Cellular Stress Promotes Cellular Suicide: Review Article | ||||
Journal of Applied Veterinary Sciences | ||||
Article 10, Volume 8, Issue 4, October 2023, Page 69-82 PDF (513.31 K) | ||||
Document Type: Review Article | ||||
DOI: 10.21608/javs.2023.222504.1255 | ||||
View on SCiNiTO | ||||
Author | ||||
Hiyam N. Maty | ||||
Department of Physiology, Biochemistry and Pharmacology, College of Veterinary Medicine, University of Mosul, Iraq | ||||
Abstract | ||||
The focus of this overview was to elucidate the different kinds of stresses that influence cell survival, growth, and cellular functions, in addition to cellular quiescence and cellular suicide, as well as how the cell tries to respond to these stressful stimuli. A cell's cycle is a sequence of developments that enables a cell to replicate every component of itself, divide into two nearly identical new cells, and endow each with the information and resources it needs to repeat the process. For tissue homeostasis, the ideal stabilization of proliferation of cells, demise of cells, and the proportion of positive to negative signals determines if the cell is alive or dead. Cells could indeed cope with adverse conditions in an assortment of ways, from triggering long-term survival strategies to establishing the demise of cells, which ultimately expel dead cells. The kind, intensity, and time frame of the stress, plus the kind of cell, all play a significant role in determining whether cells mount a defensive or destructive response to stress. This review will talk about the consequences of cellular responses to stress and discuss a range of stressful situations and the degree to which the animal's cells' react to multiple exhausting factors ranging from the physiologically programmed advancement of cells to cellular senescence and/or a variety of pathological disorders. | ||||
Keywords | ||||
Deathbed cells; senescent cells; Stressors; Stress response | ||||
References | ||||
ABDULLAH, M.A., and TAWFEEQ, F.K., 2022. Protective Effect of Quercetin and Curcumin against Ovarian Oxidative Stress Induced by Gossypol in Albino Female Rats. Journal of Applied Veterinary Sciences, 7(4), 74-80. https://doi.org/10.21608/JAVS.2022.154169.1167.
ALBERT, M. L. 2004. Death-defying immunity: do apoptotic cells influence antigen processing and presentation? Nature Reviews Immunology. 4(3), 223-231. https://doi.org/10.1038/nri11308.
AL-HAMADANY, N.A., and AZUBAIDY, M.H., 2023. Sub-acute effects of α-Fe2O3 nanoparticles on some biochemical parameters in mice. Journal of Applied Veterinary Sciences, 8(3), 46-53. https://doi.org/ 10.21608/JAVS.2023.210749.1232.
ALMALKI, A. F. Y., ARABDIN, M., and KHAN, A., 2021. The Role of Heat Shock Proteins in Cellular Homeostasis and Cell Survival. Cureus, 13(9). https://doi.org/10.7759/cureus.c52
ANCKAR, J., and SISTONEN, L., 2011. Regulation of HSF1 function in the heat stress response: implications in aging and disease. Annual review of biochemistry. 80, 1089-1115. https://doi.org/10.1146/annurev-biochem-060809-095203
BAKKENIST, C. J., and KASTAN, M. B., 2004. Initiating cellular stress responses. Cell. 118(1), 9-17. https://doi.org/10.1016/j.cell.2004.06.023
BAKTHISARAN, R., TANGIRALA, R., and RAO, C. M., 2015. Small heat shock proteins: Role in cellular functions and pathology. Biochimica et Biophysica Acta (BBA)-Proteins and Proteomics. 1854(4), 291-319. https://doi.org/10.1016/j.bbapap.2014.12.019.
BEAUSEJOUR, C. M.; KRTOLICA, A., GALIMI, F., NARITA, M., LOWE, S. W., YASWEN, P., and CAMPASI, J., 2003. Reversal of human cellular senescence: roles of the p53 and p16 pathways. The EMBO journal. 22(16), 4212-4222. https://doi.org/10.1093/emboj/cdg417.
BELIZARO, J., VIEIRA-CORDEIRO, L., and ENNS, S., 2015. Necroptotic cell death signaling and execution pathway: lessons from knockout mice. Mediators of inflammation. 2015. https://doi.org/10.1155/2015/128076.
BERGHE, T. V., LINKERMANN, A., JOUAN-LANHOUET, S., WALCZAK, H., and VANDENABEELE, P., 2014. Regulated necrosis: the expanding network of non-apoptotic cell death pathways. Nature reviews Molecular cell biology. 15(2), 135-147. https://doi.org/10.1038/nrm3737.
BERGSBAKEN, T., FINKS, S. L., and COOKSON, B. T., 2009. Pyroptosis: host cell death and inflammation. Nature Reviews Microbiology. 7(2), 99-109. https://doi.org/10.1038/nrmicro2070.
CAO, S. S., and KAUFMAN, R. J., 2012. Unfolded protein response. Current biology. 22(16), R622-R626. https://doi.org/10.1016/j.cub.2012.07.004.
CHANDRA, J., SAMALI, A., and ORRENIUS, S., 2000. Triggering and modulation of apoptosis by oxidative stress. Free radical biology and medicine. 29(3-4), 323-333. https://doi.org/10.1016/s0891-5849(00)00302-6.
CHANG, H. H., PANNUNZIO, N. R., ADACHI, N., and LIEBER, M. R., 2017. Non-homologous DNA end joining and alternative pathways to double-strand break repair. Nature reviews Molecular cell biology. 18(8), 495-506. https://doi.org/10.1038/nrm.2017.48.
CHILDS, B. G., BAKER, D. J., KIRKLAND, J. L., CAMPISI, J., and VAN DEURSEN, J. M., 2014. Senescence and apoptosis: dueling or complementary cell fates?. EMBO reports. 15(11), 1139-1153. https://doi.org/10.15252/embr.201439245.
COATES, P. J., LORIMORE, S. A., and WRIGHT, E. G., 2005. Cell and tissue responses to genotoxic stress. The Journal of Pathology: A Journal of the Pathological Society of Great Britain and Ireland. 205(2), 221-235. https://doi.org/10.1002/path.1701.
DAI, C. 2018. The heat-shock, or HSF1-mediated proteotoxic stress, response in cancer: from proteomic stability to oncogenesis. Philosophical Transactions of the Royal Society B: Biological Sciences. 373(1738), 20160525. https://doi.org/10.1098/rstb.2016.0525.
DALTON, T. P., SHRETZER, H. G., and PUGA, A., 1999. Regulation of gene expression by reactive oxygen. Annual review of pharmacology and toxicology. 39(1), 67-101. https://doi.org/10.1146/annurev.pharmtox.39.1.67.
DATTA, A., and DOUGHERTY, E. R., 2018. Introduction to genomic signal processing with control. CRC Press. https://doi.org/10.1201/9781420006674.
DENTON, D., and KUMAR, S., 2019. Autophagy-dependent cell death. Cell Death & Differentiation. 26(4), 605-616. https://doi.org/10.1038/s41418-018-0252-y.
Di LEONARDO, A., LINKE, S. P., CALRKIN, K., and WAHL, G. M.,1994. DNA damage triggers a prolonged p53-dependent G1 arrest and long-term induction of Cip1 in normal human fibroblasts. Genes & development. 8(21), 2540-2551. https://doi.org/10.1101/gad.8.21.2540.
Di MICCO, R., KRIZHANOVSKY, V., BAKER, D., and DDA di FAGAGNA, F., 2021. Cellular senescence in ageing: from mechanisms to therapeutic opportunities. Nature reviews Molecular cell biology, 22(2), 75-95. https://doi.org/10.1038/s41580-020-00314-w.
DIONISIO, P. A., AMARAL, J. D., and RODRIGUES, C. M., 2020. Molecular mechanisms of necroptosis and relevance for neurodegenerative diseases. International Review of Cell and Molecular Biology. 353, 31-82. https://doi.org/10.1016/bs.ircmb.2019.12.006.
DIXON, S. J., LEMBERG, K. M., LAMPRECHT, M. R., SKOUTA, R., ZAITSEV, E. M., GLEASON, C. E., and STOCKWELL, B. R., 2012. Ferroptosis: an iron-dependent form of nonapoptotic cell death. Cell. 149(5), 1060-1072. https://doi.org/10.1016/j.cell.2012.03.042.
DUTTA, N., GARCIA, G., and HIGICHI-SANABIRIA, R., 2022. Hijacking cellular stress responses to promote lifespan. Frontiers in Aging. 20. 3. https://doi.org/10.3389/fragi.2022.860404.
ELMORE, S., 2007. Apoptosis: a review of programmed cell death. Toxicologic pathology. 35(4), 495-516. https://doi.org/10.1080/01926230701320337.
ENGELBERG-KULKA, H., AMITAI, S., KOLODKIN-GAL, I., and HAZAN, R., 2006. Bacterial programmed cell death and multicellular behavior in bacteria. PLoS genetics. 2(10), e135. https://doi.org/10.1371/journal.pgen.0020135.
FRIEDMANN ANGELI, J. P., SCHNIEDER, M., PRONETH, B.; TYURINA, Y. Y., TYURIN, V. A., HAMMOND, V. J., and CONARD, M., 2014. Inactivation of the ferroptosis regulator Gpx4 triggers acute renal failure in mice. Nature cell biology. 16(12), 1180-1191. https://doi.org/10.1038/ncb3064.
FULDA, S., GORMAN, A. M., HORI, O., and SAMALI, A., 2010. Cellular stress responses: cell survival and cell death. International journal of cell biology, 2010,1-23. https://doi.org/10.1155/2010/214074.
GALLUZZI, L., YAMAZAKI, T., and KROEMER, G., 2018. Linking cellular stress responses to systemic homeostasis. Nature Reviews Molecular Cell Biology, 19(11), 731-745. https://doi.org/10.1038/s41580-018-0068-0.
GALLUZZI, L., BAEHRECKE, E. H., BALLABIO, A., BOYA, P., BRAVO‐SAN PEDRO, J. M., CECCOIN, F., and KROEMER, G., 2017. Molecular definitions of autophagy and related processes. The EMBO journal. 36(13), 1811-1836. https://doi.org/10.15252/embj.201796697.
GALLUZZI, L., VITALE, I., AARONSON, S. A., ABRAMS, J. M., ADAM, D., AGOSTINIS, P., and TURK, B., 2018. Molecular mechanisms of cell death: recommendations of the Nomenclature Committee on Cell Death 2018. Cell Death & Differentiation. 25(3), 486-541. https://doi.org/10.1038/s41418-017-0012-4.
GALLUZZI, L., VITALE, I., ABRAMS, J. M., ALNEMRI, E. S., BAEHRECKE, E. H., BLAGOSKLONNY, M. V., and KROEMER, G., 2012. Molecular definitions of cell death subroutines: recommendations of the Nomenclature Committee on Cell Death 2012. Cell Death & Differentiation. 19(1), 107-120. https://doi.org/10.1038/cdd.2011.96.
GALLUZZI, L., YAMAZAKI, T., and KROEMER, G., 2018. Linking cellular stress responses to systemic homeostasis. Nature Reviews Molecular Cell Biology. 19(11), 731-745. https://doi.org/10.1038/s41580-018-0068-0.
GARCIA-ROMO, G. S., CAIELLI, S., VEGA, B., CONNOLLY, J., ALLANTAZ, F., XU, Z., and PASCUAL, V., 2011. Netting neutrophils are major inducers of type I IFN production in pediatric systemic lupus erythematosus. Science translational medicine. 3(73), 73ra20-73ra20. https://doi.org/10.1126/scitranslmed.3001201.
GASCHLER, M. M., A, A.NDIA A., LIU, H., CSUKA, J. M., HURLUCKER, B., VAIANA, C. A., and STOCKWELL, B. R., 2018. FINO2 initiates ferroptosis through GPX4 inactivation and iron oxidation. Nature chemical biology. 14(5), 507-515. https://doi.org/10.1038/s41589-018-0031-6.
GILLOT, C., FAVRESSE, J., MULLIER, F., LECOMPTE, T., DOGNE, J. M., and DOUXFILS, J., 2021. NETosis and the immune system in COVID-19: mechanisms and potential treatments. Frontiers in pharmacology. 12, 708302. https://doi.org/10.3389/fphar.2021.708302.
GILMORE, A. 2005., Anoikis. Cell Death and Differentiation. 12, 1473-1477. https://doi.org/10.1038/sj.cdd.4401723.
GOLSTIEN, P., and KROEMER, G., 2007. Cell death by necrosis: towards a molecular definition. Trends in biochemical sciences. 32(1), 37-43. https://doi.org/10.1016/j.tibs.2006.11.001.
HADING, H. P., ZHANG, Y., ZENG, H.; NOVOA, I., LU, P. D., CALFON, M., and RON, D., 2003. An integrated stress response regulates amino acid metabolism and resistance to oxidative stress. Molecular cell. 11(3), 619-633. https://doi.org/10.1016/s1097-2765(03)00105-9
HALLIWELL, B., and GUTTERRIDGE, J. M. C., 2015. Free Radicals in Biology and Medicine. (5th edn), Oxford University Press. https://doi.org/10.1093/acprof:oso/9780198717478.001.0001.
HAMANAKA, R. B., and CHANDEL, N. S., 2010. Mitochondrial reactive oxygen species regulate cellular signaling and dictate biological outcomes. Trends in biochemical sciences. 35(9), 505-513. https://doi.org/10.1016/j.tibs.2010.04.002.
HAYFLICK, L., and MOORHEAD, P. S., 1961. The serial cultivation of human diploid cell strains. Exp. Cell Res. 25, 585–621. https://doi.org/10.1016/0014-4827(61)90192-6.
HOUTKOOPER, R. H., MOUCHIROUD, L., RYU, D., MOULLAN, N., KATSYUBA, E., KNOTT, G., and AUWERX, J., 2013. Mitonuclear protein imbalance as a conserved longevity mechanism. Nature. 497(7450), 451-457. https://doi.org/10.1038/nature12188.
IGNEY, F. H., and KRAMMER, P. H., 2002. Death and anti-death: tumour resistance to apoptosis. Nature Reviews Cancer. 2(4), 277-288. https://doi.org/10.1038/nrc776.
IMAI, Y., TAKAHASHI, A., HANYU, A., HORI, S., SATO, S., NAKA, K., and HARA, E., 2014. Crosstalk between the Rb pathway and AKT signaling forms a quiescence-senescence switch. Cell reports. 7(1), 194-207. https://doi.org/10.1016/j.celrep.2014.03.006.
JUNG, S., JEONG, H., and YU, S. W., 2020. Autophagy as a decisive process for cell death. Experimental & Molecular Medicine. 52(6), 921-930. https://doi.org/10.1038/s12276-020-0455-4.
KAMAL, N. S. M., SAFUAN, S., SHAMSUDDIN, S., and FOROOZANDEH, P., 2020. Aging of the cells: Insight into cellular senescence and detection Methods. European journal of cell biology. 99(6), 151108. https://doi.org/10.1016/j.ejcb.2020.151108.
KAUFMAN, R. J. 2002. Orchestrating the unfolded protein response in health and disease. The Journal of clinical investigation. 110(10), 1389-1398. https://doi.org/10.1172/jci0216886.
KERR, J. F., WYLLIE, A. H., and CURRIE, A. R., 1972. Apoptosis: a basic biological phenomenon with wide ranging implications in tissue kinetics. British journal of cancer. 26(4), 239-257. https://doi.org/10.1038/bjc.1972.33.
KHALILI, M., and RADOSEVICH, J. A., 2018. Paraptosis. Apoptosis and Beyond: The Many Ways Cells Die. 343-366. https://doi.org/10.1002/9781119432463.ch16.
KIERSZENBAUM, A.L., and TRES, L.L., 2019. Histology and Cell Biology: An Introduction to Pathology E-Book. Elsevier Health Sciences. 5th Edition. eBook ISBN: 9780323683784.
KIRSCHNER, K., SAMARJIWA, S. A., CAIRNS, J. M., MENON, S., PEREZ-MANCERA, P. A., TOMIMATSU, K., and NARITA, M., 2015. Phenotype specific analyses reveal distinct regulatory mechanism for chronically activated p53. PLoS genetics. 11(3), e1005053. https://doi.org/10.1371/journal.pgen.1005053.
KIRKWOOD, T. B., and AUSTAD, S. N., 2000. Why do we age?. Nature. 408(6809), 233-238. https://doi.org/10.1038/35041682.
KROEMER, G., GALLUZZI, L., VANDENABEELE, P., ABRAMS, J., ALNEMRI, E. S., BAEHRECKE, E. H., ... and MELINO, G., 2009. Classification of cell death: recommendations of the Nomenclature Committee on Cell Death 2009. Cell death & differentiation. 16(1), 3-11. https://doi.org/10.1038/cdd.2008.150.
KREMER, G., MARIANO, G., and LEVINE, B., 2010. Autophagy and the integrated stress response. Molecular cell. 40(2), 280-293. https://doi.org/10.1016/j.molcel.2010.09.023.
KUMARI, R., and JAT, P., 2021. Mechanisms of cellular senescence: cell cycle arrest and senescence associated secretory phenotype. Frontiers in cell and developmental biology. 9, 645593. https://doi.org/10.3389/fcell.2021.645593.
LAMKANFI, M., DECLERCQ, W., KALAI, M., SAELENS, X., and VANDENABEELE, P., 2002. Alice in caspase land. A phylogenetic analysis of caspases from worm to man. Cell death and differentiation. 9(4), 358-361. https://doi.org/10.1038/sj/cdd/4400989.
LANG, E., BISSINGER, R., GULBINS, E., and LANG, F., 2015. Ceramide in the regulation of eryptosis, the suicidal erythrocyte death. Apoptosis. 20, 758-767. https://doi.org/10.1007/s10495-015-1094-4.
LANFG, F., and QADRI, S. M., 2012. Mechanisms and significance of eryptosis, the suicidal death of erythrocytes. Blood purification. 33(1-3), 125-130. https://doi.org/10.1159/000334163.
LANG, F., BISSINGER, R., ABED, M., and ARTUNC, F., 2017. Eryptosis-the neglected cause of anemia in end stage renal disease. Kidney and Blood Pressure Research. 42(4), 749-760. https://doi.org/10.1159/000484215.
LANG, F., GULBINS, E., Lang, P. A., ZAPPULLA, D., and FOLLER, M., 2010. Ceramide in suicidal death of erythrocytes. Cellular Physiology and Biochemistry. 26(1), 21-28. https://doi.org/10.1159/000315102.
LI, J., CAO, F., YIN, H. L., Huang, Z. J., Lin, Z. T., Mao, N., and Wang, G., 2020. Ferroptosis: past, present and future. Cell death & disease. 11(2), 88. https://doi.org/10.1038/s41419-020-2298-2.
LI, Z.; ZHANG, Z., REN, Y., WANG, Y., FANG, J., YUE, H., and GUAN, F., 2021. Aging and age‐related diseases: from mechanisms to therapeutic strategies. Biogerontology. 22, 165-187. https://doi.org/10.1007/s10522-021-09910-5.
LIANG, C., ZHAN, X., YANG, M., and DONG, X., 2019. Recent progress in ferroptosis inducers for cancer therapy. Advanced materials. 31(51), 1904197. https://doi.org/10.1002/adma.201904197.
LIANG, Y., LIN, S. Y., BRUNICARDI, F. C., GOSS, J., and LI, K., 2009. DNA damage response pathways in tumor suppression and cancer treatment. World journal of surgery. 33, 661-666. https://doi.org/10.1007/s00268-008-9840-1.
LOPEZ BERGAMI, P. R., and ZEEV, R., 2011. Cell death in response to genotoxic stress and DNA damage. Apoptosis: Physiology and Pathology, 74-87. https://doi.org/10.1017/cbo9780511976094.008.
MAJMUNDER, A. J., WONG, W. J., and SIMON, M. C., 2010. Hypoxia-inducible factors and the response to hypoxic stress. Molecular cell. 40(2), 294-309. https://doi.org/10.1016/j.molcel.2010.09.022.
MARTINDALE, J. L., and HOLBROOK, N. J., 2002. Cellular response to oxidative stress: signaling for suicide and survival. Journal of cellular physiology. 192(1), 1-15. https://doi.org/10.1002/jcp.10119.
MARTINVALENT, D., ZHU, P., and LIEBERMAN, J., 2005. Granzyme A induces caspase-independent mitochondrial damage, a required first step for apoptosis. Immunity. 22(3), 355-370. https://doi.org/10.1016/j.immuni.2005.02.004.
MATY, H.N. 2021. Ecophysiology of antioxidants in poultry diet. Journal of Applied Veterinary Sciences, 6(3), 54-59. https://doi.org/10.21608/JAVS.2021.79441.1084.
MIKULA-PIETRASIK, J., NIKA;S, A., URUSKI, P., TYKARSKI, A., and KSIAZEK, K., 2020. Mechanisms and significance of therapy-induced and spontaneous senescence of cancer cells. Cellular and Molecular Life Sciences. 77, 213-229. https://doi.org/10.1007/s00018-019-03261-8.
MIZUSHIMA, N., LEVINE, B., CUERVO, A. M., and KLIONSKY, D. J., 2008. Autophagy fights disease through cellular self-digestion. Nature. 451(7182), 1069-1075. https://doi.org/10.1038/nature06639
MORIMOTO, R. I. 2011. The heat shock response: systems biology of proteotoxic stress in aging and disease. In Cold Spring Harbor symposia on quantitative biology. Vol.76. Cold Spring Harbor Laboratory Press. pp. 91-99. https://doi.org/10.1101/sqb.2012.76.010637
HUANG, J., HONG, W., WAN, M., and ZHENG, L., 2022. Molecular mechanisms and therapeutic target of NETosis in diseases. MedComm. 3(3), e162. https://doi.org/10.1002/mco2.162.
NAVARRO-YEPES, J., ZAVALA-FLORES, L., ANANDHAN, A., WANG, F., SKOTAK, M., CHANDRA, N., ... and FRANCO, R., 2014. Antioxidant gene therapy against neuronal cell death. Pharmacology & therapeutics. 142(2), 206-230. https://doi.org/10.1016/j.pharmthera.2013.12.007.
NEEF, D. W., JAEGER, A. M., GOMEZ-PASTOR, R., WILLMUND, F., FRYDMAN, J., and THIELE, D. J., 2014. A direct regulatory interaction between chaperonin TRiC and stress-responsive transcription factor HSF1. Cell reports. 9(3), 955-966. https://doi.org/10.1016/j.celrep.2014.09.056.
NEUDEGGER, T., VERGHESE, J., HAYER-HARTL, M., HARTL, F. U., and BRACHER, A., 2016. Structure of human heat-shock transcription factor 1 in complex with DNA. Nature structural & molecular biology. 23(2), 140-146. https://doi.org/10.1038/nsmb.3149.
NICHOLSON, D. W. 1999. Caspase structure, proteolytic substrates, and function during apoptotic cell death. Cell Death & Differentiation. 6(11), 1028-1042. https://doi.org/10.1038/sj.cdd.4400598.
NORBURY, C. J., and HICKSON, I. D., 2001. Cellular responses to DNA damage. Annual review of pharmacology and toxicology. 41(1), 367-401. https://doi.org/10.1146/annurev.pharmtox.41.1.367.
PECIULIENE, I., JAKUBAUSKIENE, E., VILYS, L., ZINKEVICIUTE, R., KVEDARAVICIUTE, K., and KANOPKA, A., 2022. Short-Term Hypoxia in Cells Induces Expression of Genes Which Are Enhanced in Stressed Cells. Genes. 13(9), 1596. https://doi.org/10.3390/genes13091596.
PIZZINO, G., IRRARA, N., CUCINOTTA, M., PALLIO, G., MANNINO, F., ARCORACI, V., ... and BITTO, A., 2017. Oxidative stress: harms and benefits for human health. Oxidative medicine and cellular longevity. 2017, 1-13. https://doi.org/10.1155/2017/8416763.
POIJŠAK, B., and MILISAV, I., 2012. Clinical implications of cellular stress responses. Bosnian journal of basic medical sciences. 12(2), 122. https://doi.org/10.17305/bjbms.2012.2510.
RENEHAN, A. G., BOOTH, C., and POTTEN, C. S., 2001. What is apoptosis, and why is it important? Education and debate. Bmj. 322(7301), 1536-1538. https://doi.org/10.1136/bmj.322.7301.1536.
REPSOLD, L., and JOUBERT, A. M., 2018. Eryptosis: An erythrocyte’s suicidal type of cell death. BioMed research international. 2018, 1-10. https://doi.org/10.1155/2018/9405617.
RICHTER, K., HASLBECK, M., and BUCHNER, J., 2010. The heat shock response: life on the verge of death. Molecular cell. 40(2), 253-266. https://doi.org/10.1016/j.molcel.2010.10.006.
RODIER, F., CAMPISI, J., and BHAUMIK, D., 2007. Two faces of p53: aging and tumor suppression. Nucleic acids research. 35(22), 7475-7484. https://doi.org/10.1093/nar/gkm744.
RON, D., and WALTER, P., 2007. Signal integration in the endoplasmic reticulum unfolded protein response. Nature reviews Molecular cell biology. 8(7), 519-529. https://doi.org/10.1038/nrm2199.
ROOS, W. P., and KAINA, B., 2006. DNA damage-induced cell death by apoptosis. Trends in molecular medicine. 12(9), 440-450. https://doi.org/10.1016/j.molmed.2006.07.007.
SAHAR, S., and SASSONE-CORSI, P., 2009. Metabolism and cancer: the circadian clock connection. Nature Reviews Cancer. 9(12), 886-896. https://doi.org/10.1038/nrc2747.
SANGUILIANO, B., PEREZ, N. M., MOREIRA, D. F., and BELIZARIO, J. E., 2014. Cell death-associated molecular-pattern molecules: inflammatory signaling and control. Mediators of inflammation. 2014, 1-14. https://doi.org/10.1155/2014/821043.
SCANDALIOS, J. G. 2002. Oxidative stress responses-what have genome-scale studies taught us?. Genome biology. 3(7), 1-6. https://doi.org/10.1186/gb-2002-3-7-reviews1019.
SEMENZA, G. L. 2000. HIF-1 and human disease: one highly involved factor. Genes & development. 14(16), 1983-1991. https://doi.org/10.1101/gad.14.16.1983.
SMITH, J., THO, L. M., XU, N., and GILLESPIE, D. A., 2010. The ATM–Chk2 and ATR–Chk1 pathways in DNA damage signaling and cancer. Advances in cancer research. 108, 73-112. https://doi.org/10.1016/b978-0-12-380888-2.00003-0.
SPERANDIO, S., DE BELLE, I., and BREDESEN, D. E., 2000. An alternative, nonapoptotic form of programmed cell death. Proceedings of the National Academy of Sciences. 97(26), 14376-14381. https://doi.org/10.1073/pnas.97.26.14376.
SREEDHAR, A. S., KALMAR, É., CSERMELY, P., and SHEN, Y. F., 2004. Hsp90 isoforms: functions, expression and clinical importance. FEBS letters. 562(1-3), 11-15. https://doi.org/10.1016/s0014-5793(04)00229-7.
SWIFT, L. H., and GOLSTEYN, R. M., 2014. Genotoxic anti-cancer agents and their relationship to DNA damage, mitosis, and checkpoint adaptation in proliferating cancer cells. International journal of molecular sciences. 15(3), 3403-3431. https://doi.org/10.3390/ijms15033403.
SWINDELL, W. R., HUEBNER, M., and WEBER, A. P., 2007. Transcriptional profiling of Arabidopsis heat shock proteins and transcription factors reveals extensive overlap between heat and non-heat stress response pathways. BMC genomics. 8, 1-15. https://doi.org/10.1186/1471-2164-8-125.
VALKO, M., LEIBFRITZ, D., MONCOL, J., CRONIN, M. T., MAZUR, M., and TESLER, J., 2007. Free radicals and antioxidants in normal physiological functions and human disease. The international journal of biochemistry & cell biology. 39(1), 44-84. https://doi.org/10.1016/j.biocel.2006.07.001.
VELICHKO, A. K., MARKOVA, E. N., PETROVA, N. V., RAZIN, S. V., and KANTIDZE, O. L., 2013. Mechanisms of heat shock response in mammals. Cellular and molecular life sciences. 70, 4229-4241. https://doi.org/10.1007/s00018-013-1348-7.
VELICHKO, A. K., PETROVA, N. V., RAZIN, S. V., and KANTIDZE, O. L., 2015. Mechanism of heat stress-induced cellular senescence elucidates the exclusive vulnerability of early S-phase cells to mild genotoxic stress. Nucleic Acids Research. 43(13), 6309-6320. https://doi.org/10.1093/nar/gkv573.
WALSH, P., BURSAC, D., LAW, Y. C., CYR, D., and LITHGOW, T., 2004. The J‐protein family: modulating protein assembly, disassembly and translocation. EMBO reports. 5(6), 567-571. https://doi.org/10.1038/sj.embor.7400172.
WANG, J., ALEXANIAN, A., YING, R., KIZHAKEKOTTU, T. J., DHARMASHANKAR, K., VASQUEZ-VIVAR, J., and WIDLANSKY, M. E., 2012. Acute exposure to low glucose rapidly induces endothelial dysfunction and mitochondrial oxidative stress: role for AMP kinase. Arteriosclerosis, thrombosis, and vascular biology. 32(3), 712-720. https://doi.org/10.1161/atvbaha.111.227389.
WELLEN, K. E., and THOMPSON, C. B., 2010. Cellular metabolic stress: considering how cells respond to nutrient excess. Molecular cell. 40(2), 323-332. https://doi.org/10.1016/j.molcel.2010.10.004.
WHITLEY, D., GOLDBERG, S. P., and JORDAN, W. D., 1999. Heat shock proteins: a review of the molecular chaperones. Journal of vascular surgery. 29(4), 748-751. https://doi.org/10.1016/s0741-5214(99)70329-0.
WU, J. Q., KOSTEN, T. R., and ZHANG, X. Y., 2013. Free radicals, antioxidant defense systems, and schizophrenia. Progress in Neuro-Psychopharmacology and Biological Psychiatry. 46, 200-206. https://doi.org/10.1016/j.pnpbp.2013.02.015.
XIE, Y., HOU, W., SONG, X., Yu, Y., HUANG, J., SUN, X., and TANG, D., 2016. Ferroptosis: process and function. Cell Death & Differentiation. 23(3), 369-379.https://doi.org/10.1038/cdd.2015.158.
YANG, H., BIERMANN, M. H., BRAUNER, J. M., LIU, Y., ZHAO, Y., and HERRMANN, M., 2016. New insights into neutrophil extracellular traps: mechanisms of formation and role in inflammation. Frontiers in immunology. 7, 302. https://doi.org/10.3389/fimmu.2016.00302.
YANG, W. S., and STOCKWELL, B. R., 2008. Synthetic lethal screening identifies compounds activating iron-dependent, nonapoptotic cell death in oncogenic-RAS-harboring cancer cells. Chemistry & biology. 15(3), 234-245. https://doi.org/10.1016/j.chembiol.2008.02.010.
YANG, W. S., SRI RAMARATNAM, R., WELSCH, M. E., SHIMADA, K., SKOUTA, R., VISWANATHAN, V. S., and STOCKWELL, B. R., 2014. Regulation of ferroptotic cancer cell death by GPX4. Cell. 156(1-2), 317-331. https://doi.org/10.1016/j.cell.2013.12.010.
YANG, Z., and KLIONSKY, D. J., 2010. Eaten alive: a history of macroautophagy. Nature cell biology. 12(9), 814-822.https://doi.org/10.1038/ncb0910-814.
YOSEF, R., PILPEL, N., TOKARSKY-AMIEL, R., BIRAN, A., OVADYA, Y., COHEN, S., and KRIZHANOVSKY, V., 2016. Directed elimination of senescent cells by inhibition of BCL-W and BCL-XL. Nature communications. 7(1), 11190. https://doi.org/10.1038/ncomms11190.
ZHANG, H. S., GAVIN, M., DAHIYA, A., POSTOGO, A. A., MA, D., LOU, R. X., and DEAN, D. C., 2000. Exit from G1 and S phase of the cell cycle is regulated by repressor complexes containing HDAC-Rb-hSWI/SNF and Rb-hSWI/SNF. Cell. 101(1), 79-89. https://doi.org/10.1016/s0092-8674(00)80625-x.
ZHOU, B. B. S., and BARTEK, J., 2004. Targeting the checkpoint kinases: chemosensitization versus chemoprotection. Nature Reviews Cancer. 4(3), 216-225. https://doi.org/10.1038/nrc1296.
ZIELLO, J. E., JOVIN, I. S., and HUANG, Y., 2007. Hypoxia-Inducible Factor (HIF)-1 regulatory pathway and its potential for therapeutic intervention in malignancy and ischemia. The Yale journal of biology and medicine, 80(2), 51-60.PMID: 18160990 PMCID: PMC2140184.
ZOU, L., and ELLEDGE, S. J., 2003. Sensing DNA damage through ATRIP recognition of RPA-ssDNA complexes. Science. 300(5625), 1542-1548. https://doi.org/10.1126/science.1083430.
| ||||
Statistics Article View: 236 PDF Download: 374 |
||||