ( )( )
1 1

ˆlog ,
N C

ij ij

i j

Crossentropyex x k x k
= =

= −                                            (7) 

Where C  symbolizes the total number of categories, e sample size, indicates the whol N   

e s an outcome of thi ˆ
ijx category, and  thjdata sample delivered for the  thiidentifies the ijx

suggested estimator for a sample i  in category j . 

 

4.2. Training procedures for the proposed model  

An efficient DL CNN model for CSE was achieved through a two-phase procedure. In the initial 

phase, OFDM samples that were generated with various streams of data under different channel 

circumstances and possessing certain statistical features were used for training in an offline manner. 

The second phase, online deployment, produces outputs that recover/predict the information sent 

without requiring an explicit estimate of the wireless channel. Figure 3 shows the steps taken in 

creating training datasets and utilizing offline DL to develop a trained CNN model. 

During the offline training phase, the training dataset for one subcarrier is created by transmitting 

OFDM frames across the selected channel model. An efficient training dataset requires both the 

initially transmitted symbols and the OFDM signals at the receiver, which are affected by the actual 

channel parameters and noise. The proposed DL model, which was trained offline, is then deployed 

online, where it takes the unknown received signals as input and recovers the broadcast signals by 

using both the learned information and CNN's inherent ability for automated recognition/extraction 

of important characteristics. 

 

 

5. Simulation Results 

 

Several simulations have been performed to prove our suggested CNN structure can effectively 

estimate the channel and retrieve transmitted symbols. In this section, the proposed CNN 

framework's SER versus SNR performance is compared to that of the standard LS and MMSE 

estimation methods, as well as the DL BiLSTM model employed in [23, 24]. Three cycle prefix 

lengths (16, 8, and 0) and two pilot densities (64 and 8) will be utilized to assess how well the 

estimator’s work. In addition, the proposed CNN model will employ the cross-entropy loss function 

in the last classification layer during training with the Adam optimizer. In the present research, the 

recommended CNN model is trained offline utilizing the created data sets and then used to 

implicitly estimate the CSI/recover the information sent in an OFDM wireless communication 

system. In the training data set, only one subcarrier is presented. Each OFDM packet includes one 
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pilot symbol along with a single data symbol. Out of a total of 10,000 OFDM packets, 80 percent 

are used for learning, while the other 20 percent are used for checking. Table 2 lists the 

configuration settings for the OFDM system under consideration, whereas Table 3 lists the 

configuration parameters for the proposed DL CNN model. 

 

 
Fig.3. Offline DL procedure/training data set generation of the proposed CNN model. 

 

Table 2: Channel model and OFDM system settings 

Parameter Specifications 

Mode of Modulation Quadrature phase shift keying (QPSK) 

Carrier Frequency 2.6 GHz 

Number of OFDM subcarriers 64 

Number of OFDM blocks 2 OFDM blocks for pilots and symbols, respectively 

Size of DFT/IDFT 64 

Number of Pilots 64,8 

Length of Cyclic Prefix (CP) 16, 8, 0 

Model of the Channel Rayleigh Fading 

Number of Paths 24 

Model of Noise Additive white Gaussian noise (AWGN) 

 

Table 3: The proposed DL CNN architecture and the training parameters 

Parameter Specifications 

Depth of CNN model  11 Layers 

Input Layer Size 256 

Convolution Layers (CL) Size 32 kernels of size [64,1], 175 kernels of size [64,1] 

FC Layer Size 4 

Number of Epochs 8 

Mini Batch Size 32 

Optimizer  Adam 

Loss Function Cross-entropy 
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With a sufficient number of pilots (64) and a CP length of 16, as shown in Fig. 4, the proposed DL 

CNN-based CSE significantly exceeds the conventional estimators at all levels of SNR. On the 

other hand, in the low SNR region of 0–4 dB, the proposed CNN estimator performs similarly to its 

counterpart, the DL BiLSTM model used in [23, 24]. In addition, starting at 5 dB, the proposed DL 

CNN model provides more accurate estimates than the DL BiLSTM model. 

Figure 5 illustrates that for a CP of 8, the proposed DL CNN model works similarly to the 

conventional channel estimators and the DL BiLSTM model in the SNR ranges of 0–4 dB and 0–14 

dB, respectively. At a dB level of 5 or subsequently, the proposed DL CNN model outperforms the 

standard LS and MMSE estimators. In addition, beginning at 15 dB, the suggested DL CNN model 

provides superior results compared to the DL BiLSTM model. In contrast, the conventional LS 

estimator is the least effective. 

In the simulation scenario with 64 pilots without CP, the proposed DL CNN-based CSE performs 

significantly better than the other estimators. This can be seen in Fig. 6. The results also 

demonstrate that in the 0–15 dB SNR bands, the MMSE estimator and the BiLSTM model perform 

similarly. Moreover, the MMSE estimator beats the BiLSTM model over SNR ranges of 16–27 dB. 

However, the LS estimator is still the least effective. 

 

 
Fig. 4: The SER curves for the performance of the suggested DL CNN structure and the tested estimators at 64 pilots 

and 16 CP lengths utilizing the Adam optimizer/cross-entropy loss function. 

 

Figures 4, 5, and 6 illustrate that the LS estimator consistently provides the worst SER performance 

because its estimating method is not dependent on any previous knowledge of channel parameters. 

In contrast, the MMSE estimator outperforms the LS estimator thanks to its usage of second-order 

channel statistics. In all simulation scenarios, our suggested DL CNN-based CSE achieved higher 

SER performance than the two benchmark approaches and the DL BiLSTM model employed in 

[23], [24]. As a result, the proposed DL CNN model is efficient in both CSE and symbol detection. 

Also, it demonstrates that the suggested DL CNN structure with the short/no CP is both reliable and 

robust. The proposed CNN model is more effective because it retains critical data during training 

while benefiting from its attractive features like weight sharing, local connections, and down 

sampling dimension reduction. 



JES, Vol. 51, No. 6, Pp. 32-49, Nov. 2023            DOI: 10.21608/JESAUN.2023.215113.1236 Part B: Electrical Engineering 

 

________________ ______________________________________________________ ____________  

43 

 

The behavior of the estimating methods is shown in Fig. 7, with a restricted number of pilots (8) 

and a CP length of 16. The proposed DL CNN-based CSE beats conventional estimation methods. 

Furthermore, compared to the DL BiLSTM model, the proposed DL CNN-based CSE performs 

similarly over the SNR ranges 0–21 dB, as seen in this figure. On the other hand, the channel 

information cannot be accurately estimated by either LS or MMSE. 

When the length of CP is reduced to 8, the proposed DL CNN-based CSE exceeds the standard 

channel estimation algorithms. Also, the proposed DL CNN estimator and the DL BiLSTM model 

achieve the same performance across the 0–21 dB SNR ranges, as shown in Fig. 8. In contrast, the 

standard estimators lose their effectiveness starting at 0 db. 
 

 
Fig. 5: The SER curves for the performance of the suggested DL CNN structure and the tested estimators at 64 pilots 

and 8 CP lengths utilizing the Adam optimizer/cross-entropy loss function. 

 

 
Fig. 6: The SER curves for the performance of the suggested DL CNN structure and the tested estimators at 64 pilots 

and without CP utilizing the Adam optimizer/cross-entropy loss function. 
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Fig. 7: The SER curves for the performance of the suggested DL CNN structure and the tested estimators at 8 pilots and 

16 CP lengths utilizing the Adam optimizer/cross-entropy loss function. 

 

 
Fig. 8: The SER curves for the performance of the suggested DL CNN structure and the tested estimators at 8 pilots and 

8 CP lengths utilizing the Adam optimizer/cross-entropy loss function. 

 

Figure 9 demonstrates that the proposed DL CNN-based CSE outperforms the traditional estimators 

even in a simulation scenario with 8 pilots and no CP. In addition, the proposed DL CNN structure 

and the DL BiLSTM model obtain identical performance across the 0–21 dB SNR range. On the 

other hand, the MMSE performs better in terms of SER performance than the LS estimator, which 

achieves the worst performance. 

At high SNR, almost above 22 dB, the DL BiLSTM beats the proposed DL CNN-based CSE in 

Figures 7–9. Bi-LSTM's ability to analyze input sequences in both directions and employ 

past/future time steps gives it this advantage. This bidirectional background can be helpful in high 

SNR regions where channel behavior may exhibit predictable patterns over time. In addition, Bi-

LSTM retains relevant information over time and filters out noise/irrelevant information, making it 
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efficient at handling noisy data. The results of the performance for the proposed DL CNN-based 

CSE with 8 pilots and CP lengths of 16, 8, and 0 are summarized in Fig. 10. The proposed DL CNN 

structure with short/no CP achieves the same performance across (0–7 dB) SNRs, proving its 

efficacy at lower SNR levels. In addition, the proposed DL CNN model with CP exhibits less 

variation across the SNR ranges (8–14 dB) than its counterpart without CP. 

Based on the obtained results, we can conclude that the proposed DL CNN-based CSE is effective 

in a short/no CP scenario and is also resistant to limited pilots. This advantage is essential for the 

DL CSE to be executed in real-time, as identical performance can be achieved with a significant 

reduction in calculations. Moreover, the suggested DL CNN architecture with low spectrum 

utilization for CSE/SD is recommended for OFDM wireless communication systems to 

considerably enhance their energy/spectrum efficiency as well as transmission data rates. 
 

 
Fig. 9: The SER curves for the performance of the suggested DL CNN structure and the tested estimators at 8 pilots and 

without CP utilizing the Adam optimizer/cross-entropy loss function. 

 
Fig. 10: The SER curves for the performance of the suggested DL CNN structure at 8 pilots and different CP lengths of 

16, 8, and 0 utilizing the Adam optimizer/cross-entropy loss function. 



Hassan A. Hassan et al., An efficient and reliable OFDM channel state estimator using deep learning convolutional …. 

 

 ______________________________________________________________________________________________ 

46 

 

5. Conclusions 

 

Improving the performance of multi-carrier wireless communication systems requires efficient 

channel estimates/accurate signal detection. This study has introduced an efficient/reliable DL 

framework that leverages CNNs for CSE and signal detection tasks within OFDM wireless systems. 

Notably, this is the first time, as far as the authors know, that CNN-based CSE has been presented 

and evaluated without the addition of other complex deep neural network approaches that use short 

or no CPs. Before extracting/retrieving transmitted data symbols, the proposed DL CNN framework 

was trained offline using OFDM signals exposed to various channel faults. 

Multiple experiments have been conducted to evaluate the suggested CNN framework and 

demonstrate its efficacy for CSE and signal detection applications compared to the standard LS and 

MMSE estimation methods and the DL-based BiLSTM model. The simulation results demonstrated 

that, in all simulated scenarios, the recommended DL CNN CSE showed superior SER performance 

in symbol detection compared to the conventional LS and MMSE estimators. Additionally, the 

proposed CNN architecture outperformed the DL BiLSTM model, particularly when a large enough 

number of pilots were used. 

Furthermore, the simulation results confirmed the proposed DL CNN framework's robustness and 

demonstrated its ability to adapt to a shorter CP length and fewer pilots than conventional methods. 

Consequently, the proposed DL CNN architecture shows significant potential for CSI 

estimation/signal detection tasks in OFDM wireless communication systems, thanks to its data-

driven approach and its inherent properties of automatically identifying/extracting relevant features. 

In addition, it lacks the use of previous channel information. The proposed DL CNN model will be 

employed in future work to apply to more complex system models, such as MIMO scenarios. 
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ر حالة قناة    العصبية الشبكات  باستخدامالفعَّال والموثوق  OFDM مُقد ِّ

 العميق للتعلم التلافيفية

 

 تقدير   على  كبير  بشكل (  OFDM)  المتعامد  التردد  بتقسيم  الإرسال  لتعدد  اللاسلكية   الأنظمة   تعتمد

  بيانات   معدل  تحقيق   يتطلب .  المسارات   المتعدد  القناة  تلاشى  آثار  من  للتخفيف (  CSE)   القناة  حالة

  النقيض   على .  للإشارة  دقيق   واكتشاف  فعالة  CSE  عملية  إجراء   OFDM  تقنية   باستخدام  مرتفع

  CSE  تقنيات  اجتذبت  النماذج،  على  قائمة  استراتيجية   على  تعتمد  التي  التقليدية  CSE  أساليب  من

  إلى   المستندة  مرونتها   بسبب  الأخيرة  السنوات  في  متزايداً  اهتمامًا(  ML)  الآلي  التعلم  إلى  المستندة

(  DL)  العميق   للتعلم   تلافيفية   عصبية   شبكة  استخدام  يتم  ،   السياق  هذا  في.  والتعلم  البيانات

 يستخدم.  OFDM  اللاسلكي   للنظام   رايلي  تلاشى   قنوات  عبر   به  موثوق   CSE  على  للحصول

 أزواج   من  القناة  معلومات  لجمع  بالإنترنت  اتصال   دون  التدريب  المقترح   القناة  حالة   قدرمُ 

  إضافية  إرشادات  لتقديم  توجيهية  إشارات   يستخدم  فإنه   ذلك،   إلى   وبالإضافة .  الاستقبال/الإرسال

 القائم   المقترح  القناة   حالة  يظُهر مُقدر  التقليدية،  التقدير  أساليب  مع  بالمقارنة.  الاتصال  قنوات  بشأن

 المدرب   CNN  نموذج  فإن  ذلك،  إلى  بالإضافة.  التجريبية  النتائج  في  كبير  تحسن  CNN  على

 القناة   حالة  مُقدر  أن  أيضًا   المحاكاة  نتائج  تؤكد.  الحديثة   DL  قنوات ات  مُقدر  من  أفضل  بشكل  يعمل

 بدون /    مع  ،  التوجيهية  الإشارات  من  أقل  عدد   هناك  يكون  عندما   فعال  CNN  على  القائم  المقترح

 من   نفسها  لكمية  لنقل  المطلوب   الترددي  النطاق  عرض  من  يقلل  وهذا  ،(CP)  الدورة  بادئات

 القناة  حالة   مُقدر  في   القناة  بإحصائيات   أساسية  معرفة   توجد   لا   ذلك،  إلى   بالإضافة .  البيانات

  OFDM  أنظمة   في  CSE  مشكلات  معالجة  إمكانية  المقترحة   الطريقة  تظُهر  ثم،  ومن .  المقترح 
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