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Abstract

Orthogonal frequency division multiplexing (OFDM) wireless systems
rely heavily on channel state estimation (CSE) to mitigate the effects of
multipath channel fading. Achieving a high data rate with OFDM
technology requires efficient CSE and accurate signal detection. In
contrast to more traditional CSE methods that depend on a model-based
strategy, machine learning (ML)-based CSE techniques have attracted
increased interest in recent years due to their data-driven, learning-based
flexibility. In light of this, a deep learning (DL) convolutional neural
network (CNN) is utilized to acquire reliable CSE over OFDM wireless
system Rayleigh-fading channels. The suggested CSE utilizes offline
training to gather channel information from transmit/receive pairs. In
addition, it employs pilots to provide additional guidance on channels of
communication. The proposed CNN-based estimator is compared to
conventional estimation approaches and state-of-the-art DL channel
estimators using SER analysis. The simulation results show that the
proposed CNN estimator provides far superior SER performance
compared to the conventional LS and MMSE estimation methods. Also,
the proposed CNN CSE performs similarly to the DL BiLSTM estimator
with restricted training pilots (8). Furthermore, CNN CSE beats DL
BiLSTM with enough training pilots (64). The simulation findings also
confirm that the suggested CNN-based CSE is efficient/reliable with (16
and 8) or without cycle prefixes (CP). This, in turn, reduces the
bandwidth required to convey the same quantity of data. In addition, there
is no background knowledge of the channel's statistics in the proposed
estimator. Consequently, the proposed method shows potential for
addressing CSE issues in OFDM systems with a significant spectrum
resource reduction.
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1. Background and Motivation

OFDM is a crucial technology in the 4G and 5G standards for communications over wireless
networks. It provides higher spectrum efficiency and supports the increasing need for data
throughput and capacity [1]. Because of its importance in a wide variety of wireless communication
network tasks, including signal recovery, interference mitigation, channel equalization, and resource
allocation, CSE is an important problem that must be addressed [2], [3]. The communication
efficiency of a wireless system relies heavily on the quality of the CE method. Using precise
channel state information (CSI), it is possible to attain high levels of efficiency/reliability in
wireless communications.

Generally, CSE techniques fall into one of three groups depending on whether or not preceding
knowledge is used: pilot-based estimates, blind estimations, and semi-blind estimations [4]. Pilot-
based estimation approaches, in particular, assign a portion of wireless resources to send known
signals to acquire CSI. Pilot-based channel estimators are applicable to any wireless communication
system because of their minimal computational complexity. Nonetheless, their primary drawback
lies in reducing the transmission rate due to the insertion of pilot signals. By exploiting the
incoming signal's statistics and structure, blind estimations methods perform CSI without requiring
pilots, resulting in improved transmission. Despite the potential for superior performance, most
wireless standards prefer Pilot-based channel estimators. This choice may be due to the blind
channel estimations techniques' poor results [5]. Semi-blind estimation methods combine the
benefits of both pilot-based/blind estimation methods, leading to improved performance with
minimal training sequence or pilot transmission [6].

The least squares (LS) and minimum mean square error (MMSE) channel estimator algorithms are
commonly employed for pilot-based CSE. Because it is easy to implement and is independent of
any previous information regarding the channel state, the LS approach has seen extensive
application. However, degradation in performance caused by estimation errors due to noise reduces
its usefulness [7]. In contrast, the MMSE estimator improves estimation results by exploiting the
noise variance and the channel's statistical features, but at the expense of increased complexity.
Furthermore, in real-world wireless applications, precisely estimating channel statistical
characteristics might be challenging [8]. The evolution of wireless networks has resulted in an ever-
increasing level of complexity. However, the majority of modern wireless systems are conceived
using mathematical models. The potential for general solutions is reduced because these
mathematical models differ depending on the scenarios and, in many cases, do not learn from the
past or system patterns.

To overcome the above restrictions, applying ML techniques to wireless communication networks
is the subject of extensive research [9]. A general learning system independent of any specified
model can be created using the ML-based design's prediction/estimation capabilities [10]. Recently,
DL, a prominent form of ML, has become an attractive choice for wireless transmission scenarios
with uncertain [11] or complex channel circumstances [12]. Due to the variable nature of channel
circumstances as well as the need for estimation/training required to determine channel coefficients,
DL is well-suited to issues like CSE. In the realm of DL, CNN ranks among the most essential
networks [13]. CNN excels in numerous fields, particularly the processing of natural languages [14]
and computer vision [15]. A CNN-based solution is chosen in the current study since the CSE issue
can be represented as an image-processing problem. Because it uses parameter sharing/sparse
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connections to minimize the number of parameters in the weight matrix compared to a fully
connected neural network (FCNN) model, the CNN-based DL approach has proven effective for
handling image processing challenges [16].

2. Related Work and Our Contribution

Numerous wireless communications applications have benefited from the utilization of DL
algorithms [17]-[22]. Within the context of the CSE application, with the integration of a CNN plus
a batch normalization layer, the authors in [23] offered a recurrent neural network (RNN) for signal
detection tasks in a time-varying OFDM system using a bidirectional long short-term memory
(BIiLSTM) framework. Findings from simulations proved that the recommended method could
improve detection efficiency compared to traditional CE algorithms. To execute combined CSE and
signal detection in a multiple input multiple outputs (MIMO)-OFDM system, the authors in [24]
presented a system that integrates compression sensing (CS) with a DL BiLSTM framework. The
findings of the investigation showed that the suggested technique exceeded standard approaches.

For the IEEE 802.11p standard, the authors in [25] presented a DL-based CE method. The
introduced estimator first estimates the channel utilizing a long short-term memory (LSTM) unit,
then uses temporally average (TA) processing to reduce noise. Experimental results demonstrated
that the suggested techniques outperform the latest presented DL-based estimators. In [26], a DL-
based CE network (ChanEstNet) was utilized to extract the feature vectors from channel responses
using a CNN-based technique, and then those features fed into a LSTM RNN for the CE task. The
outcomes of the simulations demonstrated that the suggested technique provides superior CE
quality in high-speed mobile scenarios. Using LSTMs, the authors of [27] presented a DL CE
technique applicable to OFDM systems across many different models of channels. According to
simulation outcomes, the proposed DL estimation method obtains superior CE accuracy compared
to the traditional MMSE and LS estimators. The authors in [28] presented two deep neural network
(DNN) structures for the CE task in a 5G MIMO-OFDM system under the scenario of frequency
selective fading. The simulation findings showed that the suggested DL-based CE approach
performed better than traditional linear MMSE (LMMSE) and LS methods.

To aid in the CE task in 5G MIMO-OFDM systems under various fading multi-path channel
scenarios, the authors in [29] used multiple DNN designs, including CNN, FCNN, and Bi-LTSM.
Compared to the conventional CE methods, the proposed DL-based framework showed superiority
in the simulation results. In [30], the authors offered DeepRX, a fully CNN framework to develop an
outstanding-performance OFDM receiver from the data that complies with 5G standards. The
outcomes of the simulations showed that the suggested DL framework outperformed traditional
methods for the CE task. In study [31], the authors proposed using a DL-gated recurrent unit (GRU)
neural network for CE in an OFDM wireless system. The simulation results demonstrated that the
suggested DL-based CE provides outstanding performance compared with conventional and other
channel estimators in a limited number of pilots. In [32], a DL-based CE approach was proposed for
OFDM systems operating over phase-noisy and selective fading channels. For efficient learning and
tracking of channel change in the time/frequency domains, two-dimensional (2D) CNNs have been
employed. The numerical results show that robust OFDM performance is achieved even with a
degree of phase noise using the suggested framework. A one-dimension (1D) CNN-based channel
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estimation/equalization technique for OFDM systems was introduced in [33]. The outcomes of the
simulations indicated that the proposed structure is more effective for both conventional and feed-
forward neural network (FFNN) estimators. Table 1 presents a summary of the relevant state-of-the-

art techniques included in this study.

Table 1: Summary of relevant literature

Reference DL Method Performance Limitations
The complexity of the overall model
. architecture is increased by incorporating
CNN+_Bat_ch Im_pr_oved (_jeteguon CNN, BN, and RNN in the proposed
[23] Normalization + efficiency in time- h K
BiLSTM varying OFDM approach,  known ~as  CNN-BN-RNN
Network (CBR-Net). Specifically, they
employed a signal detection task.
The proposed approach, combining the
DL BiLSTM + Exceeded standard | compressed sensing method and the Bi-
[24] Compression Sensing | approaches in | LSTM approach, demands substantial
(CS) MIMO-OFDM computational resources, particularly when
implementing it in real-time scenarios.
) . The suggested technique uses Temporally
DL-based CE with Outperformed latest | Averaged (TA) processing with the LSTM
LSTM + Temporally ! . >
[25] DL-based estimators | approach, which requires a lot of
Average (TA) . . . .
; for IEEE 802.11p computational capacity, especially in real-
processing . o
time applications.
Superior CE quality | The complex structure of ChanEstNet
[26] (ngir:\%s tNet (CNN + in high-speed | combines CNN for channel response feature
mobile scenarios extraction and LSTM for channel estimation.
iggfrggr com a?eE Inadequate performance is shown by the
DL CE technique with y p proposed DL channel estimation method,
[27] to MMSE and LS / ; .
LSTMs . which achieves results on par with the
estimators for MMSE estimator
OFDM systems '
Outperformed
Two DNN structures LMMSE and LS | The solution that has been proposed does not
[28] for CE in 5G MIMO- | methods under | make full use of DL and instead uses LS
OFDM frequency selective | estimate as the input.
fading
Multiple DNN designs Superiorit over The  suggested channel estimation
[29] (CNN, FCNN, Bi- cor?ventior%al CE approaches involve integrating a general
LSTM) for CE in 5G methods DNN with a conventional channel estimation
MIMO-OFDM method, resulting in increased complexity.
The main emphasis of the suggested channel
Outstanding CE | estimation scheme is on the performance
[30] f[?gri]pel\qlc(oﬁiy lly CNN performance for 5G | improvements obtained through DL, with
OFDM limited consideration given to the potential
high computational complexity involved.
Excellent Challenges related to data generation,
DL-gated recurrent . 2 AT
. performance  with | generalization, and model optimization need
unit (GRU) neural L .
[31] . limited pilots over | to be carefully addressed to ensure the
network for CE in . .
typical CE | reliable and robust performance of the
OFDM . . ) .
approaches estimator in practical scenarios.
[32] DL-based CE with 2D | Robust OFDM | Estimating channel variations in both the
CNNs for OFDM over | performance even | frequency/time domains adds complexity to
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Reference DL Method Performance Limitations
phase-noisy and fading | with phase noise the learning process, as it requires the
channels network to capture temporal and spatial

dependencies effectively.

1D CNN-based The proposed approach heavily relies on

More effective than

channel . appropriate  network  architecture  and
[33] L . conventional  and L L ) -
estimation/equalization . sufficient training information for efficient
. FFNN estimators
technique for OFDM performance.

In this study, we propose using CNN to create a DL-based CSE for symbol categorization in OFDM
systems. The suggested CNN architecture is offline-trained for CE using simulated data. Once the
DL model has been trained, it can be utilized online to extract the sent data without relying on
explicit CSI estimation. We analyze how well the suggested structure for channel estimation works
in various scenarios with varying CP lengths and pilots’ density. Moreover, a priori knowledge of
channel information is unnecessary for the proposed CSE. To the authors' knowledge, it is the first
work to offer and assess CNN-based CSE without merging additional deep NN techniques
employing short/without cyclic prefixes.

Symbol error rate (SER) simulations are utilized to assess the accuracy of the suggested estimator
and compare it with conventional estimation algorithms. In addition, the suggested framework's
efficiency is evaluated against existing data-driven techniques, such as the DL BIiLSTM model
utilized in [23, 24]. The adaptive moment estimation (Adam) algorithm trains the proposed
estimator on synthetic datasets. Also, a loss function based on cross-entropy is employed.

Based on the results of the simulations, the suggested CNN framework significantly outperforms
the traditional LS and MMSE estimation techniques regarding SER performance in all scenarios.
Additionally, while using restricted training pilots, its performance is on par with the DL BILSTM
structure used in [23, 24]. When sufficient training pilots are used, the CP is missed, and no prior
knowledge of CSlI is used, the proposed CNN CSE outperforms its competitor, DL BiLSTM.

The remaining sections of this work are structured as follows. The OFDM system model is
presented and discussed in Section 3. Then, in Section 4, we describe the suggested CNN CSE and
its learning methods. In addition, Section 5 analyzes the SER performance of the considered
estimators and illustrates the resulting simulation findings. In the end, Section 6 summarizes this
study.

3. System Description

Figure 1 shows the architecture of an OFDM system that utilizes the proposed DL-based CSE. The
OFDM baseband system is identical to the traditional ones. On the transmitting end, a serial-to-
parallel (S/P) converter first converts the serial stream of symbols and pilot signals into a parallel
stream of data. After processing by an inverse discrete Fourier transform (IDFT), the data is now in
the time domain rather than the frequency domain employed by the transmitter. Then, a cyclic
prefix (CP) is appended to the symbol string to reduce inter-symbol interference (ISI).

The multipath channel of a sample space characterized by complex random variables {h (n)}:j is
considering. The signal received y (n) can be represented as [34]:
y (n)=x(n)t h(n)+w (n), 1)
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Where the vectors x (n) and h (n) are the time domain transmitted and channel coefficients, the

operator [ represents a circular convolution, and the vector w (n) represents zero-mean additive

white Gaussian noise (AWGN). Once the CP has been eliminated and discrete Fourier transform
(DFT) has been performed, the resulting frequency-domain signal is:

Y (k) =X (k)H (k)+W (k), )

Where the vectorsX (k),H (k)W (k) and Y (k) are the DFT ofx (n),h(n)w (n) andy (n),

respectively.
‘i Transmitter Channel W (n)
Transmit Add
o ¢ h (n)

y(n)

Receiver 2

Remove Recover ‘
e 7 e

Fig.1: OFDM transmitter/receiver structure diagram.

y(n)

4. The proposed CNN CSE and its learning methods

4.1. The proposed CNN structures

The CNNs are a globally utilized algorithm for identification/classification, particularly in pattern
recognition and image processing. It has evolved to the point that it is now considered one of the
most representative NNs in the DL field [35]. By integrating numerous layers of processing—such
as convolution layers, pooling layers, and fully connected layers—a CNN can
automatically/adaptively learn from low- to high-level spatial hierarchies of features via
backpropagation. Features are retrieved by the first two layers (convolution and pooling) and then
mapped to the final output (classification, for example) by the third layer (a fully connected one)
[36].

The proposed CNN framework uses an array of layers, including a single 2D input layer initially,
two convolution layers, two-layer batch normalization, two nonlinear activation layers, a single
fully connected layer, and, at last, a single SoftMax and classifier layer to provide probabilities for
each output class. Figure 2 illustrates the components of the implemented architecture for the
proposed DL CNN-based CSE.

After conducting extensive research using various architectures containing different numbers of
convolutional layers, we decided to incorporate only two convolutional layers in the proposed
design. Our decision was based on finding a balance between efficiency/complexity.
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Several benefits may result from CNN-based architectures that employ just a few convolutional
layers. One of these advantages is efficiency, which CNN-based designs may be able to improve by
using fewer convolutional layers because they learn more quickly. Because there are fewer
parameters to learn/compute, this model is well suited for application in real time. Another
advantage is that more straightforward architectures are less complex and require less time to learn
and analyse. In addition, a simpler model with fewer convolutional layers may be less likely to
overfit and have lower memory requirements [13].

A quick summary of the numerous layers included in the proposed CNN model's framework is
provided in the following subsections:

[P PR’
(G =\ (i ) ¢
Convolution Layer Convolution Layer Fully Connected Layer
(256x1x32) (256x1x175) (4 dimensions)
\ J/ \ J
v
(~ Batch Normalization \ | / Batch Normalization
Layer Layer Softmax Layer
(256x1x32) (256x1%175) (1x1x4)
. J . J
2D Input Layer v L7 v
( RELU Layer VI ( RELU Layer ) Classification Output
(256x1x32) (256x1x175) - Layer
L )l L ) (4 classes)
rmmi—mﬁv\
Layer a
(256x1x32)

Fig.2: The proposed CNN estimator's layer layout.

4.1.1. Convolutional Layer (CL)

One of the fundamental components of a CNN is a CL, which extracts essential features from the
input image by convolving it with the learnable filters (kernels). After the convolution with the
input image, each filter generates an activation map.

Consider that N defines the number of inputs, 1" denotes the specified input length, L.
describes the layers of convolution of the proposed CNN estimator, L, represents the length of the
filters in the 1™ layer, and N, symbolizes the number of filters in the 1" layer. For the 1™ layer,
the convolutional process is mathematically represented as follows [37]:

he =f (x'>w, +by ), A3)
|
Where f (.)denotes the selected activation function, X €R Xk defines the input feature map of

| |
layer I, b eR": indicates the bias terms associated with the outputs, W €R Nt gescribes a

| |
collection of filters for the 1™ layer, and h' e RN symbolizes the feature map, which is the set of

output feature maps for layer! . Also, the value of the outcomes of the k™ filter can be expressed
as:

o0

(x"aw ) (i)= 2 x (aw, (i -a), @)

a=—w
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The above equation describes how the convolution operation is applied to compute the value of the
output for each position i in the feature map produced by the k™ filter in layerl .

4.1.2. Batch Normalization (BN) Layer

Many challenges must be overcome when training DNNs. Although they have tremendous
potential, they are sometimes slow and susceptible to overfitting. Therefore, there is a continuous
effort in DL research toward discovering solutions to these issues. One of these methods is known
as "batch normalization”. The BN layer aims to speed up the process of training the DNNs by
minimizing the change in the network'’s internal covariance and enhancing its overall efficiency.
Typically, the BN layer is placed between the convolution and activation layers.

4.1.3. Pooling Layer

Using pooling layers in CNNs is intended to decrease the total number of parameters and,
consequently, the model's complexity by gradually decreasing the dimensionality of the
representation. Additionally, the pooling layer boosts the efficiency of the model. Among the most
common types of pooling operation, "max pooling™, which returns the highest value detected in the
pooling filter, is utilized in this study.

4.1.4. Rectified Linear Unit (ReLU) Layer

An essential part of a CNN is the activation function. Typically, a nonlinear activation function is
utilized for mapping the obtained features, thus preventing the problem of insufficient expression
resulting from the linear operation. One of the most well-known nonlinear activation functions,
known as ReLU, is used in the proposed model, and is described as:

X x>0
f =
) {O, x<0 ©)

4.1.5. Fully Connected (FC) Layer

A FC layer for the ultimate justification and classification may be present following the stacking
of many layers for feature extraction tasks. The FC layer is precisely what its name implies since
each FC layer output node connects directly to a previous layer node. A single FC layer is used after
the convolutional layer in this study. The result of the extraction of features process is a feature map
in the form of a multidimensional array, which must be flattened or transformed into a vector before
it can be used as the input for the FC layer. For CSE issues, the FC layer plays a vital role as it
integrates the features gained from lower-level layers over the entire transmission channel to
estimate channel state information.

4.1.6. Output Layers (Softmax/Classification)

The softmax layer is highly regarded as an effective tool for representing class distribution. In tasks
that require classification, a softmax layer typically comes before the classification layer. Using a
softmax function, the outcome of the previous FC layer turns into a normalized estimated
probability in the range [0, 1]. The softmax function can be represented as follows:
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Xj

e
e xn
€

Where p; denotes the likelihood of the i™ class between the j classes.

P ,j=1...,N (6)

The classification layer frequently appears after the layer of softmax in standard classifiers. The
classification layer receives the softmax function's outcome and utilizes a specified loss function,
cross-entropy in this study, to assign each value to one of the possible classes. The primary loss
function employed in the current study for speeding up training is cross-entropy, which can be
represented for the k mutually exclusive categories as [38]:

Crossentropyex = —iixij (k)log(x; (k)), @)

i=l j=1
Where C symbolizes the total number of categories, e sample size, indicates the whol N
es an outcome of thi X; category, and hdata sample delivered for the ™Miidentifies the X

suggested estimator for a samplei in category j .

4.2. Training procedures for the proposed model

An efficient DL CNN model for CSE was achieved through a two-phase procedure. In the initial
phase, OFDM samples that were generated with various streams of data under different channel
circumstances and possessing certain statistical features were used for training in an offline manner.
The second phase, online deployment, produces outputs that recover/predict the information sent
without requiring an explicit estimate of the wireless channel. Figure 3 shows the steps taken in
creating training datasets and utilizing offline DL to develop a trained CNN model.

During the offline training phase, the training dataset for one subcarrier is created by transmitting
OFDM frames across the selected channel model. An efficient training dataset requires both the
initially transmitted symbols and the OFDM signals at the receiver, which are affected by the actual
channel parameters and noise. The proposed DL model, which was trained offline, is then deployed
online, where it takes the unknown received signals as input and recovers the broadcast signals by
using both the learned information and CNN's inherent ability for automated recognition/extraction
of important characteristics.

5. Simulation Results

Several simulations have been performed to prove our suggested CNN structure can effectively
estimate the channel and retrieve transmitted symbols. In this section, the proposed CNN
framework's SER versus SNR performance is compared to that of the standard LS and MMSE
estimation methods, as well as the DL BiLSTM model employed in [23, 24]. Three cycle prefix
lengths (16, 8, and 0) and two pilot densities (64 and 8) will be utilized to assess how well the
estimator’s work. In addition, the proposed CNN model will employ the cross-entropy loss function
in the last classification layer during training with the Adam optimizer. In the present research, the
recommended CNN model is trained offline utilizing the created data sets and then used to
implicitly estimate the CSl/recover the information sent in an OFDM wireless communication
system. In the training data set, only one subcarrier is presented. Each OFDM packet includes one
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pilot symbol along with a single data symbol. Out of a total of 10,000 OFDM packets, 80 percent
are used for learning, while the other 20 percent are used for checking. Table 2 lists the
configuration settings for the OFDM system under consideration, whereas Table 3 lists the
configuration parameters for the proposed DL CNN model.

X (k
(k) x (n)
—_—> Signal Processing at T[X] \l'
Adopted Channel Model
X (k)
y(n)
] Signal Processing at R[X] <
A Online
Transmitted Learned DL CNN Offline
Symbols Training
Dataset
CNN
—_—>
Network
Channel
Model

Fig.3. Offline DL procedure/training data set generation of the proposed CNN model.

Table 2: Channel model and OFDM system settings

Parameter Specifications
Mode of Modulation Quadrature phase shift keying (QPSK)
Carrier Frequency 2.6 GHz
Number of OFDM subcarriers 64
Number of OFDM blocks 2 OFDM blocks for pilots and symbols, respectively
Size of DFT/IDFT 64
Number of Pilots 64,8
Length of Cyclic Prefix (CP) 16, 8,0
Model of the Channel Rayleigh Fading
Number of Paths 24
Model of Noise Additive white Gaussian noise (AWGN)

Table 3: The proposed DL CNN architecture and the training parameters

Parameter Specifications
Depth of CNN model 11 Layers
Input Layer Size 256
Convolution Layers (CL) Size 32 kernels of size [64,1], 175 kernels of size [64,1]
FC Layer Size 4
Number of Epochs 8
Mini Batch Size 32
Optimizer Adam
Loss Function Cross-entropy
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With a sufficient number of pilots (64) and a CP length of 16, as shown in Fig. 4, the proposed DL
CNN-based CSE significantly exceeds the conventional estimators at all levels of SNR. On the
other hand, in the low SNR region of 0—4 dB, the proposed CNN estimator performs similarly to its
counterpart, the DL BiLSTM model used in [23, 24]. In addition, starting at 5 dB, the proposed DL
CNN model provides more accurate estimates than the DL BiLSTM model.

Figure 5 illustrates that for a CP of 8, the proposed DL CNN model works similarly to the
conventional channel estimators and the DL BiLSTM model in the SNR ranges of 0—4 dB and 0-14
dB, respectively. At a dB level of 5 or subsequently, the proposed DL CNN model outperforms the
standard LS and MMSE estimators. In addition, beginning at 15 dB, the suggested DL CNN model
provides superior results compared to the DL BILSTM model. In contrast, the conventional LS
estimator is the least effective.

In the simulation scenario with 64 pilots without CP, the proposed DL CNN-based CSE performs
significantly better than the other estimators. This can be seen in Fig. 6. The results also
demonstrate that in the 0-15 dB SNR bands, the MMSE estimator and the BiLSTM model perform
similarly. Moreover, the MMSE estimator beats the BiLSTM model over SNR ranges of 16-27 dB.
However, the LS estimator is still the least effective.

SER

-*- BiLSTM @16CP& 64 pilots using adam & crossentropy
-5 @16CP& 64 pilots 0
—¥— MMSE @16CP& 64 pilots 3
—e— CNN  @16CP&64 pilots using adam & crossentropy

0 5 10 15 20 25 30
Es/NO (dB)
Fig. 4: The SER curves for the performance of the suggested DL CNN structure and the tested estimators at 64 pilots
and 16 CP lengths utilizing the Adam optimizer/cross-entropy loss function.

Figures 4, 5, and 6 illustrate that the LS estimator consistently provides the worst SER performance
because its estimating method is not dependent on any previous knowledge of channel parameters.
In contrast, the MMSE estimator outperforms the LS estimator thanks to its usage of second-order
channel statistics. In all simulation scenarios, our suggested DL CNN-based CSE achieved higher
SER performance than the two benchmark approaches and the DL BiLSTM model employed in
[23], [24]. As a result, the proposed DL CNN model is efficient in both CSE and symbol detection.
Also, it demonstrates that the suggested DL CNN structure with the short/no CP is both reliable and
robust. The proposed CNN model is more effective because it retains critical data during training
while benefiting from its attractive features like weight sharing, local connections, and down
sampling dimension reduction.
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The behavior of the estimating methods is shown in Fig. 7, with a restricted number of pilots (8)
and a CP length of 16. The proposed DL CNN-based CSE beats conventional estimation methods.
Furthermore, compared to the DL BiLSTM model, the proposed DL CNN-based CSE performs
similarly over the SNR ranges 0-21 dB, as seen in this figure. On the other hand, the channel
information cannot be accurately estimated by either LS or MMSE.

When the length of CP is reduced to 8, the proposed DL CNN-based CSE exceeds the standard
channel estimation algorithms. Also, the proposed DL CNN estimator and the DL BiLSTM model
achieve the same performance across the 0—21 dB SNR ranges, as shown in Fig. 8. In contrast, the
standard estimators lose their effectiveness starting at 0 db.
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- = BiLSTM @8CP& 64 pilots using adam & crossentropy
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Fig. 5: The SER curves for the performance of the suggested DL CNN structure and the tested estimators at 64 pilots
and 8 CP lengths utilizing the Adam optimizer/cross-entropy loss function.
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Fig. 6: The SER curves for the performance of the suggested DL CNN structure and the tested estimators at 64 pilots
and without CP utilizing the Adam optimizer/cross-entropy loss function.
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Fig. 7: The SER curves for the performance of the suggested DL CNN structure and the tested estimators at 8 pilots and
16 CP lengths utilizing the Adam optimizer/cross-entropy loss function.
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Fig. 8: The SER curves for the performance of the suggested DL CNN structure and the tested estimators at 8 pilots and
8 CP lengths utilizing the Adam optimizer/cross-entropy loss function.

Figure 9 demonstrates that the proposed DL CNN-based CSE outperforms the traditional estimators
even in a simulation scenario with 8 pilots and no CP. In addition, the proposed DL CNN structure
and the DL BiLSTM model obtain identical performance across the 0—21 dB SNR range. On the
other hand, the MMSE performs better in terms of SER performance than the LS estimator, which
achieves the worst performance.

At high SNR, almost above 22 dB, the DL BiLSTM beats the proposed DL CNN-based CSE in
Figures 7-9. Bi-LSTM's ability to analyze input sequences in both directions and employ
past/future time steps gives it this advantage. This bidirectional background can be helpful in high
SNR regions where channel behavior may exhibit predictable patterns over time. In addition, Bi-
LSTM retains relevant information over time and filters out noise/irrelevant information, making it
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efficient at handling noisy data. The results of the performance for the proposed DL CNN-based
CSE with 8 pilots and CP lengths of 16, 8, and 0 are summarized in Fig. 10. The proposed DL CNN
structure with short/no CP achieves the same performance across (0-7 dB) SNRs, proving its
efficacy at lower SNR levels. In addition, the proposed DL CNN model with CP exhibits less
variation across the SNR ranges (8-14 dB) than its counterpart without CP.

Based on the obtained results, we can conclude that the proposed DL CNN-based CSE is effective
in a short/no CP scenario and is also resistant to limited pilots. This advantage is essential for the
DL CSE to be executed in real-time, as identical performance can be achieved with a significant
reduction in calculations. Moreover, the suggested DL CNN architecture with low spectrum
utilization for CSE/SD is recommended for OFDM wireless communication systems to
considerably enhance their energy/spectrum efficiency as well as transmission data rates.

-*- BILSTM@OCP& 8 pilots using adam & crossentropy ‘\
—B—1s  @OCP& 8 pilots s
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Fig. 9: The SER curves for the performance of the suggested DL CNN structure and the tested estimators at 8 pilots and
without CP utilizing the Adam optimizer/cross-entropy loss function.
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Fig. 10: The SER curves for the performance of the suggested DL CNN structure at 8 pilots and different CP lengths of
16, 8, and 0 utilizing the Adam optimizer/cross-entropy loss function.
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5. Conclusions

Improving the performance of multi-carrier wireless communication systems requires efficient
channel estimates/accurate signal detection. This study has introduced an efficient/reliable DL
framework that leverages CNNs for CSE and signal detection tasks within OFDM wireless systems.
Notably, this is the first time, as far as the authors know, that CNN-based CSE has been presented
and evaluated without the addition of other complex deep neural network approaches that use short
or no CPs. Before extracting/retrieving transmitted data symbols, the proposed DL CNN framework
was trained offline using OFDM signals exposed to various channel faults.

Multiple experiments have been conducted to evaluate the suggested CNN framework and
demonstrate its efficacy for CSE and signal detection applications compared to the standard LS and
MMSE estimation methods and the DL-based BiLSTM model. The simulation results demonstrated
that, in all simulated scenarios, the recommended DL CNN CSE showed superior SER performance
in symbol detection compared to the conventional LS and MMSE estimators. Additionally, the
proposed CNN architecture outperformed the DL BiLSTM model, particularly when a large enough
number of pilots were used.

Furthermore, the simulation results confirmed the proposed DL CNN framework's robustness and
demonstrated its ability to adapt to a shorter CP length and fewer pilots than conventional methods.
Consequently, the proposed DL CNN architecture shows significant potential for CSI
estimation/signal detection tasks in OFDM wireless communication systems, thanks to its data-
driven approach and its inherent properties of automatically identifying/extracting relevant features.
In addition, it lacks the use of previous channel information. The proposed DL CNN model will be
employed in future work to apply to more complex system models, such as MIMO scenarios.
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