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Abstract: When it comes to making assessments about public health, the mortality rate is a very
important factor. The COVID-19 pandemic has exacerbated well-known biases that affect the mea-
surement of mortality, which varies with time and place. The COVID-19 pandemic took the world
off surveillance, and since the outbreak, it has caused damage that many would have thought unthink-
able in the present era. By estimating excess mortality for 2020 and 2021, we provide a thorough
and consistent evaluation of the COVID-19 pandemic’s effects. Excess mortality is a term used in
epidemiology and public health to describe the number of fatalities from all causes during a crisis that
exceeds what would be expected under ’normal’ circumstances. Excess mortality has been used for
thousands of years to estimate health emergencies and pandemics like the 1918 ”Spanish Flu”6. Excess
mortality occurs when actual deaths exceed previous data or recognized patterns. It could demonstrate
how a pandemic affected mortality rate. The estimates of excess mortality presented in this research
are generated using the procedure, data, and methods described in detail in the methods section and
briefly summarized in this study. We explored different regression models in order to find the most
effective factor for our estimates. We predict the pandemic period all-cause deaths in locations lack-
ing complete reported data using the Binary logistic regression, and Probit regression analysis count
framework. Standardized residual plots, AIC, and Variance Inflation Factor (VIF) after checking all
of those, we found some significant predictors from our choosing model , and the coefficient of all
predictors gave the information that some factors have positive effect, and some has a negative effect
at excess mortality at COVID-19 (2020-2021).
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1. Introduction

Coronaviruses are a type of virus. A coronavirus identified in 2019, SARS-CoV-2, has caused a
pandemic of respiratory illness, called COVID-19. The World Health Organization has been tracking
the impact of COVID-19 as the pandemic has evolved over time. The pandemic’s conditions, which
have overburdened some health systems and caused some patients to avoid care, have caused further
deaths. Due to COVID-19 data difficulties, excess mortality is a more objective and comparable indi-
cator. The WHO defines excess mortality as ”the mortality above what would be expected based on
the non-crisis mortality rate in the population of interest” (See [1]).

The excess mortality associated with the COVID-19 pandemic is utilized to quantify the pandemic’s
direct and indirect effects. Excess mortality is the difference between the predicted total number of
deaths for a particular location and time period and the number that would have been expected in the
absence of a crisis (e.g., the COVID-19 pandemic). In accordance with the difficulties associated with
using reported data on COVID-19 cases and fatalities, excess mortality is viewed as a more objective
and comparable measure that accounts for both the direct and indirect effects of the pandemic (See
[2]).

The World Health Organization is being updated with overall case and mortality rates. These figures
obviously don’t give a clear picture of the COVID-19-related health burden, or the number of lives lost
as a result of the epidemic. Some of the fatalities that can be attributed to COVID-19 have not been
confirmed as being caused by the virus because premortem tests were not carried out. Raihen et al. [3]
there has been a wide range of approaches to death certification across countries, especially in the face
of co-morbidities and the emergence of COVID-19.

The primary outcome to evaluate excess death was excess mortality during the pandemic, defined
as the difference between the number of reported all-cause deaths and the expected number of deaths
during the pandemic. The formula for calculating excess mortality was as follows: excess mortality =
estimated deaths − expected deaths population.

What is the meaning of positive excess mortality and negative excess mortality? Positive excess
mortality occurs when the number of expected deaths from prehistoric pandemic data is less than the
number of deaths observed during the Covid-19 period. This positive excess mortality can be caused by
several factors, including the seriousness of the disease, the burden on the healthcare system, changes
in behavior or social connections, and other indirect effects. If deaths that would have occurred in
the absence of the pandemic were prevented as a result of the actions taken to combat the pandemic,
negative excess deaths might have occurred. The number of mortality from causes other than COVID-
19 has decreased as a result of some public health interventions (such as lockdown, social withdrawal,
mask use, and working from home) [2].

1.1. Research Question

• The major goal of this study is to determine which factors (region, year, sex, age group, and pop)
are significant with different aspects of excess mortality presence of Covid-19.
• In order to put this idea various quantitative research strategies were used and figure out which

regression model was best fit for the excess mortality mean considering the people of COVID-19
disease
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2. Literature Review

According to the World Health Organization (WHO), there were an estimated 14.9 million excess
deaths caused by COVID-19 worldwide between 2020 and 2021; See Jha [4]. The data provided by
WHO for deaths worldwide are lower than the estimates provided by the Institute for Health Metrics
and Evaluation (IHME)2, which reported 18.2 million deaths (17.1 million–19.6 million), and the
estimates provided by The Economist, which provided 17.7 million deaths (13.9 million–21.1 million)
for the same time period. On the other hand, Rocco et al [5] estimates from the government based
on data from the Coronavirus App on the number of deaths caused by COVID-19 over the world in
2020–2021 imply that the number is less than 6 million.

When making public health decisions, mortality rates are crucial (See [6]). On the other hand by
Karlinsky and Ramı́rez [7, 8], countries, health systems, and individual physicians all classify deaths
differently. Achilleos et al. [9] inadequate tests and overloaded health systems, caused by a sudden
increase in COVID-19 symptom patients in most countries, may have led to an underestimation of
COVID-19-related fatalities in the early stages of the pandemic.

Furthermore, deaths that are indirect during the pandemic, such as those caused by resource restric-
tions in health care systems, unnatural causes, or severe occurrences, are likely to be misclassified as
direct mortality of COVID-19 due to misdiagnosis and pandemic ”bias” (See [6, 8, 10]). Even Prior
to the massive reorganization of death causes caused by COVID-19, death certificates already had a
bad reputation for being inaccurate. Gobiņa, Kiang and Koffman [11, 12, 13] COVID-19 and other
diagnoses on the death certificate may be more difficult to assign if comorbidities are present.

Death rates, death counts, and life expectancy are only few of the metrics that can be used to provide
an overview of mortality in a given location. Death rates and death counts are the most widely used
indices for determining excess mortality [14, 15, 16]. Researchers Aburto, Basellini, Németh and
Stokes [17, 18, 19, 20] have used a wide variety of death rates, including crude death rates (CDRs) and
age-specific death rates; See Németh et al. [19] and age-standardized death dates (SDRs), Islam and
Krieger [21, 22] variation in the predicted mortality level used to assess excess mortality may emerge
from the fact that these indices capture a wide range of mortality levels and trends.

In this paper, we introduce the World death Dataset, an effort to collect and maintain global death
statistics that are updated on a regular basis; See Raihen and Akter [23]. The dataset is publicly
available and is almost daily updated at https://www.who.int/data/sets/global-excess-deaths-associated-
with-covid-19-modelled-estimates. Since the work of our research, the dataset has been added to Our
World in Data’s [24] and The Economist’s and Financial Times’ excess mortality trackers. We conclude
that data from all different locations is reliable enough to permit computation of excess mortality (see
Discussion), while not all countries give data of the same quality or detail.

In addition to deaths caused by COVID-19 infection, Mungmunpuntipantip, Rozenfeld and Salot-
tolo [25, 26, 27] it is possible that social distancing mandates and other pandemic restrictions reduced
the number of deaths caused by certain diseases and injuries, such as those caused by traffic accidents,
while increasing the number of deaths caused by others, such as those caused by chronic and acute
conditions affected by delayed care-seeking in overstretched health-care systems, by Zubiri and Folino
[28, 29] in comparison to expected or baseline conditions. It is difficult to determine how much of the
excess mortality is attributable to COVID-19 infection and how much is attributable to other societal,
economic, or behavioral changes associated with the pandemic. This is especially the case because
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there is a lack of detailed data on the specific causes of death in many countries. Understanding the to-
tal mortality impact that the pandemic has is a key first step, even though it will be extremely necessary
to identify the factors that contributed to the excess mortality that was observed.

3. Methodology

3.1. Data Source

As the COVID-19 epidemic has grown over time, the World Health Organization (WHO) has mon-
itored its effects. WHO (World Health Organization) has been informed how many people have been
infected and how many have died. Besides the deaths that can be directly linked to the pandemic, there
are also deaths that can be linked to conditions that have been around since the pandemic started and
have caused some health systems to be overloaded or some patients to avoid getting care. Since using
reported COVID-19 data can be hard, excess mortality is thought to be a more objective and simi-
lar measure. The World Health Organization (WHO) says that ”excess mortality” is a death rate that
is higher than what would be predicted based on the normal death rate in the population of interest.
According to data collection history, the official WHO estimate published the excess mortality data
expected as yearly based frequencies on May 20, 2021.

3.2. Data Structures

The data on excess mortality is a binary data here (positive and negative excess mortality), and
its spatial coverage is Global. In this article, we will detail the various models we performed on this
dataset, as well as the methods we used to draw conclusions about the excess mortality of COVID-19
and to predict the efficient predictors. In order to properly conduct any data analysis or data operation,
we must first possess extensive background knowledge in the field in question. Therefore, we will
discuss data set characteristics and how they relate to one another. Five of the attributes in this data
collection are classified, and three are numerical attributes. In the latest estimated data at WHO, there
are 224 observations collected about the excess deaths associated with the COVID-19 pandemic from
all causes by age, sex, and year.

3.3. Data Manipulation

There is a total of 224 data points in the WHO collection (word.csv data); perhaps here I got 184
observations, which contain only positive excess mortality, and 40 observations which have negative
excess mortality. For my analysis perspective, I considered my explanatory variables to be location,
year, age group, sex, and pop, and the response variable to be excess.mean.binary (positive excess
mortality=1, and negative excess mortality=0).

3.4. Model Procedure

We use the programming language R to fit logistic regression, odds ratio of each coefficient and
Probit models to the Mortality data because the data is of the binary type. Excel, Microsoft Word, and
R-code have all been put to use at various points throughout our study to perform manipulations on
raw data. We provide an outline of the theory as well as its implementation in R (R Development Core
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Table 1. A list of the features, along with a description of each one, that are contained in the
dataset

Feature
name

Type Description and values missing(%)

location Nominal Region (Global or WHO region: AFR: African
Region; AMR: Region of the Americas; EMR:
Eastern Mediterranean Region; EUR: European
Region; WPR: Western Pacific Region; SEAR:
South-East Asia Region)

0%

year Nominal year of death (2020 and 2021) 0%
sex Nominal gender (male and female) 0%
age Nominal age- group from 0 to 85+ (0-24,25-34,35-44,45-

54,55-64,65-74,75-84,85+)
0%

Pop Numeric Sex-and age-specific population number 0%
type Nominal estimated type for select year (reported or pre-

dicted)
0%

expected.
mean

Numeric expected deaths from all-causes by age, sex and
year (mean)

0%

acm.
mean

Numeric estimated deaths from all-causes by age, sex,
and year (mean)

0%

Excess.
mean.

Numeric excess deaths associated with COVID-19 pan-
demic from all-causes by age sex and year (pos-
itive and negative excess mortality mean)

0%

Team 2008) for certain fundamental count data regression models such as logit and probit model (see
Table 1 for an overview of the model’s components).

The function in R that we are using is called glm(). The word GLM stands for Generalized Linear
Model. Logistic Regression, Probit Regression fall under GLM. GLM has three components:

1. Random Component: The response variable. For Logistic Regression and Probit Regression, we
have binary variables and we assume that they follow Bernoulli Distribution.

2. Systematic Component: The covariates or explanatory variables.
3. Link function: The function that links between the systematic component and the random com-

ponent. In Logistic regression, it is log odds, in Probit regression it is probit of the probability of
success.
They are implemented in R by the glm() function (See Chambers et al. [30] in the stats package
and the glm() function in the nlme package (See Venables et al. [31]), and logit regression is an
extended of GLM. The classical Poisson model and the logit and probit models are both described
in a generalized linear model (GLM) framework. Although all GLMs utilize the same log-linear
mean function (log µ = x > β), each GLM makes a unique set of assumptions regarding the
likelihood of the remaining variables; See Raihen and Akter [32].
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4. Analysis

4.1. Binary logistic Model

To investigate the excess mortality at COVID-19 in 2020-2021

• In the logistics model with more than one independent variable, the model can be written as:
• Where Z is a linear function of the explanatory variables.
• If X1, . . . , Xk represent various determining characteristics of loyalty, then Z equation would be as

follows.
Z = β0 + β1X1 + β2X2 + · · · + βkXk,

where, Xi = explanatory variables for all i = 1, 2, . . . , k and βi = parameters of the model for all
i = 1, 2, . . . , k.

The Functional Form of the Logistic Regression model:

logit [p(Y ≤ j)] =
log(p(Y ≤ j))
(1 − p(Y ≤ j))

= α + βx

where j = 1, 2, . . . , j − 1, and Xi’s are categorical variables or continuous but Y are categorical with
order.

For our finding: Z = excess mortality at COVID-19, β0 = intercept, and β1, β2, β3, β4, β5 are our
coefficient of location, year, age group, sex, pop respectively.

Table 2. level of response variable for binary logistic model

Dependent Variable Measurements
Excess Mortality Mean 1 = Positive excess mortality mean

0 = Negative excess mortality mean

Binary Probit Regression Model: In Probit Regression, we model the probit of probability of
having a disease P(D = 1) in terms of the covariates. The covariate terms can contain main risk
factors, confounding terms, as well as interaction terms. Mathematically probit is the inverse of the
cumulative distribution function (CDF) of a standard normal distribution. If X is a random variable that
follows a normal distribution with mean 0 and variance 1, then CDF of X to be less than u is defined
as: Π(u) = P(X ≤ u). The probit is inverse of the function Π(), i.e., Π−1().

In this section, we discuss the data processing, data summary, and methodology used to get esti-
mates of increased mortality based only on the presence of Covid-19. In this investigation, we use both
direct and indirect COVID-19 death. In addition to Stein and Raihen [33] estimating the number of di-
rect and indirect deaths caused by COVID-19 required the Department of Economic and Social Affairs
of the United Nations (UN DESA) and the WHO Regulations for Scientific and Advisory Groups to
work together to produce harmonized excess mortality procedures.

4.2. The Logistic Regression Model

Since our data is binary type, we fitted our data with the generalized linear model (glm) of the
Binomial regression family.
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Model 1: Since our data is binary type, we fitted our data with the generalized linear model (glm)
of the Binomial regression family.

Figure 1. Coefficient Table for the Logistic regression model

From the coefficient table of the logisitc regression model, it shows that some predictors are sig-
nificant at a p-value¡0.05. The asterisks and dot denote the significance (different from zero) of each
regression parameter as follows: No asterisk and no dot: NOT significant, no asterisk and a single dot:
significant at the 10% level and one or more asterisks: significant at the 5% by Mansfield et al. [34].

Assumption Checking:

Figure 2. Residula plot of poisson regression

From the above figure, we can see from the residuals plot of fitting model1 (logistic Regression)
that the residuals have spread out in a random way with no properly clear pattern. This shows that
the model fitting for model1 has no systematic bias, which is a good sign for a model. But we must
consider more things for assumption checking.
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Log odds of logistic regression analysis:

Figure 3. log odds of logistic regression model

4.3. The probit Regression Model

They mainly differ in the link function.

In Logit:

Pr(Y = 1 | X) = (1 + eX′β)−1

In Probit:

Pr(Y = 1 | X) = Φ(X′β)

And logistics have slightly flatter tails. i.e., the probit curve approaches the axes more quickly than the
logit curve.

A popular generalization of logistic regression is probit regression. And logistics have slightly
flatter tails. i.e., the probit curve approaches the axes more quickly than the logit curve. Occasionally,
data exhibit more variation that exceeds the mean. Consequently by Charro and Raihen [35], the Probit
model is nested within the Logistic binomial model.

Model 2: Comparison of the Poisson Regression Model and the Negative Binomial Regression
Model
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Figure 4. Coefficient table of Probit regression model

From this result we got some significant predictors for positive excess mortality at COVID-19. The
asterisks and dot denote the significance (different from zero) of each regression parameter as follows:
No asterisk and no dot: NOT significant, No asterisk and a single dot: significant at 10% level and one
or more asterisks: significant at 5% level by Mansfield et al. [34].

Figure 5. Standardized residual plot for comparing of Logit and Probit regression model.
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Table 3. Akaike Information Criteria (AIC), and Residual deviance

Model df AIC Residual
Deviance

Logit Model 207 105.59 71.594
Probit Model 207 105 71.003

AIC and residual deviance for both models are approximately equal in Table 3. Yamaoka et al. [36]
model with smaller AIC, and smaller residual deviance is a better model.

Figure 6. Histogram plot for each level of predictors.

Model 3:
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Figure 7. An overview of the statistically significant model (of logistic regression with
interaction term)

It represents our statistically significant factors considering interaction term to estimate the excess
mortality at COVID-19 at all causes of effect. The figures mentioned above illustrate that the levels of

Figure 8. Plots of Comparing According to levels of explanatory variables.

each factor correspond to which belongs the largest and least positive excess mortality.
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Figure 9. Variance Inflation factor (VIF) (logit model)

This is the result of the Variance Inflation factor (VIF) which is used to test multicollinearity in
Raihen et al. [37].

Table 4. An overall Comparison among of all models

Model df AIC Residual
Deviance

Logit Model 207 105.59 71.594
Probit Model 207 105 71.003
Logit Model (In-
teraction term)

37 101.02 37.017

As Table 4 shows that AIC and residual deviance fore both models Logit and Probit models are
approximately equal though AIC for Logit model with interaction term is much smaller.

5. Results and Discussion

Our research was to forecast the outcome using only the four input factors and the single output
variable. In order to determine something, we carried out a series of models. Comparing observed
number of deaths with the mean number of deaths from our data there were 48.28% female population
and 51.71% male population , there were 13.13% African, 16.21 AMR,14.21% EMR, 14.76% EUR,
17.76% SEAR, 8.69% and Global 15.21% , there were 48.02% population from 2020 year, and 51.97%
population from 2021, there were 49.28% female and 50.71% male, there were 14.67% population age
> 85, 6.52% population age between 0-24, 7.60% population age between 25-34, 13.58% population
age between 35-44, 14.67% population age between 45-54, 14.67% population age between 55-64,
14.67% population age between 65-74, 13.58% population age between 75-84, and 14.67% population
age > 85 to analysis of excess mortality at COVID-19.

Table 1 shows an overview of the structure of data for the excess mortality mean. We found
that there are no missing observations. Table 2 summarizes the level of our response variable (ex-
cess.mortality.mean). Figure 1 The coefficient result under logistic regression model of location pro-
vides that significant log odds of excess mortality mean significantly increases under location factors
AMR, EMR,EUR, Global, and SEAR compared to the factor of AFR when all other variables are held
constant(p-value < 0.05, so they are statistically insignificant factors), and the log odds of mean of
excess mortality significantly decreases under location factors WPR compared to the factor of AFR
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when all other variables are held constant, since ( p-value < 0.05) for factor WPR of location has a
significance level of predictor for excess mortality mean.

For the year, the log odds of the mean of the number of excess mortality is higher 3.6 times under
the year 2021 compared to the year 2020 when all other variables are held constant, and since p-value
< 0 so year has a significant factor for the excess mortality of COVID-19. The coefficient of sex shows
that the log odds of mean of male of excess mortality mean increased by 1.852 times compared to the
female when all other is held constant, and through a p-value < 0.05 sex has a significant effect on the
excess death at COVID-19.

The coefficient values of age-group shows that for the age groups of 0-24,25-34,35-44,45-54, 55-
64, 65-74,75-84 the log odds of mean decreases compared to age group more than 85 age, and the age
group 0-24, and 25-34 are significant factors for the excess mortality mean of the presence of COVID
pandemic (hence, p-value < 0.05). Population has a positive effect and is a significant predictor for our
analysis of the positive excess mortality mean. (Thus, the coefficient is 1.444 × 10−9 and the p-value <
0.05).

In Model 2 Figure 3, we applied Logistic Probit regression model for our excess mortality data
at COVID-19. Figure 4 is the summary of Logistic Probit regression model result. Result from “R”
display in Figure 4 we find that the regression coefficients for each of the variables along with the
standard errors, z scores, and P-values.The coefficients from Figure 4 indicates the probabilities of
success of excess mortality means at COVID-19 for location, agegroup, year, gender and population.

From the Table 3, thus the AIC and residual deviance of the Logistic regression and Probit model
both are approximately same value so that I considered interaction term for logistic model to better
fit of our model for our data of COVID-19. Figure 6, and figure 8 show that which level of each
predictor have higher excess mortality mean at COVID-19. Figure 7 is the result of all the coefficients
of Logistic regression model (Model 3) with the interaction term, and it shows that all predictors are
insignificant hence p-value for all coefficients are greater than 0.05,and we can not choose this Model
3 is a better model than the without interaction model of Model 1.

Figure 9 is the result of the Variance Inflation factor (VIF) to check the multicollinearity among
the dependent variables, hence it shows that almost all predictors have VIF < 10, which means that
multicollinearity does not exist at the logistic regression model in this analysis, so we do not need
standardized at Logistic regression model for our analysis. A study can be conducted using Table 4
to compare various models and determine which one is the most suitable in terms of Excess Mortality
Mean during the Covid-19 pandemic. The Model 3, which includes an interaction term, exhibits
a lower AIC value compared to the other two models. However, upon examining Figure 7, it is
evident that Model 3 does not possess statistically significant coefficients for the mean excess mortality
associated with COVID-19. Among all the models considered, it is evident that Model 1 is the most
suitable for conducting an analysis of the mean excess mortality during the Covid-19 pandemic in the
years 2020-2021.

6. Conclusion

By Raihen and Akter [38], the present study undertook the computation of excess death rates for the
period encompassing the global pandemic in the years 2020 and 2021, focusing on both the Global and
World Health Organization (WHO) Member State Regions. Instead of presenting novel estimations,
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our objective was to rigorously evaluate more efficient methodologies and ascertain the key factors that
impact COVID-19’s Excess Mortality, comparisons, and limitations, along with the implications of the
dataset; See Raihen et al. [39]. One of the strategies was used to display the results of this analysis in
Shi et al. [40]. Overall we demonstrate that Logistic Regression Model is a better model than others
for achieving the study’s purpose. locationWPR, year, age-group (0-24, 25-34,), and sex of excess
mortality are the most effective predictors. It also revealed that the Global of location predictors,
year 2021, age-group 65-74 has more excess mortality mean, and male has more rate of success of
excess mortality than female. Our Logistic Regression Model represents the chance of Excess mortality
occurring during the Covid-19 pandemic, and it shows us which predictors are more efficient during
that pandemic era in 2020-2021. Logistic Regression without interaction could produce a superior
outcome for our study; nonetheless, it does not reveal any efficient predictors for our study’s target
(Excess Mortality Mean at Covid-19, 2020-2021).

7. Limitation

Unfortunately, few countries have excess mortality data accessible, and this situation will persist
due to a lack of prior data. When tracking a pandemic around the world, this is a major disadvantage.
Excess mortality calculations require precise, high-frequency mortality data from prior years. Usually,
these statistics are only available to wealthier countries that can afford high-quality data reporting
systems. To make more precise and useful conclusions about the positive excess mortality mean, more
thorough data is required. Future study could be conducted to calculate the extra mortality from all
causes attributable to the COVID-19 pandemic more precisely.

8. Future Work

Excessive mortality serves as a significant measure that encapsulates the impact of COVID-19, pro-
viding valuable insights for public health policy and the identification of future planning requirements.
The research on COVID-19-related excess deaths is expected to be important in the future. Research
on excess mortality sheds light on the COVID-19 pandemic’s true effects. It considers not just the
virus’s direct fatalities but also its indirect impacts on mortality, including things like delayed medical
attention, mental health problems, and other things.

Researchers can evaluate the efficacy of public health measures like lock downs, mask mandates,
and vaccination campaigns during a pandemic by accessing data on excess mortality. Responses to
future crises of a similar nature can be improved using this data. The long-term health implications of
COVID-19, including any problems and mortality risks related to post-acute sequelae of SARS-CoV-2
infection (PASC or ”long COVID”), can also be clarified through research on excess mortality.

Studying excess mortality helps researchers identify susceptible communities who may have
been disproportionately affected by the pandemic. This can influence future targeted initiatives and
support for these populations. Comparative studies of excess mortality across countries can improve
global best practices by revealing the efficacy of pandemic response methods and healthcare systems.
Governments, health organizations, and researchers must gather and disseminate precise and thorough
data on mortality that is connected to COVID-19, both directly and indirectly, for this study to proceed
effectively. This continuous endeavor will enhance comprehension of the pandemic’s consequences
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and direct forthcoming public health determinations.
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16. Schöley, J. (2021). Robustness and bias of European excess death estimates in 2020 under varying
model specifications. MedRxiv, 2021-06.
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