Journal of Advanced Biomedical and Pharmaceutical Sciences

Journal Homepage: http://jabps.journals.ekb.eg

Phytochemical and Biological Properties of the Genus Chorisia: A Review

Engy Saadalah Ibrahem*, John Refaat Fahim*, Mamdouh Nabil Samy, Mohamed Salah Kamel

Department of Pharmacognosy, Faculty of Pharmacy, Minia University, Minia 61519, Egypt.

Received: May 10, 2023; revised: August 31, 2023; accepted: September 10, 2023

Abstract

Chorisia (syn. *Ceiba*) is a genus of approximately 20 species of large, perennial, and deciduous trees within the plant family Bombacaceae, with common geographical distribution throughout the subtropical and tropical regions, especially South America. Besides their well-known ornamental and economic value, members of the genus *Chorisia* have found applications as medicinal plant species thanks to their assortments of bioactive phytoconstituents. To date, about 273 structurally varied metabolites have been described from different plant parts of *Chorisia* plants using various chromatographic and spectroscopic techniques, which mainly included flavonoids, anthocyanins, phenolic acids, quinones, terpenoids, and steroids, among others. Moreover, several organic solvent extracts and purified metabolites from *Chorisia* plants have been tested for their biological potential, such as anti-inflammatory, analgesic, antipyretic, antioxidant, hepatoprotective, antiobesity, cytotoxic, antidiabetic, hypolipidemic, antiulcerogenic, and antimicrobial properties. In of view of that, the current work provides an overview on different plants, along with future research perspectives that might help expand their phytocherapeutic applications.

Keywords:

Ceiba, Chorisia, Bombacaceae, Phytochemical constituents, Biological activities

1.Introduction

Bombacaceae (The Bombax, Baobab or Kapok family) is a small family of flowering plants within the order Malvales and consists of 28 genera and 200 species [1]. These plants are woody, perennial, and deciduous trees that are widespread across the world's tropical and subtropical climates, especially in tropical America [2]. Besides the common use of Bombacaceae plants for ornamental purposes, several genera are economically and commercially valuable, producing timber, edible fruits, vegetable oils, and useful fibers, e.g., silk floss trees (*Chorisia* spp.) and kapok (fibers of *Ceiba* fruits) [3].

The genus Chorisia (syn. Ceiba) comprises approximately 20 species, such as C. acuminata S. Watson, C. chodatti Hassl., C. crispiflora Kunth., C. insignis H.B.K., C. pentandra L., C. pubiflora A. St. Hil., and C. speciosa A. St. Hil, which are found in tropical and subtropical regions, including Mexico, Central America, The Bahamas, The Caribbean, South America, West Africa and Southeast Asia [4, 5]. The genus Chorisia was given that name in honour of the traveller and the botanical artist, Ludwig L. Choris (1795-1828) [4]. Owing to their twisted branches, Chorisia plants are occasionally nicknamed as "the drunken trees" [4, 6], while as a defense mechanism against dry weather, they usually show a bottle-shaped trunk that swells in its lowest third to preserve water, and are encrusted with thick, sharp, pointed spines [5]. Chorisia spp. are primarily cultivated for ornamental and shade purposes thanks to their large branches and showy colored flowers that bloom during the autumn season [4, 5]. Chorisia species are also of economic importance, yielding flexible timber, edible and industrially useful seed oil,

Email Addresses: phengy@yahoo.com, john.michael@mu.edu.eg

and versatile silky floss within their ripe fruits, thus they are also commonly named "silk floss trees". Such floss is utilized in the stuffing of cushions, pillows, and vests [4, 6]. Moreover, plants of the genus *Chorisia* are employed in folk medicine for headache, rheumatic pains, parasitic infections, GIT ulcers, and fever [7].

Over the last decade, *Chorisia* spp. have attracted the interest of many researchers to explore their phytochemicals, and accordingly numerous groups of structurally diverse metabolites have been characterized [8]. The total extracts and purified compounds of *Chorisia* plants have been also shown to exert several medicinal and therapeutic effects, e.g., antiinflammatory, analgesic, antipyretic, antioxidant, hepatoprotective, cytotoxic, antidiabetic, and antimicrobial properties, among others [8]. Therefore, this work comprehensively reviews the reported phytochemicals and pharmacological properties of plants of the genus *Chorisia*.

2. Phytochemistry of the genus Chorisia

Previous phytochemical studies on *Chorisia* spp. led to the identification of a host of chemical constituents, such as flavonoids, anthocyanins, quinones, naphthoquinones, sesquiterpenes, sesquiterpene lactones, diterpenes, triterpenes, steroids, lignans, coumarins, megastigmanes, fatty acids and esters, hydrocarbons, tocopherols, amino acids, and carbohydrates. Different phytoconstitutents reported from the genus *Chorisia* are summarized in **Table 1** and portrayed in **Figures 1** and **2**.

^{*} Correspondence: Engy Saadalah Ibrahem, John Refaat Fahim Tel.: +20-086-2369075, +2 01227454025

1	29
-	.05

Table 1: A list of the	e reported compou	inds from the genu	is Chorisia

No.	Compound	Plant source	Plant Part	References
A) Flavon	oids:			
I) Flavano			A 1 4	[0] *
1	(+)-Catechin	Ceiba pentandra	Aerial parts	[9]*
C	Eni ootoohin	Coiha nontandua	A originate	[10]
2) Flavan		Celba pentanara	Actial parts	[2]
2) Flavano 3	Eriodictvol	Ceiha nentandra	Aerial parts	[9]*
4	Naringenin	Ceiba pentandra	Aerial parts	[9]*
5	Naringenin 7- <i>O</i> -glucopyranoside (Prunin)	Ceiba pentandra	Aerial parts	[9]*
5	(Tuningenini / O graeopyranosiae (Trainii)	celeu penunui u	rienar parto	[2]
3) Flavon	es:			
6	Apigenin	Ceiba pentandra	Aerial parts	[9]*
		Chorisia crispiflora	Flower	[11]
				[12]
7	Apigenin 7- O - β -glucopyran- oside	Chorisia crispiflora		[12]
	(Cosmetin)		Leaf	[13]
8	Apigenin 6,8- di-C-β-glucopyranoside	Chorisia crispiflora		[12]
9	Apigenin 7-O-neohesperidoside	Chorisia chodatii	Flower	[8, 14]
	(Rhoifolin or Rhoifoloside)		Leaf	[15]
		Chorisia crispiflora	Leaf	[13, 16]
			Flower	[11]
				[12]
		Chorisia insignis	Leaf	[16]
		Chorisia pubiflora	Leaf	[16]
		Chorisia speciosa	Leaf	[16, 17, 18]
			Flower	[19]
10	Apigenin 7-O-rhamnoside	Chorisia crispiflora	Leaf	[13]
11	Apigenin 7-O-rutinoside	Chorisia insignis	Leaf	[20]
12	Apigenin 4'- O - α -glucopyran-osyl- (6" \rightarrow 1"")- α -rhamnopyr-anoside	Chorisia speciosa	Leaf	[21]
13	3,5,4'-Trimethoxy-7-isobutyl flavone	Chorisia insignis	Leaf	[22]*
14	3,5,4'-Trimethoxy-7-isobutyl	Chorisia insignis	Leaf	[22]*
15	Linarin (Acacetin 7-0-rutinoside)	Ceiha nentandra	Aerial parts	[0]*
15	Emain (reaccin / o ramoside)	Celou penunur u	Leaf	[23]
16	Luteolin	Chorisia crispiflora	Flower	[11]
17	Luteolin 7- <i>O-B</i> -glucopyranoside	Chorisia chodatii	Flower	[8, 14]
- /	(Cynaroside)	Chorisia crispiflora	Flower	[1]
		Chorisia speciosa	Leaf	[17, 18]
18	Luteolin 7-O-neohesperidoside	Chorisia crispiflora	Leaf	[11]
	1	T T T T T T T T T	Flower	L J
19	Luteolin 7- O - β -rutinoside	Chorisia insignis	Leaf	[20]
20	Myricitrin	Ceiba pentandra	Aerial parts	[9]*
21	Tricin	Chorisia crispiflora	Flower	[11]
22	Isovitexin	Ceiba pentandra	Aerial parts	[9]*
		Chorisia crispiflora		[12]
4) Isoflavo	ones:			
23	5-Hydroxy-7,4',5'-trimethoxy isoflavone 3'- O - α -arabino-furanosyl (1 \rightarrow 6) β -gluco- pyranoside	Ceiba pentandra	Stem Bark	[24]
24	Vavain or Pentandrin	Ceiba pentandra	Stem Bark	[10, 24, 25, 26*, 27*]
25	Vavain 3'- <i>O</i> -β-glucopyranoside	Ceiba pentandra	Stem Bark	[10, 24, 25]
	(Pentandrin glucopyranoside)	-		
26	Dihydroalbigenin	Chorisia insignis	Leaf	[28]

No.	Compound	Plant source	Plant Part	References
5) Flavo	onols:			
27	5,6,7,3',4',5'-Hexahydroxy-	Chorisia insignis	Leaf	[22]*
	dihydroflavonol 3-O-glucuronide			
28	5,6,7,3',4',5'- Hexahydroxy-	Chorisia insignis	Leaf	[22]*
	dihydroflavonol 3- O - β - $\Delta^{1,3}$ - octadienyl-			
	glucuronide			
29	5,4',5'-Trihydroxy-7,3'- dimethoxy-2,3-	Chorisia insignis	Leaf	[22]*
	dihydro- flavonol			
30	Kaempferol	Ceiba pentandra		[9*, 29]
		Chorisia speciosa	Bark	[30]*
31	Kaempterol 3-O-	Ceiba pentandra	Aerial parts	[9*, 14]
	β -glucopyranoside (Astragalin)	Chorisia chodatii	Flower	[8]
22		Chorisia speciosa	Leaf	[17, 18]
32	rhamnopyranoside	Chorisia crispifiora		[12]
33	Kampferol 5,7,4'-trimethyl ether 3- O - α -rhamnosyl-(1"" \rightarrow 6")- O - β -glucuronide	Chorisia insignis	Leaf	[22]*
34	Kampferol 5,7,4'-trimethyl ether 3- <i>O</i> - ethylene glycol	Chorisia insignis	Leaf	[22]*
35	Kaempferol 3- <i>O</i> -rutinoside	Chorisia crispiflora	Leaf	[13]
36	Quercetagetin 5,6,7,3',4'- pentamethyl	Chorisia insignis	Leaf	[22]*
	ether $3-O-\beta$ -glucuronide	U		2 2
37	Quercetin	Ceiba aesculifolia	Fruit	[31]*
		Ceiba pentandra		[29]
			Aerial parts	[9, 32]
		Chorisia insignis	Leaf	[22]*
		Chorisia speciosa	Bark	[30]*
			Flower	[19]
38	Quercetin 4'-methyl ether 3- <i>O-β-n</i> - hexyl-diglucuronide	Chorisia insignis	Leaf	[22]*
39	Quercetin 5,7,3'-trimethyl ether-3- O - α - rhamnopyranos-yl-(1''' \rightarrow 6'')- O - β - gluconyranoside	Chorisia insignis	Leaf	[22]*
40	Dihydroquercetin 5,7,3',4'-tetramethyl ether 3- <i>Q</i> -glucuronide	Chorisia insignis	Leaf	[22]*
41	Dihydroquercetin 4'-methyl ether 3- <i>O</i> - <i>B</i> - <i>n</i> -hexyl-diglucuronide	Chorisia insignis	Leaf	[22]*
42	Dihydroquercetin 3-O- α -	Chorisia insignis	Leaf	[22]*
	rhamnopyranosyl-($1^{"} \rightarrow 6^{"}$)- <i>O-β</i> - glucopyranososide			
43	Quercitrin	Ceiba pentandra	Aerial parts	[9]*
44	Rutin	Ceiba pentandra	Aerial parts	[9]*
		Chorisia insignis	Leaf	[20]
4.5		Chorisia speciosa	Bark	[30]*
45	Tiliroside (Kaempferol $3-O-\beta-(6^{-}-p-$	Chorisia chodatii	Flower	[8, 14]
	coumaroyi)-giucopyranoside	Chorisia crispijiora	Flower	[11]
		Chorisia speciosa	Flower	[19] [17 19]
6) Flavo	nolignans		Leai	[17, 18]
46	Ceibapentain A	Ceiha pentandra	Aerial parts	[9 33 34]
40	(Ceibapentain Ia)	Celba pentanara	Actual parts	[7, 55, 54]
47	Ceibapentain B	Ceiba pentandra	Aerial parts	[9, 33, 34]
.,	(Ceibapentain Ib)		Parto	L-,,,,,,,,,,
48	Cinchonain Ia	Ceiba pentandra	Aerial parts	[9, 32, 33, 34]
49	Cinchonain IIa	Ceiba pentandra	Aerial parts	[9]*
50	Cinchonain IIa isomer	Ceiba pentandra	Aerial parts	[9]*
51	Cinchonain Ib	Ceiba pentandra	Aerial parts	[9, 32, 33, 34]
52	Cinchonain Ic	Ceiba pentandra	Aerial parts	[9]*
53	Cinchonain Id	Ceiba pentandra	Aerial parts	[9]*
54	Cinchonain I methyl ether	Ceiba pentandra	Aerial parts	[9]*

No	Compound	Plant source	Plant Part	References
55	Corbulain Ib [2-(4-Hydroxy phenyl)-	Ceiha pentandra	Aerial parts	[9]*
55	3.4.9.10-tetrahydro- 3, 5-dihydroxy-10-	Celou pentanara	rienai parts	[2]
	(3,4-dihydroxyphenyl)-(2R,3R,			
	10S)2H,8H-benzo[1,2-b:3,4-b']dipyran-8-			
	one]			
B) An	thocyanins:	~ .		
56	Cyanıdın 3-glucopyranoside	Ceiba acuminata	Flower	[35]
57	Considir 2.5 distances in the	Chorisia speciosa	Flower	[35]
5/ C) Ou	Cyanidin 3,5-digiticopyranoside	Chorisia speciosa	Flower	[33]
58	Bombaxquinone B (Isohemigossynolone-	Ceiha pentandra	Heart wood	[36]
20	2-methyl ether) or	eelou pelluluu u	Root bark	[37]
	(8-Formyl-7-hydroxy-5-isopropyl-2-		Stem bark	[26]*
	methoxy-3-methyl-1,4-naphthoquinone)			
59	Isohemigossypolone	Ceiba pentandra	Heart wood	[36]
	(2,7-Dihydroxy-8-formyl-5-isopropyl-3-			
	methyl-1,4-naphthoquinone)			
D) Ses	Quiterpenes and bis-norsesquiterpenoids:	Chorisia speciesa	Loof	[17]**
61	Hydroxydehydrochamazulene	Chorisia speciosa Chorisia insignis	Leaf	[28]**
62	8-(Formyloxy)-8a-hydroxy-4a	Ceiha pentandra	Stem bark	[27]*
	methyldecahydro-2-naphthalene			[]
	carboxylic acid			
63	7-Hydroxycadalene (5-Isopropyl-3,8-	Ceiba pentandra	Root bark	[37]
	dimethyl-2-naphthol)			
64	Farnesol	Ceiba pentandra	Aerial parts	[38]**
65	Dehydrofarnesol	Chorisia insignis	Leaf	[28]**
66	6,10,14-1rimethyl-2-pentadecanone	Ceiba pentandra Chomigia ingignia	Aerial parts	[38]**
F) See	auiternene lactones:	Chorisia insignis	Leal	[28]
67	Hemigossylic acid lactone-2-	Ceiha pentandra	Root bark	[37]
07	hydroxy-7-methyl ether (Isohemigossylic	eelou pelluluu u	Root ourk	[3,]
	acid lactone-7-methyl ether)			
68	Isohemigossylic acid lactone-2-methyl	Ceiba pentandra	Root bark	[37]
	ether			
69	5-Isopropyl-3-methyl-2,7-dimethoxy-8,1-	Ceiba pentandra	Root bark	[37]
D) D *(naphthalene carbolactone			
F) Dit	Phytol	Coiha nontan dua	A avial manta	[24 29]**
70	riiytoi	Chorisia insignis	Leaf	[24, 36]
		Chorisia speciosa	Leaf	[17]**
71	Isophytol	Chorisia insignis	Leaf	[28]**
72	Phytane	Ceiba pentandra	Aerial parts	[38]**
G) Tri	terpenes:			
73	β -Amyrin	Ceiba pentandra	Aerial parts	[34, 38**]
		Chorisia speciosa	Leaf	[17, 18]
74	β -Amyrone	Chorisia crispiflora	Leaf	[11]
75	Friedelin	Chorisia crispiflora	Leaf	[11]
76	3β -Friedelinol	Chorisia crispiflora	Leaf	[11]
77	trans-Squalene	Ceiba pentandra	Aerial parts	[34, 38]
		Chorisia insignis	Leaf	[28]**
		Chorisia speciosa	Leaf	[17]**
78	10-Demethyl squalene	Chorisia insignis	Leaf	[28]**
79	3β -Taraxerol	Ceiba pentandra	Aerial parts	[34, 38]
80	3β -Taraxerol acetate	Ceiba pentandra	Aerial parts	[34, 38]
H) Ste	roids:	±	•	
81	3β -Hydroxyandrost-5-ene-17-one	Ceiba pentandra	Aerial parts	[38]**
82	δ -5-Avenasterol	Ceiba pentandra	Seed	[39]**
83	δ -7-Avenasterol	Ceiba pentandra	Seed	[39]**
84	Brassicasterol	Chorisia insignis	Seed	[40]
		Chorisia speciosa	Seed	[40]
85	Campesterol	Ceiha aesculifolia	Fruit	[31]
55	(24-Methyl cholesterol)	Ceiha nentandra	Seed	[39]**
		Chorisia insimis	Seed	[40]
		Chorisia spaciosa	Seed	[40]
		Chorisia speciosa		

No	Compound	Plant source	Plant Part	References
86	Cholesterol	Ceiba pentandra	Seed	[39]**
		Chorisia insignis	Seed	[40]
		Chorisia speciosa	Seed	[40]
87	24-Ethylcholesta-1,3,5-triene	Chorisia insignis	Seed	[40]
	3 3 3	Chorisia speciosa	Seed	[40]
88	β -Sitosterol (21-Ethyl-cholesterol)	Ceiba pentandra	Aerial parts	[34, 38]
	, , , , , , , , , , , , , , , , , , , ,	<u>F</u>	Seed	[39]**
			Stem bark	[25]
		Chorisia chodatii	Flower	[8, 14]
		Chorisia crispiflora	Leat	[11, 41]
		Chorisia insignis	Seed	[40]
		Chorisia speciosa	Secu	[10]
89	β -Sitosterol 3- O - β -glucopyranoside	Ceiba pentandra	Stem bark	[25]
	(Daucosterol)		Aerial parts	[9*, 34*, 38]
		Chorisia chodatii	Flower	[8, 14]
		Chorisia crispiflora	Leat	[11, 41]
		Chorisia speciosa	Leal	[17, 18, 21]
90	γ-Sitosterol	Ceiba aesculifolia	Fruit	[31]*
		Chorisia speciosa	Leaf	[17]**
91	5-Dehydroepisterol	Chorisia speciosa	Leaf	[17]**
92	Taraxasterol	Chorisia speciosa	Leaf	[17]**
93	Stigmasterol (24-Ethyl-5,22-	Ceiba aesculifolia	Fruit	[31]
	cholestadien- 3β -ol)	Ceiba pentandra	Seed	[39]**
			Stem bark	[27]*
		Chorisia insignis	Seed	[40]
			Leaf	[17, 18]
		Chorisia speciosa	Seed	[40]
94	$5-\alpha$ -Stigmastane-3,6-dione	Chorisia speciosa	Leaf	[17]**
95	Stigmast-3,5-dien-7-one	Chorisia insignis	Seed	[40]
		Chorisia speciosa	Seed	[40]
96	Stigmast-4-ene-3-one	Chorisia insignis	Seed	[40]
07		Chorisia speciosa	Seed	[40]
97	Stigmast-4,6-dien-3-one	Chorisia insignis	Seed	[40]
00		Chorisia speciosa	Seed	[40]
98	Stigmast-4-ene-3,6-dione	Chorisia insignis	Seed	[40] [40]
00		Chorisia speciosa	Jeef	[40]
100	stigmasterol 5-0-p-glucopyranoside	Chorisia crispijiora Caiba nantan dua	Leal	[41] [20]**
100	5.6 Dihydrogitostorol (Stigmostorol)	Celba pentanara Chovigia ingignia	Jeed	[39]**
101	5,0-Dinydrositosteror (Sugmastanor)	Chorisia insignis	Leai	[20]
102	3-Methoxy-5,6-dihydrostigmasterol	Chorisia insignis	Leaf	[28]**
102	Fraget 5 on 3 of	Caiba accaulifolia	Fruit	[21]*
103	5 6-Dihydroergosterol	Chorisia insignis	Leaf	[31] [28]**
104	4-Methylcholesterol	Chorisia insignis	Leaf	[28]**
106	Cholestanol	Chorisia insignis	Leaf	[28]**
107	Multiflorenol	Chorisia insignis	Leaf	[28]**
108	Cholest-5-en-3-one	Chorisia insignis	Leaf	[28]**
109	Cholest-6-one	Chorisia insignis	Leaf	[28]**
I) Lig	nans and neolignans:	0		
110	Dehyrodiconiferyl alcohol 9'- <i>O-β</i> - glucopyranoside	Ceiba pentandra	Aerial parts	[32, 34]
J) Co	umarins:			[0]
111	Aesculetin	Ceiba pentandra	Aerial parts	[9] [8 14]
112	Assoulin	Chorisia chodatii	A original marta	[0, 1+]
11Z 112	Coumarin	Ceiba pentandra Ceiba pentandra	Actual parts	נא]. נסוא
115	Coumann	Celou penianara	Actual parts	[2]

No.	Compound	Plant source	Plant Part	References
114	<i>Epi</i> -phyllocoumarin	Ceiba pentandra	Aerial parts	[9]*
115	Scopoletin	Chorisia chodatii	Flower	[8, 14]
116	Umbelliferone	Ceiba pentandra	Aerial parts	[9]*
K) Ta	nnins:	1	1	
117	Condensed tannins	Chorisia speciosa		[42]
118	<i>Epi</i> -catechin- $(4\beta \rightarrow 8)$ <i>eni</i> -afzelechin	Ceiba pentandra	Aerial parts	[9]*
119	<i>Epi</i> -catechin- $(4\beta \rightarrow 8)$ - <i>epi</i> - catechin (Procyanidin B2)	Ceiba pentandra	Aerial parts	[9]*
120	Gallic acid	Chorisia crispiflora		[12]
		Chorisia speciosa	Bark	[30]*
L) Alc	cohols, Phenols, Aldehydes and Ketones:	1		
121	5,8,5'-Trihydroxy-6,7,3',4'-tetramethoxy- 3- <i>O</i> -glucuronyl dulcitol	Chorisia insignis	Leaf	[22]*
122	5-Hydroxymethyl furfural	Chorisia chodatii	Flower	[8, 14]
123	7-Butyryl-4,6-dihydroxy-3- methylbenzo[b]furan	Chorisia speciosa	Leaf	[17]**
124	Linalool tetrahydride	Chorisia insignis	Leaf	[28]**
125	Yomogi alcohol (2,5,5- Trimethyl-3,6-heptadien-2-ol)	Chorisia insignis	Leaf	[28]**
126	Stearyl alcohol	Ceiba pentandra	Aerial parts	[38]**
127	1-Hexacosanol (Ceryl alcohol)	Ceiba pentandra	Aerial parts	[34, 38]
128	Triacontanol	Chorisia crispiflora	Leaf	[11]
129	3,4,5-Trihydroxycyclohexan-1-ol (1'→1)-rhamnoside	Chorisia insignis	Leaf	[22]
130	Methyl bulnesol	Chorisia insignis	Leaf	[28]**
131	Cis-p-Menth-2-en-1-ol	Chorisia insignis	Leaf	[28]**
132	2,4,6-Trimethoxyphenol	Ceiba pentandra	Stem bark	[26, 27]*
133	<i>m-tert</i> -Butylphenol	Chorisia speciosa	Leaf	[17]**
134	Butylated hydroxytoluene	Chorisia insignis	Leaf	[28]**
135	Verbascoside (Acteoside)	Chorisia speciosa	Leaf	[17, 18]
136	Cyclohexanone	Chorisia insignis	Leaf	[28]**
137	Nopinone	Chorisia insignis	Leaf	[28]**
138	4-Hydroxy-4-methyl-2-pentanone	Chorisia insignis	Leaf	[28]**
139	2-Methyl cyclopentanone	Chorisia insignis	Leaf	[28]**
140	1-Methyl-6-acetyl-3-oxo-4-(1- methylethylene) bicyclo [4.3.0] nonane	Chorisia speciosa	Leaf	[17]**
141	Cyclohexadecanolide	Chorisia insignis	Leaf	[28]**
M) La	actones:			
142	Argentilactone I	Chorisia crispiflora		[43]
143	Argentilactone II	Chorisia crispiflora		[43]
144	Loliolide	Ceiba pentandra	Aerial parts	[9]*
145	(<i>R</i>)-6-[(<i>Z</i>)-1-Heptenyl)]-5,6-dihydro-2H- pyran-2-one	Chorisia crispiflora		[43]
146	(3 <i>R</i> ,4 <i>R</i> ,5 <i>S</i>)-3,4-Dihydroxy-5- methyldihydrofuran-2-one	Chorisia chodatii	Flower	[8, 14]
N) Ac	ids and Esters:			
147	Abscisic acid	Ceiba pentandra	Aerial parts	[9]*
148	Caffeic acid	Ceiba pentandra		[29]
			Aerial parts	[9]
		Chorisia speciosa	Bark	[30]*
149	Chlorogenic acid	Chorisia speciosa	Bark	[30]*
150	Dihydro <i>p</i> -coumaric acid	Ceiba pentandra	Aerial parts	[9]*
151	Ellagic acid	Chorisia crispiflora		[12]
	2	Chorisia speciosa	Bark	[30]*
152	trans-Ferulic Acid	Ceiba pentandra	Aerial parts	[9]
153	Vanillic acid	Chorisia chodatii	Flower	[8, 14]

No.	Compound	Plant source	Plant Part	References
154	Ethyl vanillate	Chorisia chodatii	Flower	[8, 14]
155	Protocatechuic acid	Ceiba pentandra	Aerial parts	[9]*
			Leaf	[23, 44]
		Chorisia crispiflora	Leaf	[13]
156	Protocatechuic acid ethyl ester	Chorisia chodatii	Flower	[8, 14]
157	Hexanoic anhydride (Hexanoic acid anhydride)	Chorisia insignis	Leaf	[28]**
158	Heptanoic anhydride (Heptanoic acid anhydride)	Chorisia insignis	Leaf	[28]**
159	Succinic acid	Chorisia chodatii	Flower	[8, 14]
		Chorisia speciosa	Leaf	[17, 18]
160	Mono-octylphthalate	Chorisia chodatii	Flower	[8, 14]
161	Di-n-octylphthalate	Ceiba pentandra	Leaf	[45]
		Chorisia speciosa	Leaf	[17]
162	3,5-Dimethyl gallic acid phenyl ester	Chorisia insignis	Leaf	[22]
163	p-Hydroxybenzoic acid	Chorisia chodatii	Flower	[8, 14]
		Chorisia speciosa	Leaf	[17, 18]
164	Quinic acid ester of rhamnose	Chorisia insignis	Leaf	[28]
165	Methyl-2-(3',3'-dimethyl-1'-butyn-1'-yl)- 1-cyclohexene carboxylate	Chorisia insignis	Leaf	[28]**
O) Me	egastigmanes:			
166	Chodatiionoside A	Chorisia chodatii	Leaf	[15]
167	Chodatiionoside B	Chorisia chodatii	Leaf	[15]
168	(6 <i>S</i> ,7 <i>E</i> ,9 <i>R</i>)-6,9-Dihydroxy-4,7-	Chorisia chodatii	Leaf	[15]
	megastigmadien-3-one 9- O -[α -arabinopyranosyl- $(1 \rightarrow 6)$ - β -glucopyranoside]			
169	(3S,5R,6R,7E,9S)- Megastigman-7-ene-3,5,6,9-tetrol 3-O-β- glucopyranoside	Chorisia chodatii	Leaf	[15]
170	Cucumegastigmane II	Chorisia chodatii	Leaf	[15]
171	β-Ionone	Chorisia insignis	Leaf	[28]**
172	β-iso-Methyl ionone	Chorisia speciosa	Leaf	[17]**
173	Propyl homologue of β-ionone	Chorisia insignis	Leaf	[28]**
P) Fat	ty acids and esters:			L - J
174	9-Decadienoic acid, 2-nitro-ethyl ester	Chorisia speciosa	Leaf	[17]**
175	Myristic acid (Tetradecanoic acid) C _{14:0}	Ceiba pentandra	Aerial parts	[34, 38]**
	-	Ceiba speciosa	Seed	[46]**
		Chorisia insignis	Seed	[47]
176	Methyl tetradecanoate	Chorisia insignis	Leaf	[17]**
177	Methyl pentadecanoate	Chorisia insignis	Leaf	[28]**
178	Methyl 14-methyl pentadecanoate	Chorisia insignis	Leaf	[28]**
179	Palmitic acid	Ceiba aesculifolia	Fruit	[31]*
	(Hexadecanoic acid) C _{16:0}	Ceiba pentandra		[29]
	· · · · ·		Aerial parts	[34, 38]**
			Seed	[39]**
		Ceiba speciosa	Seed	[46]**
		Chorisia insignis	Seed	[47]
		Chorisia speciosa	Seed	[48]**
180	Palmitoleic acid C _{16:1}	Ceiba speciosa	Seed	[46]**
		Chorisia speciosa	Seed	[48]**
181	Methyl hexadecanoate	Chorisia insignis	Leaf	[28]**
	(Methyl palmitate)	Chorisia speciosa	Leaf	[17]**
182	Methyl 14-methyl hexadecanoate	Chorisia insignis	Leaf	[28]**

No.	Compound	Plant source	Plant Part	References
183	Methyl isohexadecanoate	Ceiba aesculifolia	Fruit	[31]*
184	Methyl 16,22-hexacosa-dienoate	Chorisia insignis	Leaf	[28]**
185	Heptadecanoic acid (Margaric acid) C _{17:0}	Ceiba speciosa	Seed	[48]**
		Chorisia speciosa	Seed	[46]**
186	Heptadecenoic acid C _{17:1}	Chorisia speciosa	Seed	[48]**
187	Methyl heptadecanoate	Chorisia insignis	Leaf	[17]**
188	Stearic acid C _{18:0}	Ceiba pentandra	Aerial parts	[34, 38]**
			Seed	[39]**
		Ceiba speciosa	Seed	[46]**
		Chorisia insignis	Seed	[47]
		Chorisia speciosa	Seed	[48]**
189	Methyl stearate	Chorisia insignis	Leaf	[17, 28]**
190	Oleic acid C _{18:1 ω9}	Ceiba pentandra		[29]
			Aerial parts	[34, 38]
			Seed	[39]**
		Ceiba speciosa	Seed	[46]**
		Chorisia insignis	Seed	[47]
		Chorisia speciosa	Seed	[48]**
191	Methyl oleate	Ceiba aesculifolia	Fruit	[31]*
		Chorisia insignis	Leaf	[28]**
192	α -Linolenic acid C _{18:3}	Ceiba pentandra	Aerial parts	[34, 38]**
193	Linoleic acid C _{18:2 \u03c6}	Ceiba pentandra		[29]
			Aerial parts	[34]**
			Seed	[39]**
		Ceiba speciosa	Seed	[46]**
		Chorisia insignis	Seed	[4/]
104	V. 11 (J. 1	Chorisia speciosa	Seed	[48]**
194	oxide)	Chorisia speciosa	Seed	[48]**
195	Methyl linoleate (Methyl 9,12-	Ceiba aesculifolia	Fruit	[31]*
	octadecadienoate)	Chorisia insignis	Leaf	[28]**
		Chorisia speciosa	Leaf	[17]**
196	Triglycerides with linoleic acid	Chorisia speciosa	Seed	[49]
197	Malvalic acid (8,9-Methylene heptadec-	Ceiba acuminata	Seed	[29]
	8-enoic acid)	Ceiba pentandra		[29]
			Seed	[39]**
		Ceiba speciosa	Seed	[46]**
		Chorisia insignis	Seed	[50]
		Chorisia speciosa	Seed	[49, 50]
198	Dihydromalvalic acid	Ceiba pentandra	Seed	[51]
199	Methyl 4-hydroxy-9-octadecenoate	Chorisia insignis	Leaf	[28]**
200	Sterculic acid	Ceiba acuminata	Seed	[29]
	(9,10-methylene-octadec-9-enoic acid)	Ceiba pentandra		[29]
		~ .	Seed	[39]**
		Ceiba speciosa	Seed	[46]**
		Chorisia insignis	Seed	[50]
201		Chorisia speciosa	Seed	[49, 50]
201	2-Hydroxysterculic acid	Ceiba pentandra	Aerial parts	[9]*
202	Dihydrosterculic acid	Ceiba speciosa	Seed	[46]**
203	9,12,15-Octadecatrienoic acid methyl ester	Chorisia speciosa	Leaf	[1/]*
204	(9Z,12Z,15Z)-17-Methyl octadeca- 9,12,15-trienoic acid	Ceiba pentandra	Stem bark	[27]*
205	Methyl 3-methyl-8-nonadecenoate	Chorisia insignis	Leaf	[28]**
206	C20 Monoethylenic acid	Chorisia insignis	Seed	[47]
207	Arachidic acid C20:0	Ceiba speciosa	Seed	[46]**
		Chorisia insignis	Seed	[47]
		Chorisia speciosa	Seed	[48]**

No.	Compound	Plant source	Plant Part	References
208	Eicosenoic acid (Gadoleic acid or	Ceiba speciosa	Seed	[46]**
	Gondoic acid) C _{20:1}	Chorisia speciosa	Seed	[48]**
209	Methyl 19,19-dimethyl eicosanoate	Chorisia insignis	Leaf	[28]**
210	Methyl arachidate	Chorisia insignis	Leaf	[28]**
211	Methyl 11-heneicosenoate	Chorisia insignis	Leaf	[28]**
212	Behenic acid C _{22:0}	Ceiba speciosa	Seed	[46]**
		Ceiba pentandra	Seed	[39]**
		Chorisia insignis	Seed	[47]
213	Methyl docosanoate	Chorisia insignis	Leaf	[17, 28]**
	(Methyl behenate)			
214	Methyl 19,21-dimethyl-15,19- docosadienoate	Chorisia insignis	Leaf	[28]**
215	Lignoceric acid (Tetracosanoic acid)	Ceiba speciosa	Seed	[46]**
	C24:0	1		
216	Methyl 22-tetracosenoate	Chorisia insignis	Leaf	[28]**
217	Methyl 17,23-tetracosadienoate	Chorisia insignis	Leaf	[28]**
218	Methyl heptacosanoate	Chorisia insignis	Leaf	[28]
0.77		0		
Q) Hy	drocarbons and Tocopherols:	Charinia i i i	If	[^ 0]**
219	2,8-Dimethyl nonane	Chorisia insignis	Lear	[28]**
220	I-Isobutyladamantane	Chorisia speciosa	Lear	[1/]** [20]**
221	n-Undecane	Chorisia insignis	Lear	[28]**
222	9-Dodecyltetradecanydro-anthracene	Chorisia speciosa	Leaf	[]/]**
223	1-Hexadecene	Ceiba pentandra	Aerial parts	[38]** [29]**
224	2-Methyl-/-nonadecene	Ceiba pentandra	Aerial parts	[38]**
225	Cycloeicosane	Ceiba pentandra	Aerial parts	[38]**
226	5-Eicosene	Ceiba pentandra	Aerial parts	[38]**
227	1,19-Eicosadiene	Ceiba pentandra	Aerial parts	[38] ^{**}
228	<i>n</i> -Docosane	Ceiba pentanara	Aerial parts	[34, 38]**
229	9-1 ricosene	Ceiba pentanara	Aerial parts	[38]**
230	<i>n</i> -1etracosane	Ceiba pentanara	Aerial parts	[38]**
231	3-Ethyltetracosane	Ceiba pentandra	Aerial parts	[34, 38] ^{**}
232	<i>n</i> -Pentacosane	Ceiba pentanara	Aerial parts	$[34, 38]^{**}$
233	<i>n</i> -Nonacosane	Ceiba pentandra	Aerial parts	[34, 38]**
234	<i>n</i> -1ririacontane	Chorisia insignis	Leaf	[28]**
235	<i>n</i> -Hentriacontane	Ceiba aesculifolia	Fruit	[28**, 31*]
226	11 14 11 1 4579 15 17 23 1	Chorisia insignis	Leaf	[20]**
236	11-Methyl- $\Delta^{5,7,2,15,17,25}$ -triacont-hexene	Chorisia insignis	Leaf	[28]**
237	I /-Pentatriacontene	Ceiba pentandra	Aerial parts	[38]* [21]*
238	<i>n</i> -riexatriacontane	Ceiba aesculifolia	Fruit	[31]* [21]*
239	<i>n</i> -1 etratetracontane	Ceiba aesculifolia	Fruit	[31]* [20]*
240	α -1 ocopnerol	Ceiba pentandra	Seed	[39]* [20]*
241	y-iocopherol	Ceiba pentandra	Seed	[39]* [20]*
242	σ-10copneroi	Ceiba pentanara	Seea	[39]*
R) An	ino acids and amides:			
243	Valine	Ceiba pentandra	Aerial parts	[9]*
244	Leucine	Ceiba pentandra	Aerial parts	[9]*
245	Isoleucine	Ceiba pentandra	Aerial parts	[9]*
246	<i>p</i> -Coumaroyl tyrosine	Ceiba pentandra	Aerial parts	[9]*
247	Ficusoside	Ceiba pentandra	Aerial parts	[34]
248	Ceibamide-A	Ceiba pentandra	Aerial parts	[9]
249	Ceibamide-B	Ceiba pentandra	Aerial parts	[9]

No.	Compound	Plant source	Plant Part	References
250	N-(3,4-Dihydroxy-cis-cinnamoyl)-3-	Ceiba pentandra	Aerial parts	[9*, 32, 34]
	(3',4'-dihydroxyphenyl) alanine			
	(cis-Clovamide)			
251	cis-Clovamide methyl ester	Ceiba pentandra	Aerial parts	[9]*
252	cis-Clovamide ethyl ester	Ceiba pentandra	Aerial parts	[9]*
253	cis-Clovamide butyl ester	Ceiba pentandra	Aerial parts	[9]*
254	N-(3,4-Dihydroxy- <i>trans</i> -cinnamoyl)-3-	Ceiba pentandra	Aerial parts	[9*, 32, 34]
	(3'.4'-dihvdroxyphenyl) alanine (trans-	1	1	
	Clovamide)			
255	trans-Clovamide methyl	Ceiba pentandra	Leaf	[9]
	ester	1	Aerial parts	[23]
	(<i>N-trans</i> -Caffeovl-DOPA-methyl ester)		1	L - J
256	<i>trans</i> -Clovamide ethyl ester	Ceiha pentandra	Aerial parts	[9] *
257	trans-Clovamide butyl ester	Ceiba pentandra	Aerial parts	[9] *
258	Betaine	Ceiba pentandra	Aerial parts	[2]
250	1 3 Dibydro 3 3 dimethyl 5 methovy	Chorisia speciosa	Leaf	[2] [17]**
237	2 <i>H</i> -indol-2-one	Chorisia speciosa	Lear	
S) Lin	ide:			
260	Dehydrophytosphingosine	Ceiha pentandra	Aerial parts	[0] *
	rhohydrates:	Celou pentanara	rienai parto	[2]
1) Mo	nosaccharides:			
261	Arabinose	Chorisia speciosa	Fruit	[52]
201	Maomose	Chorisia speciosa	Gum	[52]
262	Galactosa	Chowisia spaciosa	Emit	[55]
202	Galactose	Chorisia speciosa	Gum	[52]
			Saad	[55]
262	Chuassa	Chaviaia anaciona	Emit	[54]
203	Mannaga	Chorisia speciosa	Fiult	[52]
204	Mannose	Chorisia speciosa	Fiun	[52]
265	Dhammaaa	Chauisia an aoisean	Guili	[55]
203	Rhamnose	Chorisia speciosa	Fruit	[32]
			Gum	[53]
244	37.1		Seed	[54]
200	Aylose	Chorisia speciosa	Fruit	[32]
• • • •			Gum	[53]
2) Poly	ysaccharides:		0.11 0	FCCT *
267	Polysaccharide consists of: rhamnose,	Chorisia speciosa	Silk floss	[55]*
2(0	arabinose, galactose and uronic acid		C 1 1	F # 274
268	Polysaccharide contains: fucose, xylose,	Ceiba pentandra	Stem bark	[56]*
	arabinose, glucose, galactose, glucuronic			
	acid and 4-O-methyl-D-glucuronic acid			
3) Der	ived carbohydrates and uronic acids:			
269	Glucuronic acid	Chorisia speciosa	Fruit	[52]
			Seed	[54]
			Gum	[53]
270	Mucilage contains: galactose, rhamnose,	Chorisia speciosa [§]	Flower	[19]
	xylose, mannose, arabinose, and			
	glucuronic acid			
271	Mucilage contains:	Chorisia speciosa [§]	Leaf	[57]
	glucuronic acid, galact-uronic acid,			
	rhamnose, galactose, glucose, arabinose,			
	xylose,			
	mannose, and ribose.			
U) Vit	amins:			
272	Niacinamide or Vitamin B3	Ceiba pentandra	Aerial parts	[9]*
V) Mi	scellaneous compounds:			
213	1,1,3,3-1 etramethyl-1,3-disilaindan	Chorisia speciosa	Leat	[1/]**

* Identification of these compounds was based on LC/MS analysis.
 ** Identification of these compounds was based on GC/MS analysis.
 § Mucilage of *C. speciosa* leaves contains ribose and mannose, while that of *C. crispiflora* and *C. pubiflora* leaves contains ribose but no mannose. Mucilage of *C. insignis* leaves, on the other hand, contains no mannose or ribose

R (1) βΟΗ (2) αΟΗ

	R ₁	R ₂	R ₃	R_4	R ₅	R ₆	R ₇	R ₈
(6)	Н	Н	Н	OH	Н	Η	Н	Н
(7)	Н	Н	Н	O-Glc.	Н	Н	Н	Н
(8)	Н	Η	C-Glc.	OH	C-Glc.	Н	Н	Н
(9)	Н	Η	Η	O-Glc.(2→1)Rha.	Н	Н	Н	Η
(10)	Н	Η	Η	O-Rha.	Η	Н	Н	Н
(11)	Н	Η	Н	O-Glc.(6→1)Rha.	Н	Н	Н	Η
(12)	Н	Η	Н	OH	Н	Н	Glc.(6→1)Rha.	Н
(13)	OMe	Me	Н	CH_2 - CH - $(CH_3)_2$	Н	Н	Me	Н
(15)	Н	Η	Н	O-Glc. $(6\rightarrow 1)$ Rha.	Н	Н	Me	Н
(16)	Н	Η	Н	OH	Н	OH	Н	Η
(17)	Н	Η	Н	O-Glc.	Н	OH	Н	Н
(18)	Н	Η	Н	O-Glc. $(2\rightarrow 1)$ Rha.	Н	OH	Н	Н
(19)	Н	Η	Н	O-Glc. $(6\rightarrow 1)$ Rha.	Н	OH	Н	Н
(20)	ORha.	Н	Н	OH	Н	OH	Н	OH
(21)	Н	Η	Н	OH	Н	OMe	Н	OMe
(22)	Н	Н	C-Glc.	OH	Н	Н	Н	Η

Figure 1: Chemical structures of the reported compounds from the genus Chorisia.

	R ₁	R_2	R ₃	R_4	R_5	R ₆	R ₇
(27)	CO-(CHOH) ₄ -CH ₂ OH	Н	OH	Н	Η	Η	OH
(28)	(6"- $\Delta^{1,3}$ -octadienyl)Gluc.	Н	OH	Н	Н	Н	OH
(40)	CO-(CHOH) ₄ -CH ₂ OH	Me	Н	Me	Me	Me	Н
(41)	Gluc.(6" \rightarrow 1"")6""-n-hexyl-Gluc.	Η	Н	Η	Н	Me	Η
(42)	Glc.(6→1)Rha.	Η	Η	Η	Н	Η	Η

	R ₁	R_2	R_3	R_4	R_5	R_6	R7
(29)	Н	Н	Н	Me	OMe	Η	OH
(30)	Н	Н	Н	Н	Η	Н	Н
(31)	Н	Н	Н	Н	OH	Н	Н
(32)	Rha.	Н	Н	Rha.	Η	Н	Н
(33)	Gluc.(6→1)Rha.	Me	Η	Me	Н	Me	Н
(34)	CHOH-CH ₂ OH	Me	Н	Me	Η	Me	Н
(35)	Glc.(6→1)Rha.	Н	Η	Η	Н	Н	Η
(36)	Glue.	Me	OMe	Me	OMe	Me	Н
(37)	Н	Н	Н	Н	OH	Н	Н
(38)	diGlucn-hexyl	Н	Η	Η	OH	Me	Н
(39)	Glc.(6→1)Rha.	Me	Η	Me	OMe	Н	Η
(43)	Rha.	Н	Н	Н	OH	Η	Η
(44)	Glc.(6→1)Rha.	Η	Н	Η	OH	Н	Η
(45)	Glc(6"-p-coumaroyl)	Η	Η	Η	Н	Η	Η

Figure 1: (cont.).

R₁ R₂ (56) Gle. H (57) Gle. Gle.

n

,OR₁

Figure 1: (cont.).

R (75) =0 (76) βΟΗ

(83)

R (79) H (80) COMe

Figure 1: (cont.).

Figure 1: (cont.).

Figure 1: (cont.).

R_1	R ₂
OH	OH
OGlc.	OH
Η	Н
OMe	OH
Н	OH
	R ₁ OH OGlc. H OMe H

Figure 1: (cont.).

(250)

(258)

Figure 1: (cont.).

Figure 2: Different classes of compounds in plants of the genus Chorisia.

[Flv: Flavonoids; Ant: Anthocyanins; Qn: Quinones; Ses: Sesquiterpenoids; Dit: Diterpenoids; Trit: Triterpenoids; St: Steroids; Lig: Lignans and neolignans; Cou: Coumarins; Tan: Tannins: Alc: Alcohols, phenols, aldehydes, and ketones: Lac: lactones; Ac: Acids and esters; Meg: Megastigmanes; FA: Fatty acids and esters; Hyd: Hydrocarbons and tocopherols; AA: Amino acids and amides; Lip: Lipids: Car: Carbohydrates; Vit: Vitamins; Mis: Miscellaneous compounds].

Figure 3: Different biological activities of plants of the genus Chorisia.

3. Biological activities of the genus Chorisia

Literature survey on the genus *Chorisia* showed that different extracts and isolated compounds from various plant parts of *Chorisia* plants exhibited a wide range of biological

properties, which are described in Table 2 and summarized in Figure 3.

Table 2: A list of various biological activities of the genus Chorisia				
Plant name (Plant part)	Extract, fraction or compound	Bioactivity	References	
A) Effects on a	dipogenesis:			
Chorisia chodatii and Chorisia speciosa (Leaves, flowers, fruits, and seeds) B) Anti-inflam	Total ethanol extracts and their derived fractions (petroleum ether, chloroform, ethyl acetate, and aqueous fractions) of different plant parts.	They were examined for their impact on lipogenesis in 3T3-L1 adipocytes at concentrations of 5, 10, 50, and 100 μ g/ml. The highest stimulatory effects on adipogenesis were shown by the ethyl acetate, aqueous and chloroform fractions of various organs at varied concentrations, but the petroleum ether fractions significantly increased lipogenesis only at 50 and 100 μ g/ml. retic effects:	[14, 58]	
Chorisia insignis (Leaves)	Total 70% ethanol extract and its successive fractions (petroleum ether, diethyl ether, chloroform, ethyl acetate and <i>n</i> -butanol fractions) in addition to the aqueous extract.	They demonstrated strong anti-inflammatory activity at 100 mg/kg, p.o against carrageenan-induced paw edema in mice. Compared to indomethacin (20 mg/kg), the total ethanol and aqueous extracts as well as the ethyl acetate fraction were the most effective samples.	[20]	
<i>Ceiba</i> <i>pentandra</i> (Seeds)	Petroleum ether and ethanol extracts	As compared to aspirin (300 mg/kg), these extracts considerably reduced the carrageenan-induced paw edema in rats when they were administered at 200 and 400 mg/kg.	[59]	
Chorisia speciosa (Leaves)	<i>n</i> -Hexane, chloroform, and methanol extracts	Similar to diclofenac sodium (10 mg/kg), the three extracts significantly reduced inflammation. After two hours of administration, the chloroform extract's impact was more noticeable at 400 mg/kg, exhibiting a considerable decrease in the inflammation caused by carrageenan. On the other hand, it was revealed that the chloroform and methanol extracts were more efficient than the hexane extract, with a maximum percentage of inhibition similar to that of paracetamol, indicating their potential as an antipyretic	[60]	
Chorisia speciosa (Leaves, stem and fruits)	- Total ethanol extract of the leaves and stem and its derived fractions (<i>n</i> - hexane, <i>n</i> -butanol, chloroform, ethyl acetate and aqueous fractions) -Rhiofolin	In the rat hind paw edema model caused by carrageenan, they showed anti-inflammatory efficacy. The chloroform and ethyl acetate extracts of the leaves and the total ethanolic extract of the stem displayed an increasing percentage of anti-inflammatory activity even after five hours. Moreover, rhiofolin showed potent anti-inflammatory and antipyretic properties. With the exception of the <i>n</i> -hexane and <i>n</i> -butanol fractions of the stem, the effect maximized around the 3rd hour and lasted until the 5th hour for all fractions. The considerable analgesic effect against heat stimuli displayed by the studied extracts varied significantly, as demonstrated by the increase in the latency time in minutes. The chloroform and n-butanol fractions of the leaf demonstrated the lowest percentage of protection, followed by the ethyl acetate	[17]	
Ceiba pentandra (Stem bark)	Methanol extract	fraction, and the total ethanolic extract of the stem. It revealed a considerable decrease in the acetic acid-induced vascular permeability as well as a significant suppression of xylene- induced ear edema and egg albumin-induced paw edema. Also, in a dose-dependent pattern, it markedly decreased the number of writhes in the acetic acid-induced writhing test and provided good protection against heat-induced pain in the tail flick latency test.	[61]	

Plant name (Plant part)	Extract, fraction or compound	Bioactivity	References
Ceiba pentandra (Aerial parts)	Ethyl acetate extract.	It exhibited a considerable improvement in the blood levels of TNF- α and CRP as well as a notable reduction in the expression of the IL-18 gene in the rat model of methotrexate-induced nephrotoxicity. In comparison with	[32]
Ceiba speciosa (Stem bark)	Ethanol extract.	silymarin, the extract had a little better impact. The extract inhibited the activity of p38 α (1.66 µg/ml), JAK3 (5.25 µg/ml), and JNK3 (8.34 µg/ml) and decreased the production of TNF- α in human blood. Moreover, it decreased the recruitment of leukocytes to the pouch exudate and the development of edema, reversing the inflammatory effects brought on by carrageenan.	[62]
C) Antioxidant effe	ects:	C	
Chorisia insignis (Leaves)	70% Ethanol and aqueous extracts in addition to the ethyl acetate fraction and <i>n</i> -butanol fractions.	 The 70% ethanol extract, followed by the ethyl acetate fraction, the aqueous extract, and the <i>n</i>-butanol fraction, at 100 mg/kg each, exhibited a strong <i>in vivo</i> antioxidant activity compared to vitamin E (7.5 mg/kg). The rise in blood glutathione levels in alloxan-induced diabetic rats was indicative for the activity of these effects. Both the 70% ethanol and aqueous extracts showed significant <i>in vitro</i> DPPH radical scavenging activities compared to vitamin C. 	[20]
Ceiba pentandra (Roots)	50% Ethanol extract.	Using the FRAP and ORAC tests, it demonstrated notable antioxidant effects with values of 0.14 ± 0.01 µmol Fe II/g dry weight and 917 ± 139 µmol trolox /g dry weight, respectively. In addition, it demonstrated DPPH radical scavenging properties, with an IC50 of 51 ± 0.7 µg/ml vs. 1.25 ± 0.07 µg/ml for ascorbic acid.	[63]
Ceiba pentandra (Spikes and fruits)	n-Hexane, chloroform, ethyl acetate, aqueous and methanol extracts.	Using several test models, the methanol and the aqueous extracts showed strong radical scavenging abilities. Among the tested samples, the methanol extract showed considerable anti-hemolytic properties and lower levels of malondialdehyde.	[64]
Ceiba pentandra (Seeds)	Seed oil.	The oil at 100 mg/ml revealed 47.56% inhibition/50 μ l and 39.69% inhibition/0.1 ml, respectively, in the DPPH and hydroxyl radicals scavenging tests in comparison with rutin (1 mg/ml (45% and 75%)) and BHT (1 mg/ml (76%/ and 75.6%)) as positive controls,. Moreover, the measured FRAP capacity at 100 mg/ml was 309 FRAP units, whereas the reducing activity of the oil was 20.52 ug ascorbic acid equivalents/ml.	[65]
Ceiba pentandra (Leaves)	Ethyl acetate fraction.	Some antioxidant compounds in the ethyl acetate fraction showed considerable free radical scavenging capacity in a qualitative screening test (DPPH assay) on TLC plates.	[23]
Plant name	Extract, fraction or	Bioactivity	
(Yeini pari) Ceiba pentandra (Seeds)	Ethanol and water extracts.	The ethanol seed extract revealed significant DPPH radical scavenging activity in a concentration-dependent manner, with an IC50 value of $50.33 \pm 5.29 \ \mu g/ml$ according to according activity of $202 \ \mu g/ml$	[66]
Ceiba pentandra (Seeds)	Seed oil.	Total phenolics in seed oil showed significant DPPH radical scavenging activity in a concentration-dependent manner, with an IC50 of 11.52 ± 0.90 mg/ml at 2.5 mg/100 g in line with sesame and Moringa oleifera seed oils.	[39]
Ceiba pentandra (Stem bark)	Aqueous and methanol extracts.	Both the aqueous decoction, the aqueous macerate and the methanol extract exhibited significant radical scavenging abilities against DPPH with respective EC50 values of 87.84, 54.77, and 6.15 µg/ml compared to vitamin C (EC50= $2.24 \mu g/ml$). The methanol extract's antioxidant activity was comparable to that of vitamin C, and both of them almost had their maximum impact at 10 µg/ml. The anti-hemolytic action of the aqueous decoction was the strongest, reaching a maximum inhibition of 77.57% at 100 µg/ml.	[67]

Plant name (Plant part)	Extract, fraction or compound	Bioactivity	References
Chorisia chodatii and Chorisia speciosa (Leaves flowers, fruits an seeds)	 Total ethanol extracts and their derived fractions (petroleum ether, chloroform, ethyl acetate and aqueous fractions) of different plant parts. 	Except the petroleum ether fractions, different extracts and fractions of both species displayed concentration-dependent scavenging abilities of the DPPH radical. The greatest activity was demonstrated by the ethyl acetate, aqueous, and chloroform fractions, respectively. The total ethanol seed extracts of both species showed lower scavenging capacities than those of the other plant parts.	[14, 58]
Chorisia speciosa (Leaves, stem and fruits)	 a -Total ethanol extract of the leaves and stem and its derived fractions (<i>n</i>-hexane, <i>n</i>-butanol, chloroform, ethyl acetate and aqueous fractions) -Total ethanol extract of the fruits 	All the tested extracts showed a significant DPPH free radical scavenging activity, especially the ethyl acetate and <i>n</i> -butanol fractions of the leaves, the ethyl acetate fraction of the stem and the total ethanolic extract of the fruits due to the presence of phenolic compounds.	[17]
Ceiba pentandra (Aerial parts)	Methanol extract and different fractions (<i>n</i> - hexane, methylene chloride, ethyl acetate and <i>n</i> -butanol)	The total methanol extract and ethyl acetate fraction exhibited powerful antioxidant activity in comparison with ascorbic acid, BHA and BHT using two cancerous cell lines (HepG2 and MCF-7).	[34]
Ceiba speciosa (Bark)	Lyophilized aqueous extract.	It showed a scavenging effect of the DPPH radical in a concentration-dependent manner, being 49.12%, 27.52%, and 13.32% at 10, 5, and 2 μ g/ml, respectively, in the comet assay.	[30]
Ceiba pentandra (Aerial parts)	Ethyl acetate extract.	It showed powerful in vitro DPPH radical scavenging potential (IC50= 0.0716 mg/ml) comparable to the standard agents (ascorbic acid, IC50= 0.045 mg/ml) and BHA (IC50= 0.056 mg/ml). Moreover, it decreased the oxidative stress caused by methotrexate and increased kidney antioxidant capacity.	[32]
Ceiba speciosa (Seed Oil)	Fixed oil.	It exerted a promising ABTS radical scavenging activity, with an IC50 value of 10.21 μ g/ml, whereas it had an IC50 of 77.44 μ g/ml against the DPPH radical. A lower effect was recorded in the FRAP test, in which the FRAP value was 3-times less than that of BHT.	[46]
Ceiba pentandra (Stem bark)	Methanol and aqueous extracts.	Methanol and aqueous extracts showed significant and concentration-dependent radical scavenging activities of the superoxide anion with IC50 values of 51.81 and 34.26 μ g/ml, respectively, compared to gallic acid (IC50= 55.66 μ g/ml). On the other hand, only ascorbic acid and the methanol extract were capable of scavenging the hydrogen peroxide radical, with IC50 values of 13.84 and 44.84 μ g/ml, respectively, but the aqueous extract was a poor hydrogen peroxide scavenger	[27]
Ceiba speciosa (Leaves)	Petroleum ether, dicholoromethane, ethyl acetate, n-butanol, methanol and water extracts.	They demonstrated considerable DPPH free radical scavenging activity, and the results (ranked by their IC50 values (μ g/ml)) were as follows: dicholoromethane extract (12.37 ± 4.52), methanol extract (15.48 ± 3.80), ethyl acetate extract (27.07 ± 1.72), n-butanol extract (59.68 ± 4.46), petroleum ether extract (60.97 ± 2.29), and water extract (78.76 ± 2.26) compared to ascorbic acid (7.60 ± 0.85 μ g/ml).	[68]
Ceiba speciosa (Stem bark)	Ethanol extract.	It demonstrated considerable DPPH free radical scavenging activity in a concentration-dependent manner, with an IC50 value of $19.83 \pm 0.34 \mu g/ml$ in comparison with gallic acid.	[62]
<i>Chorisia</i> <i>crispiflora</i> (Leaves)	Rhoifolin.	It showed 80.3% protection against CCl ₄ -induced hepatotoxicity in mice at 20 mg/kg. The architecture of the livers was normal and the levels of serum ALT and AST were preserved within normal limits.	[11]
Chorisia insignis (Leaves)	70% Ethanol and aqueous extracts as well as the ethyl acetate fraction.	In CCl ₄ (5 ml/kg, i.p.) liver model, a significant decrease in the elevated AST, ALT and ALP levels was observed after treatment of rats for one month with 100 mg/kg of the extracts as compared to silymarin (25 mg/kg).	[20]

Plant name (Plant part)	Extract, fraction or compound	Bioactivity	References
Ceiba pentandra	Ethyl acetate fraction of the	At 400 mg/kg (p.o.), it demonstrated hepatoprotective	[69]
(Stem bark)	methanol extract.	activity against the liver damage caused by paracetamol (3 g/kg) in rats, with a substantial decrease in blood ALT, AST, ALP levels and total bilirubin contents.	
Ceiba pentandra (Roots)	Methanol extract.	In comparison with silymarin (50 mg/kg, p.o.), the treatment of thioacetamide-intoxicated rats with the methanol extract (200 and 400 mg/kg) considerably reduced the phase-I and phase II enzyme levels and boosted antioxidant levels to close to the normal values. The activities of cytochrome P450, NADPH cytochrome C reductase and glutathione-S-transferase	[70]
		were also shown to have significantly increased.	
E) Anti-obesity act	ivity:		[71]
(Leaves)	Ethanol extract.	It prevented the increase in body weight in cateteria diet-treated albino rats and also caused a significant reduction of body weight in cafeteria diet-treated obese rats. Rat liver and fat pad weights were similarly reduced. Estimated serum biochemical parameters of <i>C. pentandra</i> -treated animals showed no reduction in total cholesterol, serum triglycerides, LDL and VLDL, and no increase in HDL levels, suggesting that <i>C. pentandra</i> may lower fat absorption by stopping the breakdown of dietary fats in GIT without influencing their henatic	[/1]
Ceiba speciosa (Seeds oil)	Fixed oil.	metabolism. It showed significant anti-obesity effects, with IC50 values of 135.69 ± 2.68 and 158.22 ± 2.89 µg/ml were recorded against α -glucosidase and α -amylase, respectively, whereas an IC50 value of 127.57 ± 2.98 µg/ml was found against the lipase enzyme using acarbose as a positive control in both α -amylase (IC50= 50.01 ± 0.92 µg/ml) and α -glucosidase (IC50= 35.52 ± 1.23 µg/ml) tests and orlistat (IC50= 37.63 ± 1.01) as a positive control in the lipase test.	[46]
F) Cytotoxic activit	t y:		
Chorisia crispiflora	Argentilactone I, II, and (<i>R</i>)- 6-[(<i>Z</i>)-1-heptenyl)]-5,6- dihydro-2 <i>H</i> -pyran-2-one.	They exhibited varied cytotoxic activities against some tumor cells.	[43]
Chorisia crispiflora (Leaves)	Ethyl acetate extract.	The extract demonstrated substantial anticancer activity against Ehrlich Ascites carcinoma. The observed alterations in the haematological parameters in Swiss albino mice were also reversed	[11]
Ceiba pentandra (Roots)	50% Ethanol extract.	It showed extremely low toxicity on human fibroblast primary culture using the Resazurin reduction text for in vitro extetoxicity assessment	[63]
Chorisia insignis (Leaves)	70% Ethanol extract and its successive fractions.	The 70% ethanol extract showed a significant activity (IC50= 2.21 μ g) against the larynx cell line HEP2. It also displayed slight effects towards the breast cell line MCF7 (surviving fraction= 0.753), the liver cell line HEPG2 (surviving fraction= 0.770), the brain cell line U251 (surviving fraction= 0.8), the colon cell line HCT116 (surviving fraction= 0.79) and the cervix cell line HELA (surviving fraction= 0.826). Moreover, all the successive fractions except for the chloroform (IC50 > 10 μ g) exerted significant cytotoxic activities against the larynx cell line HEP2. Among them, the petroleum ether extract showed the highest activity (IC50= 5.12 μ g), followed by the n-butanol (IC50= 6.58 μ g), aqueous (IC50= 7.11 μ g) and ethyl acetate fractions (IC50= 8.61 μ g), in comparison with cisplatin (IC50= 0.66 μ g), doxorubicin (IC50= 0.74 μ g) and 5-fluorouracil (IC50= 2.2 μ g). The least cytotoxic effects were exhibited by the diethyl ether fraction (IC ₅₀ = 9.06 μ g).	[22]

I

Plant name (Plant part)	Extract, fraction or	Bioactivity	References
			F10 413
Chorisia crispiflora (Leaves)	<i>n</i> -Hexane and ethyl acetate extracts.	They had strong <i>in vitro</i> cytotoxic effects on MCF-/ breast cancer cell line due to downregulation of NF- R in time, and concentration dependent manner	[13, 41]
Chorisia crispiflora	Rhoifolin.	It exhibited powerful <i>in vitro</i> cytotoxicity with great selectivity against human enidermoid larvnex (Hep	[72]
(Leaves)		2) (IC ₅₀ = 5.9 μ g/ml) and human cervical (HeLa) carcinoma cell lines (IC ₅₀ = 6.2 μ g/ml). Similar	
		promising activities were also observed against hepatocellular (Hep G2) ($IC_{50}=22.6 \ \mu g/ml$), colon	
		(HCT-116) (IC ₅₀ = $34.8 \ \mu g/ml$) and fetal human lung fibroblast (MRC-5) (IC ₅₀ = $44.6 \ \mu g/mL$) carcinoma	
		cell lines. The observed antitumor influences were comparable and nearly similar to those of	
		vinblastine. Results also showed no cytotoxic activity against healthy normal mammalian cells	
Ceiba pentandra	Methylene chloride	(Vero cells), indicating its good selectivity. This fraction demonstrated prominent cytotoxic	[38]
(Aerial parts)	fraction.	effect against the cancer cell lines, HepG2 (IC_{50} = 14.895 µg/ml) and MCF-7 (IC_{50} = 18.859 µg/ml).	[0]
(Aerial parts)	methylene chloride, ethyl	<i>vitro</i> MTT bioassay against C32, MCF-7, MCF-10A	[9]
	fractions.	fraction revealed the most effective actions against	
Ceiba pentandra	Ethyl acetate fraction.	selectivity for tumor cells. It showed intense antitumor effects against	[9]
(Aerial parts)	-	melanoma cells by using flow cytometric cell cycle analysis. The cyclin dependent kinases that control	
		cell cycle were thought to be responsible for the noticed cytotoxic potential, leading to cell cycle	
Ceiba speciosa	Petroleum ether,	arrest in the G2/M phase. They showed moderate to weak cytotoxic effects	[68]
(Leaves)	acetate, <i>n</i> -butanol, methanol and water	petroleum ether (74.35 μ g/ml), dicholoromethane (57.3 μ g/ml) ethyl acetate (79.73 μ g/ml) <i>n</i> -butanol	
	extracts.	(446.11 μ g/ml) and methanol (410.37 μ g/ml). The water extract was inactive (IC ₅₀ =954.99 μ g/ml).	
G) Antidiabetic an <i>Chorisia insignis</i>	d hypolipidemic effects: 70% Ethanol and aqueous	In comparison to metformin, they demonstrated	[20]
(Leaves)	extracts along with the ethyl	significant anti-hyperglycemic actions in male	
	acetate fraction.	albino rats with alloxan-induced diabetes.	
Ceiba pentandra (Stem	Aqueous extract.	Oral administration of the aqueous extract for four weeks at increasing doses (250–1500 mg/kg)	[73]
bark)		glucose levels in streptozotocin-induced diabetic	
<i>Ceiba</i> <i>pentandra</i> (Root ba	Methylene (mk) chloride/methanol	It exhibited important antidiabetic activity in streptozotocin-induced type-2 diabetic rats by	[74, 75]
1	(1:1) extract.	consuming less food and water intake and lowering the levels of blood glucose, serum cholesterol,	
		triglyceride, creatinine and urea when compared to diabetic controls. The anti-hyperglycemic effect was	
		the added benefit of considerably reducing serum cholesterol and triglyceride levels	
<i>Ceiba pentandra</i> (R bark)	oot Methanol extract.	After seven weeks of oral treatment with 150 mg/kg of the extract, both the normal and alloxan-induced	[76, 77]
		diabetic rats exhibited hypoglycemic effects.	

Plant name (Plant part)	Extract, fraction or compound	Bioactivity	References
Ceiba pentandra (Leaves)	Dry powdered leaves.	In alloxan-induced diabetic rats, they had both hypoglycemic as well as hypolipidemic effects. They significantly lowered plasma glucose, LDL, VLDL and triglyceride levels, while HDL, total proteins and albumin levels were significantly enhanced.	[77, 78]
Ceiba pentandra L. (Leaves)	Ethanol extract.	In the oral glucose tolerance test in rats, it displayed noticeable hypoglycemic effects. Compared to the alloxan-treated rats, those administered the extract at 300 mg/kg, p.o. showed considerably lower blood glucose levels and significantly higher insulin levels than normal animals.	[79]
Ceiba pentandra (Roots)	50% Ethanol extract.	It showed significant and dose-dependent α - glucosidase inhibitory activity (IC ₅₀ = 51 ± 0.7 µg/ml) that was superior to that of acarbose (IC ₅₀ = 726 ± 15 µg/ml).	[63]
<i>Ceiba pentandra</i> (Stem bark)	Aqueous (either prepared by decoction or maceration) and methanol extracts.	The aqueous decoction was able to significantly increase glucose uptake by liver and skeletal muscles similar to insulin. Both the decoction and insulin greatly increased glucose consumption in the liver by 56.57% and 127.28%, respectively. Glucose uptake in skeletal muscles was also raised by 94.19% in the presence of the decoction and by 135.11% with insulin. On the other hand, neither the aqueous macerate nor the methanol extract showed significant impact on both tissues.	[67]
<i>Ceiba pentandra</i> (Stem bark)	Aqueous extract (prepared by decoction).	Oral administration of the aqueous decoction considerably decreased the hyperglycemia caused by dexamethasone in a dose-dependent manner, with the maximal effect of 33% was obtained at 150 mg/kg/day. Metformin, the positive control used reduced hyperglycemia by 26% in comparison to the dexamethasone group. The decoction also reduced total plasma cholesterol, triglycerides, catalase, glutathione and NO levels impaired by dexamethasone without any impact on superoxide dismutase and malondialdehyde in rats suffering from insulin resistance caused by dexamethasone.	[26]
Ceiba pentandra (Stem bark)	Aqueous and methanol extracts.	They displayed strong antidiabetic properties in type-2 diabetic rats induced by the combination of a high-fat diet and a single dose of streptozotocin (40 mg/kg, i.p.). The aqueous extract significantly decreased the hyperglycemia by up to 29% and 56.9%, whereas the methanol extract exhibited 53.4% and 62.4% reduction at 75 and 150 mg/kg, respectively, compared to metformin, which showed a reduction of 71.2% at 40 mg/kg.	[80]
<i>Ceiba pentandra</i> (Stem bark)	Aqueous and methanol extracts.	The methanol and aqueous extracts inhibited α - amylase and α -glucosidase with IC ₅₀ values of (6.15 and 76.61 µg/ml) and (54.52 and 86.49 µg/ml), respectively. The aqueous extract showed a mixed non-competitive inhibition of both enzymes, whereas the methanol extract exhibited a competitive inhibition of α -amylase and a pure non- competitive inhibition of α -glucosidase.	[27]
H) GIT activity: Ceiba pentandra (Stem bark)	Aqueous extract.	It demonstrated anti-ulcerogenic properties against rats' stomach ulcers brought about by indomethacin. In compareison with ranitidine (50 mg/kg), the extract at 400 mg/kg, p.o. considerably decreased the pH decline and lesion development	[81]
<i>Ceiba pentandra</i> (Stem bark)	Methanol extract.	At 1000 mg/kg, it significantly prevented castor oil- induced diarrhea in mice, but no appreciable delay in intestinal transit time was seen. This effect was comparable to loperamide (5 mg/kg).	[82]

Plant name (Plant part)	Extract, fraction or	Bioactivity	References
<i>Ceiba pentandra</i> (Roots)	Methanol extract.	It demonstrated significant and dose-dependent antiulcer benefits against ulcers in rats caused by ethanol and pylorus ligation using ranitidine (50 mg/kg, p.o.) as a standard drug. Oral treatment of the extract at 200 and 400 mg/kg effectively reduced the index of gastric lesions in both ulcer models.	[83]
<i>Ceiba pentandra</i> (Stem bark)	Methanol extract.	At 100, 200 and 400 mg/kg, it displayed great and dose-dependent anti-ulcer activity in both indomethacin (50 mg/kg) and ethanol-induced gastric ulcers in albino rats, which at high doses, was comparable to ranitidine (100 mg/kg) and omeprazole (100 mg/kg), respectively.	[84]
Ceiba speciosa (Stem bark)	Ethanol extract.	It showed significant protection of ulcer formation compared to omeprazole. It also displayed no cytotoxicity, but markedly affected some enzymes involved in inflammatory processes, indicating its potential against gastric ulcers. <i>In vivo</i> studies also showed that the gastric mucosa of rats treated with	[62]
I) Antiangiogenic	activity:	the extract was similar to that of normal animals.	
<i>Ceiba pentandra</i> (Leaves and Stem)	Methanol extract.	It dramatically reduced the tube-like formation induced by human umbilical venous endothelial cells in an <i>in vitro</i> assay. The methanol stem extract exhibited a strong action with an inhibition percentage of 87.5% at $100 \ \mu g/ml$.	[85]
J) Anti-infective a	ctivity:		
1) Antibacterial effe	ects:		
Chorisia speciosa (Flowers)	-Ethyl acetate extract. -Tiliroside.	The ethyl acetate extract was reported to have antibacterial potential. The flavonoidal glycoside, tiliroside exhibited substantial antibacterial properties with minimum inhibitory concentration of 1.96 µg/ml against <i>Bacillus subtilis</i> .	[19]
<i>Ceiba pentandra</i> (Stem bark)	Aqueous and ethanol extracts.	They had inhibitory effects on <i>Staphylococcus</i> <i>aureus</i> , <i>Pseudomonas aeroginosa</i> , <i>Escherichia coli</i> and <i>Shigella dysentriae</i> with the ethanol extract being more effective. The minimal inhibitory and minimal bactericidal concentrations ranged between 6.25-50 mg/ml.	[86]
<i>Ceiba pentandra</i> (Leaves and Stem bark)	Ethanol extract.	It demonstrated strong <i>in vitro</i> antibacterial activity against human pathogens such <i>Klebsiella</i> <i>pneumonia, P. aeruginosa, S. aureus</i> and <i>E. coli.</i>	[87]
Ceiba pentandra (Stem bark)	n-Hexane, acetone and ethanol extracts.	They were examined against S. aureus, K. pneumoniae and P. aeruginosa using ampicillin as a standard. The maximum activity was observed for the acetone extract at 300 mg/ml, while the ethanol extract showed the lowest activity at 100 mg/ml. In contrast, the n-hexane extract was inactive.	[88]
Chorisia insignis (Leaves)	Petroleum ether, diethyl ether and ethyl acetate fractions	They have strong antibacterial action against B. subtilis and Bacillus cereus.	[28]
Chorisia speciosa (Leaves)	Methanol, chloroform and n-hexane extracts.	The methanol and chloroform extracts were active against B. cereus, with inhibition zones of 16 and 11 mm, respectively. A moderate activity was shown against P. aeruginosa, K. pneumonia and S. aureus, with inhibition zones ≥ 10 mm, whereas no activity was found against E. coli and Salmonella enterica.	[60]
Chorisia speciosa (Leaves, stem and fruits)	-Total ethanol extract of the fruits. -Total ethanol extract of the leaves and stems and their derived fractions (n-hexane, chloroform,	The total ethanolic extract, ethyl acetate fraction and n-butanol fraction of the leaves were considerably active against B. cereus, Micrococcus luteus, S. aureus, Serratia marcenscens, E. coli and P. aeruginosa with inhibition zones ranged from 8 to 12 mm.	[17]

Plant name (Plant part)	Extract, fraction or compound	Bioactivity	References
	ethyl acetate and aqueous fractions)	The chloroform and <i>n</i> -butanol fractions of the stem showed moderate activity, while the other samples were inactive against the tested bacterial strains.	
<i>Ceiba aesculifolia</i> (Fruits)	Methanol extract.	It exhibited antibacterial activity against two Gram- positive bacteria (<i>Enterococcus faecalis</i> and <i>S. aureus</i>) and one Gram-negative bacterium (<i>Vibrio cholerae</i>) with inhibition zones of 10.4 ± 0.2 , 9.0 ± 1.2 and 10.0 ± 1.0 mm, respectively.	[31]
<i>Ceiba pentandra</i> (Aerial parts)	Methanol extract and different fractions (<i>n</i> - hexane, methylene chloride, ethyl acetate and <i>n</i> - butanol).	The ethyl acetate fraction was the most active against all the tested organisms, including <i>Micrococcus roseus</i> , <i>M. luteus</i> , <i>Proteus vulgaris</i> , and <i>B. cereus</i> except for <i>S. marcenscens</i> , which was more susceptible for the <i>n</i> -butanol fraction. The other fractions showed relatively little antibacterial activity against both the tested Gram-positive and Gram-negative bacteria, the <i>n</i> -hexane fraction exclusively showed antibacterial activity against Gram-negative bacteria.	[34]
Ceiba pentandra (Seeds)	Aqueous, methanol, ethanol and acetone extracts.	The maximum inhibitory impact of the aqueous extract was shown only against <i>Staphylococcus epidermidis</i> and <i>S. aureus</i> . It also exerted moderate antibacterial effects against E. coli, P. aeruginosa, Enterobacter aerogenes, and minimal inhibition of Salmonella typhi, Salmonella typhimurium and P. vulgaris. Methanol and ethanol extracts showed powerful antibacterial effects against S. epidermidis, S. aureus and moderate inhibition of P. vulgaris, E. coli, E. aerogenes, S. typhi and S. typhimurium, but mild effect on P. aeruginosa. The acetone extract had the most inhibitory impact on S. aureus, P. vulgaris, S. epidermidis, P. aeruginosa, S. typhi and S. typhimurium, but moderate inhibition of E. coli and E. aerogenes.	[89]
Chorisia speciosa (Leaves)	Essential oil.	It exhibited different inhibitory effects against some microbes, where the strongest activity was noticed against S. aureus (25 mm). Moderate activity (15 mm) was also observed against E. coli, but no activity against S. typhi (9 mm) at 3.64 mg.	[90]
Ceiba speciosa (Leaves)	Petroleum ether, dicholoromethane, ethyl acetate, n-butanol, methanol and water extracts.	The dichloromethane extract showed powerful antimicrobial action against S. aureus (inhibition zone= 23 mm), while the methanol, petroleum ether and ethyl acetate extracts showed moderate activity with inhibition zones of 16, 16, and 17 mm) respectively. On the other hand, the n-butanol extract had weak activity with an inhibition zone of 12 mm, while the water extract had no activity against S. aureus. On the other hand, the petroleum ether and dichloromethane extracts displayed potent activity against P. aeruginosa with inhibition zones of 19 and 22 mm, respectively, while the methanol and ethyl acetate extracts showed moderate activity with similar inhibition zones of 18 mm. In contrast, both the n-butanol and water extracts showed no activity against P. aeruginosa	[68]
2) Antifungal effec	ets:	идины 1 . алгидниоза.	
Chorisia crispiflora (Leaves)	<i>n</i> -Hexane, ethyl acetate, <i>n</i> -butanol and methanol extracts.	They displayed antifungal activities at 3000 µg/ml against three plant pathogenic fungi: <i>Alternaria solani, Botrytis</i> and <i>Fusarium oxysporum</i> , of which the latter was the least responsive to various extracts.	[11]
Ceiba pentandra	Alcohol and water extracts.	Compared to ketoconazole (1 mg/ml), the extracts reduced the growth of <i>Epidermophyton flocosum</i> , <i>Microsporum canis</i> , <i>Trichopyton rubrum</i> and <i>Candida albicans</i> utilizing disc diffusion and agar	[91]

Plant name (Plant part)	Extract, fraction or compound	Bioactivity	References
		dilution procedures. Both extracts had minimum inhibitory concentrations between 50 and 100 mg/ml, with the alcoholic extract had higher potency	
<i>Ceiba pentandra</i> (Stem bark)	Aqueous and ethanol extracts.	They had inhibitory effects on <i>C. albicans</i> and <i>Aspergillus flavus</i> , with the ethanol extract having the most efficacy. The minimum fungicidal concentrations varied from 50 to 100 mg/ml.	[86]
Chorisia speciosa (Leaves)	<i>n</i> -Hexane, chloroform and methanol extracts.	All extracts showed moderate antifungal activity against <i>C. albicans</i> with inhibition zones of 8, 10 and 9 mm, respectively.	[60]
Ceiba speciosa (Leaves)	Petroleum ether, dicholoromethane, <i>n</i> - butanol, ethyl acetate, methanol and water extracts.	Only the petroleum ether, dicholoromethane and methanol extracts showed potent activity against <i>C.</i> <i>albicans</i> , with inhibition zones of 20, 19 and 21 mm, respectively. The dichloromethane extract showed higher activity with an inhibition zone of 21 mm, while the methanol, petroleum ether and water extracts showed moderate activity with inhibition zones of 15, 18, and 15 mm, respectively. On the other hand, both the ethyl acetate and <i>n</i> -butanol extracts had moderate activities against <i>A. niger</i> with inhibition zones of 14 and 13 mm, respectively.	[68]
3) Antiparasitic ef	fects:		
Ceiba pentandra	90% Ethanol extract.	It revealed potential anthelmintic activity in the larvicidal test against <i>Haemonchus contortus</i> .	[77, 92]
<i>Ceiba pentandra</i> L. (Stem bark)	Aqueous extract.	It was reported to reduce the parasitaemia of trypanosomiasis-infected mice at 150 mg/kg body weight (p.o., 2 times daily for 3 days). It also demonstrated an IC ₅₀ value of 10 μ g/ml in the low inoculation long incubation test against <i>Trypanosoma prucei</i> STIB 345	[93]
K) Other activitie	s and pharmaceutical uses:		
<i>Ceiba pentandra</i> L. (Leaves)	Di- <i>n</i> -octyl phthalate	It was reported to have anti-venom effects against <i>Echis ocellatus</i> . It showed dose-dependent inhibitory effects against phospholipase A2 of the venom	[45]
<i>Ceiba pentandra</i> (Aerial parts)	Cinchonain Ia	It exhibited 91% inhibition of $A\beta$ aggregation, which was higher than that of the standard agent, curcumin (70%), indicating its probable development as an anti-Alzheimer's agent	[33]
L) Toxicological s	tudies:	a coopinion as an ann i marcaner s'agonn	
Chorisia insignis (Leaves)	Petroleum ether, diethyl ether, chloroform, ethyl acetate, n-butanol, 70% ethanol and aqueous extracts.	They exhibited LD ₅₀ values of 6.3, 6.7, 5.4, 7.1, 6.5, 7.8 and 7.5 g/kg in male albino mice, respectively, revealing the low toxicity of this species.	[20]
Ceiba pentandra (Stem bark)	Methanol extract.	The LD50 was shown to be higher than 5000 mg/kg in mice.	[82, 84]
Ceiba pentandra (Stem bark)	Aqueous extract.	Up to 3200 mg/kg p.o., it was well tolerated by rats and no mortality was noted.	[81]
Ceiba pentandra (Seeds)	Petroleum ether and ethanol extracts.	Even at 2000 mg/kg p.o., they showed no acute toxic symptoms or death in female Wistar albino rats.	[59]
Ceiba pentandra (Leaves)	40% Methanol extract.	The per-oral LD50 in adult albino mice was determined to be greater than 5000 mg/kg. AST, ALT and ALP concentrations were significantly elevated, whereas creatinine and total protein levels was decreased	[94]
Ceiba pentandra (Roots)	Methanol extract.	It was evaluated using adult Wistar albino rats and no signs of toxicity were demonstrated after oral administration of the extract at 50, 500, 1000 and 2000 mg/kg. The subacute toxicity was also studied by daily oral doses of 100, 400 and 750 mg/kg for 28 days and the results revealed no abnormalities in treated groups compared to the controls.	[95]

Plant name (Plant part)	Extract, fraction or compound	Bioactivity	References
Chorisia speciosa (Leaves, stem and fruits)	<i>n</i> -Hexane, chloroform, ethyl acetate, <i>n</i> -butanol fractions and total ethanolic extract.	The <i>n</i> -hexane, chloroform, ethyl acetate, <i>n</i> -butanol fractions and the total ethanolic extract of the leaves, stems and fruits had i.p. LD_{50} values of 1.75, 1.75, 2.75, 1.75, 2.25, 1.25, 1.75, 0.95, 1.25, 1.75 and 2.75 g/kg, respectively.	[17]
<i>Ceiba pentandra</i> (Aerial parts)	Methanol extract and its ethyl acetate fraction.	The total methanolic extract and its ethyl acetate fraction were shown to be safe when administered orally to rats at doses up to 5 g/kg body weight. Such safety was also substantiated by biochemical, molecular, and histological evidence.	[34]

4. Conclusion and future perspective

Literature data survey on plants of the genus Chorisia highlighted them as prolific natural sources of several metabolites, especially phenolics, with varied biological properties. While some species have been phytochemically and biologically investigated, e.g., C. crispiflora, C. chodatti, C. insignis, C. speciosa, and C. pentandra, many others still remain untouched; a fact that emphasizes the necessity for further detailed investigation of different Chorisia species in future in order to complement our phytopharmacological and chemotaxonomic knowledge on these plants. Future research studies should also be focused on exploring the molecular mechanisms of the reported biological effects of Chorisia plants and their bioactive phytocompounds in an effort to set a basis for their traditional medical uses and to expand their possible phytotherapeutic and pharmaceutical applications.

References

[1] Joly AB. Botany: An Introduction to Plant Taxonomy. 10th ed. National Publishing Company, São Paulo 1991;462.

[2] Benson L. Plant Classification. Oxford and IBH Publishing Co., New Delhi, MUM 1970;793–797.

[3] Perez-Arbelaez E. Plantas utiles de Colômbia. 3rd ed. Camacho Roldan, Bogotá 1956:226.

[4] Huxley A. Dictionary of Gardening: The New Royal Horticultural Society. The Macmillan Press Limited, London, the Stockton Press, New York 1992.

[5] Ravenna P. On the identity, validity and actual placement in Ceiba of several Chorisia species (Bombacaceae) and description of two new South American species. Oniro 1998;3(15):42–51.

[6] Bailey LH. Hortus Third: A Concise Dictionary of Plants Cultivated in the United States and Canada. Staff of the L.H. Bailey Hortorium. Cornell University 1976.

[7] Adjanohoun EJ. Contribution aux etudes ethnobotaniques et floristiques en Republique Populaire du Congo. Agence de Coopération Culturelle et Technique, Paris 1988;605.

[8] Refaat J, Samy MN, Desoukey SY, Ramadan MA, Sugimoto M, Matsunami K, Kamel MS. Chemical constituents from Chorisia chodatii flowers and their biological activities. Medicinal Chemistry Research 2015;24(7):2939–49.

[9] Gomaa MEA. Bioassay-guided identification of active antitumor phytochemical compounds from Ceiba pentandra (L.) Gaertn, Family Bombacaceae. A PhD thesis submitted to Al-Azhar University (Assiut Branch), 2019.

[10] Noreen Y, El-Seedi H, Perera P, Bohlin L. Two new isoflavones from Ceiba pentandra and their effect on cyclooxygenase-catalyzed prostaglandin biosynthesis. Journal of Natural Products 1998;61(1):8–12.

[11] Hassan AA. Phytochemical and biological investigation of certain plants containing pigments. A PhD thesis submitted to Mansoura University, 2009.

[12] Abdel-Latief RR. Phytochemical and biological studies of Chorisia crispiflora, Suaeda maritima and Brachiaria reptans. A PhD thesis submitted to Cairo University, 2010.

[13] Ashmawy AM, Azab SS, Eldahshan OA. Effects of Chorisia crispiflora ethyl acetate extract on P21 and NF-κB in breast cancer cells. Journal of American Science 2012;8(8):965–972.

[14] Mikhael JRF. Phytochemical and biological studies of Chorisia chodatii Hassl. and Chorisia speciosa. St.-Hil. Family Bombacaceae cultivated in Egypt. A PhD thesis submitted to Minia University, 2014. [15] Samy MN, Fahim JR, Sugimoto S, Otsuka H, Matsunami K, Kamel MS. Chodatiionosides A and B: two new megastigmane glycosides from Chorisia chodatii leaves. *Journal of Natural Medicines* 2017;71:321–328.

[16] Coussio JD. Isolation of rhoifolin from Chorisia species (Bombacaceae). Experientia 1964;20(10):562.

[17] Abdelmalek EMN. Pharmacognostical study of Chorisia speciosa A. St. Hill.cultivated in Egypt. A PhD thesis submitted to Assiut University, 2016.

[18] Nasr EM, Assaf MH, Darwish FM, Ramadan MA. Phytochemical and biological study of Chorisia speciosa A. St. Hil. cultivated in Egypt. *International Journal of Pharmacognosy* and *Phytochemical* Research 2018;7(1):649–656.

[19] Hafez SS, Abdel-Ghani AE, El-Shazly AM. Pharmacognostical and antibacterial studies of Chorisia speciosa St. Hill. flower (Bombacaeae) 2003;19(1):40–43.

[20] El-Alfy TS, El-Sawi SA, Sleem A, Moawad DM. Investigation of flavonoidal content and biological activities of Chorisia insignis HBK. leaves. *Australian Journal* of *Basic* and *Applied Sciences* 2010;4(6):1334–1348.

[21] Sultana S, Ali M, Rais I, Mir SR. Isolation of apigenin derivatives from the leaves of Chorisia speciosa, Cordia dichotoma, Mentha piperita and roots of Pluchea lanceolata. Tropical Journal of Natural Product Research 2017;1(6):244–250.

[22] El-Sawi SA, Moawad DM, El Alfy TS. Activity of Chorisia insignis HBK. against larynx carcinoma and chemical investigation of its polar extracts. *Journal of Applied Sciences Research* 2012;8(11):5564–5571.

[23] Aderogba MA, Kapche GD, Mabusela WT. Isolation and characterization of antioxidative constituents of Ceiba pentanda (kapok) leaves extract. Nigerian Journal of Natural Products and Medicine 2013;17(1):86–90.

[24] Ueda H, Kaneda N, Kawanishi K, Alves SM, Moriyasu M A new isoflavone glycoside from Ceiba pentandra (L.) Gaertner. *Chemical and Pharmaceutical Bulletin* 2002;50(3):403–404.

[25] Ngounoua FN, Melia AL, Lontsia D, Sondengama BL, Rahman AU, Choudharyb MI, Malik S, Akhtar F. New isoflavones from Ceiba pentandra. Phytochemistry 2000;54(1):107–110.

[26] Fofié CK, Nguelefack-Mbuyo EP, Tsabang N, Kamanyi A, Nguelefack TB. Hypoglycemic properties of the aqueous extract from the stem bark of Ceiba pentandra in dexamethasone-induced insulin-resistant rats. Journal of Evidence-Based Complementary and Alternative Medicine 2018;2018.

[27] Nguelefack TB, Fofie CK, Nguelefack-Mbuyo EB, Wuyt AK. Multimodal α -glucosidase and α -amylase inhibition and antioxidant effect of the aqueous and methanol extracts from the trunk bark of Ceiba pentandra. *BioMed Research International* 2020;13.

[28] El Sawi SAM, Hanafy DMMM, El Alfy TSMA. Composition of the nonpolar extracts and antimicrobial activity of Chorisia insignis HBK. leaves. *Asian Pacific Journal* of *Tropical* Medicine 2014;4(6):473–479.

[29] Bravo JA, Lavaud C, Bourdy G, Giménez A, Sauvaine M. First bioguided phytochemical approach to Cavanillesia Aff. hylogeiton. Revista Boliviana de Química 2002;19(1):18–24.

[30] Malheiros CKC, Silva JSB, Hofmann TC, Messina TM, Manfredini V, Piccoli JDCE, Faoro D, Oliveira LFS, Machado MM, Farias FM. Preliminary in vitro assessment of the potential toxicity and antioxidant activity of Ceiba speciosa (A. St.-Hill) Ravenna (Paineira). *Brazilian Journal of Pharmaceutical Sciences* 2017;53(2):12.

[31] Franco BM, Jiménez-Estrada M, Hernández-Hernández AB, Hernández LB, Rosas-López R, Durán A, Rodríguez-Monroy MA, Canales-Martínez M. Antimicrobial activity of the fiber produced by "POCHOTE" Ceiba aesculifolia subsp. parvifolia. *African Journal of Traditional, Complementary and Alternative Medicines* 2016;13(3):44–53.

[32] Abouelela ME, Orabi MAA, Abdelhamid RA, Abdelkader MS, Madkor HR, Darwish FMM, Hatano T, Elsadek BEM. Ethyl acetate extract of Ceiba pentandra (L.) Gaertn. reduces methotrexate-induced renal damage in rats via

antioxidant, anti-inflammatory and antiapoptotic actions. Journal of Traditional Chinese Medicine 2019;10(5):478–486.

[33] Abouelela ME, Orabi MAA, Abdelhamid RA, Abdelkader MSA, Darwish FMM,Hotsumi M, Konno H. Anti-Alzheimer's flavanolignans from Ceiba pentandra aerial parts. Fitoterapia 2020;143:104541.

[34] Gomaa MEA. Pharmacognostical study of Ceiba pentandra (L.) Gaertn. var. Pentandra, Family Bombacaceae cultivated in Egypt. A M.Sc. thesis submitted to Al-Azhar University (Assiut Branch), 2016.

[35] Scogin R. Reproductive phytochemistry of Bombacaceae: Floral anthocyanins and nectar constituents. Aliso 1986;11:377–385.

[36] Kishore PH, Reddy M, Gunasekar D, Cristelle C, Bernard B. A new naphthoquinone from Ceiba pentandra. *Journal* of *Asian* Natural *Products Research* 2003;5(3):227–230.

[37] Rao KV, Sreeramulu K, Gunasckar K. Two new sesquiterpene lactones from Ceiba pentandra. *Journal of Natural Products* 1993;56(12):2041–2045.

[38] Abouelela ME, Orabi MAA, Abdelhamid RA, Abdelkader MSA, Darwish FMM. Chemical and cytotoxic investigation of non-polar extract from Ceiba Pentandra (L.) Gaertn.: A study supported by computer-based screening. *Journal of Applied Pharmaceutical Science* 2018;8(07):057–064.

[39] Anwar F, Rashid U, Shahid SA, Nadeem M. Physicochemical and antioxidant characteristics of kapok (Ceiba pentandra Gaertn.) seed oil. Journal of the American Oil Chemists' Society 2014;91:1047–1054.

[40] Gross et al., 1983. Through Hassan AA. Phytochemical and biological investigation of certain plants containing pigments. A PhD thesis submitted to Mansoura University, 2009.

[41] Azab SS, Ashmawy AM, Eldahshan OA. Phytochemical investigation and molecular profiling by P21 and NF-κB of Chorisia crispiflora hexane extract in human breast cancer cells in vitro. *British Journal* of *Pharmaceutical Research* 2013;3(1):78–89.

[42] Saleh NA, El-Sherbeiny AE, El-Sissi HI. Local plants as potential sources of tannins in Egypt, Part. IV, Aceraceae to Flacourtiaceae. Qual Plant Mater Veg XVII 1969;4:384–394.

[43] Matsuda M, Endo Y, Fushiya S, Endo T, Nozoe S. Cytotoxic 6-substituted 5,6-dihydro-2H-pyran-2-ones from a Brazilian medicinal plant, Chorisia crispiflora. Heterocycles 1994;38(6):1229–1232.

[44] Guokai W, Binbin L, Xinxin L, Yajun S, Minjian Q. Phonemic constituents from the leaves of Bombax malabaricum. Natural *Product Research* and *Development* 2012;24(3):336–338.

[45] Ibrahim S, Nok JA, Abubakar MS, Sarkiyayi S. Efficacy of di-n-octyl phthalate anti venom isolated from Ceiba pentandra leaves extract in neutralization of Echis ocellatus venom. *Research Journal of Applied Sciences, Engineering* and *Technology* 2012;4(15):2382–2387.

[46] Rosselli S, Rosa S, Bruno M, Leporini M, Falco T, Candela RG, Badalamenti N, Loizzo MR. Ceiba speciosa (A. St.-Hil.) seeds oil: Fatty acids profiling by GC-MS and NMR and bioactivity. Molecules 2020;25(5):1037.

[47] Cattaneo et al., 1946. Through Hassan AA. Phytochemical and biological investigation of certain plants containing pigments. A PhD thesis submitted to Mansoura University, 2009.

[48] Bohannon MB and Kleiman R. Cyclopropene fatty acids of selected seed oils from Bombacaceae, Malvaceae and Sterculiaceae. Lipids 1978;13(4):270–273.

[49] Petronici C, Bazan E, Panno M, Averna V. Compozicione acidica e struttura gliceridica dell'olio dei semi di Chorisia speciosa St. Hil. Rivista Italiana delle Sostanze Grasse 1974;51:11–15.

[50] Nolasco et al., 1983. Through Hassan AA. Phytochemical and biological investigation of certain plants containing pigments. A PhD thesis submitted to Mansoura University, 2009.

[51] Kaimal TN and Gollamudi L. Changes in lipids of maturing Ceiba pentandra seeds. Phytochemistry. 1972;11(5):1617–1622.

[52] Beleski-Carneiro E, Ganter JL, Reicher F. Structural aspects of the exudate from the fruit of Chorisia speciosa St.-Hil. *International Journal* of *Biological Macromolecules* 1999;26:219–224.

[53] Di Fabio JL, Dutton GG, Moyna P. The structure of Chorisia speciosa gum. Carbohydrate Research 1982;99:41–50.

[54] Beleski-Carneiro E, Suguia JA, Reicher F. Structural and biological features of a hydrogel from seed coats of Chorisia speciosa. Phytochemistry 2002;61:157–163.

[55] Beleski-Carneiro E, Sierakowski, MR, Ganter JL, Zawadzki-Baggio SF, Reichera F. Polysaccharides from Chorisia speciosa St. Hil. *Biotechnology* Progress 1996;14:549–559.

[56] Raju TS, Gowda DC, Anjaneyalu VY. Structural features of alkali-soluble acidic xylans isolated from the bark of Ceiba pentandra var. indica. *Carbohydrate* Research 1989;191(2):331–341.

[57] Caffini NO, Lufrano NS. Mucílagos de Malvales. I- Análisis fitoquímico del mucílago de hojas de Chorisia speciosa St.Hil. (Bombacaceae). Rev Farm 1978;120:75–80.

[58] Refaat J, Desoukey SY, Ramadan MA, Kamel MS, Han J, Isoda H. Comparative polyphenol contents, free radical scavenging properties and effects on adipogenesis of Chorisia chodatii and Chorisia speciosa. Journal of Herbal Medicine 2015;5:193–207.

[59] Algawadi KR, Shah AS. Anti-inflammatory activity of Ceiba pentandra L. seed extracts. Cell and Tissue Research 2011;11(2):2781–2784.

[60] Khan A, Asadsaeed M, Chaudhary MA, Ahmad Q, Ansari F. Antimicrobial, anti-inflammatory and antipyretic activity of Chorisia speciosa leaves (Bombacaceae). International Journal of Biology, Pharmacy and Allied Sciences 2015; 4(12): 6826–6838.

[61] Anosike CA, Okagu IU, Amaechi KC, Nweke V. In vivo anti-inflammatory and analgesic potentials of methanol extract of Ceiba pentandra stem bark. Pharmacologyonline 2016;3:81–89.

[62] Dörr JÄ, Majolo F, Bortoluzzi LD, de Vargas EZ, Silva J, Pasini M, Stoll S, da Rosa RL, Figueira MM, Fronza M, Beys-da-Silva WO, Martins A, Gaspar H, Pedrosa R, Laufer S, Goettert MI. Antiulcerogenic Potential of the Ethanolic Extract of Ceiba speciosa (A. St.-Hil.) Ravenna Evaluated by in vitro and in vivo Studies. International Journal of Molecular Sciences 2022;23.

[63] Bothon FTD, Debiton E, Yedomonhan H, Avlessi F, Teulade J-C, Sohounhlou DCK. α -Glucosidase inhibition, antioxidant and cytotoxicity activities of semi-ethanolic extracts of Bridellia ferruginea benth. and Ceiba pentandra L. Gaerth from Benin. Research Journal of Chemical Sciences 2012;2(12):31–36.

[64] Divya N, Nagamani JE, Prabhu S. Antioxidant and antihemolytic activities of Bombax ceiba pentandra spike and fruit extracts. International Journal of Pharmacy and Pharmaceutical Sciences 2012;4(Suppl. 5):311–315.

[65] Kiran CR, Madhavi Y, Rao TR. Evaluation of phytochemicals and antioxidant activities of Ceiba pentandra (Kapok) seed oil. Journal of Bioanalysis and Biomedicine 2012;4(4):68–73.

[66] Mohan A, Sagar S, Priya B, Bhagyashri T. Phytochemical screening, flavonoid content, and antioxidant activity of ethanolic extract of Ceiba pentandra. International Research Journal of Pharmacy 2013;4(2):108–110.

[67] Fofié CK, Wansi SL, Nguelefack-Mbuyo EP, Atsamo AD, Watcho P, Kamanyi A, Nolé T, Nguelefack TB. In vitro anti-hyperglycemic and antioxidant properties of extracts from the stem bark of Ceiba pentandra. Journal of Complementary and Integrative Medicine 2014;11:185–193.

[68] Abdel-Aziz AA, Elwan NM, Abdallah MA, Shaaban R, Osman NN, Mohamed MA. High-performance liquid chromatography-fingerprint analyses, in vitro cytotoxicity, antimicrobial and antioxidant activities of the extracts of Ceiba speciosa growing in Egypt. Egyptian Journal of Chemistry 2021;64(4), 1831–1843.

[69] Bairwa NK, Sethiya K, Mishra SH. Protective effect of stem bark of Ceiba pentandra Linn. against paracetamol-induced hepatotoxicity in rats. Pharmacognosy Reviews 2011;2:26–30.

[70] Gandhare B, Kavimani S, Rajkapoor B. Protective effect of Ceiba pentandra on thioacetamide- induced hepatotoxicity in rats. International Journal of Biological and Pharmaceutical Research 2012;3(1):23–29.

[71] Patil A, Thakurdesai PA, Pawar S, Soni K. Evaluation of ethanol leaf extract of Ceiba pentandra for anti-obesity and hypolipidemic activity in cafeteria diet (CD) treated Wistar albino rats. International Journal of Pharmaceutical Sciences and Research 2012;3(8):2664–2668.

[72] Eldahshan OA. Rhoifolin; A potent antiproliferative effect on cancer cell lines. British Journal of Pharmaceutical Research 2013;3(1):46–53.

[73] Ladeji O, Omekarah I, Solomon M. Hypoglycemic properties of aqueous bark extract of Ceiba pentandra in streptozotocin-induced diabetic rats. Journal of Ethnopharmacology 2003;84:139–142.

[74] Dzeufiet PD, Tédong L, Asongalem EA, Dimo T, Sokeng SD, Kamtchouing P. Hypoglycaemic effect of methylene chloride/methanol root extract of Ceiba pentandra in normal and diabetic rats. Indian Journal of Pharmacology 2006;38(3):194–197.

[75] Dzeufiet PD, Ohandja DY, Tédong L, Asongalem EA, Dimo T, D Sokeng SD, Kamtchouing P. Antidiabetic effect of Ceiba pentandra extract on streptozotocin-induced non-insulin-dependent diabetic (NIDDM) rats. African Journal of Traditional, Complementary and Alternative Medicines 2007;4(1):47–54.

[76] Rehman SU, Jafri S, Ahmed I, Shakoor A, Hafiz MN, Ahmad BM, Tipu I. Investigation of hypoglycemic effect of Ceiba pentandra root bark extract in normal and alloxan-induced diabetic albino rats. *International Journal for Agro Veterinary and Medical Sciences* 2010;4(3):88–95.

[77] Elumalai A, Mathangi N, Didala A, Kasarla R, Venkatesh Y. A review on Ceiba pentandra and its medicinal features. Asian Journal of Pharmaceutical Technology and Innovation 2012;2(3):83–86.

[78] Aloke C, Nwachukwu N, Idenyi JN, Ugwuja EI, Nwachi EU, Edeogu CO, Ogah O. Hypoglycemic and hypolipidemic effects of feed formulated with Ceiba pentandra leaves in alloxan-induced diabetic rats. Australian Journal of Basic and Applied Sciences 2011;4(9):4473–4477.

[79] Pradeep P, Srinivas S, Bharath P, Soumaya G. The evaluation of antidiabetic mellitus activity of Ceiba pentandra on alloxan induced type-II diabetes in rats. Journal of Pharmaceutical And Biomedical Analysis 2012;1(1):14–19.

[80] Fofié CK, Katekhaye SD, Borse SP, Sharma VK, Nivsarkar M, Nguelefack-Mbuyo EP, Kamanyi A, Singh V, Nguelefack TB. Antidiabetic properties of aqueous and methanol extracts from the trunk bark of Ceiba pentandra in type 2 diabetic rat. Journal of Cellular Biochemistry 2019;120:11573–11581. [81] Ibara J, Elion Itou RD, Ouamba JM, Diatewa M, Gbeassor M, Abena AA. Preliminary evaluation of antiulcerogenic activity of Ceiba pentandra Gaertn and Helicrysum mechowianum Klatt in rats. Journal of Medical Sciences Research 2007;7(3):485–488.

[82] Sule MI, Njinga NS, Musa AM, Magaji MG, Abdullahi A. Phytochemical and antidiarrhoeal studies of the stem bark of Ceiba pentandra (Bombacaceae). Nigerian Journal of Pharmaceutical Sciences 2009;8(1):143–148.

[83] Bhushan G, Kavimani S, Rajkapoor B. Antiulcer activity of methanolic extract of Ceiba pentandra Linn. Gaertn. on rats. Journal of Pharmaceutical Research 2011;4(11):4132–4134.

[84] Anosike CA, Ofoegbu RE. Anti-ulcerogenic activity of the methanol extract of Ceiba pentandra stem bark on indomethacin and ethanol-induced ulcers in rats. International Journal of Pharmacy and Pharmaceutical Sciences 2013;3(3):223–228.

[85] Nam NH, Kim HM, Bae KH, Ahn BZ. Inhibitory effects of Vietnamese medicinal plants on tube-like formation of human umbilical venous cells. Phytotherapy Research 2003;17(2):107–111.

[86] Doughari JH, Ioryue AS. Antimicrobial activity of stem bark extracts of Ceiba pentandra. Pharmacologyonline 2009;1:1333–1340.

[87] Peter A. Comparative evaluation of Ceiba pentandra ethanolic leaf extract, stem bark extract and the combination thereof for in vitro bacterial growth inhibition. Journal of Natural Sciences Research 2012;2(5):44–49.

[88] Ezigbo VO, Odinma SC, Duruaku IJ, Onyema CT. Preliminary phytochemical screening and antibacterial activity of stem bark extracts of Ceiba Pentandra. Journal of Applied Chemistry 2013;6(1):42–44.

[89] Gt P. Antibacterial and phytochemical analysis of Ceiba pentandra (L.) seed extracts. Journal of Pharmacognosy and Phytochemistry 2017;6:586–589.

[90] Kausar F, Intisar A, Din MI, Aamir A, Hussain T, Aziz P, Mutahir Z, Fareed S, Samreen B, Sadaqat K. The volatile composition and antibacterial activity of leaves of Chorisia Speciosa. Revista de la Sociedad Química de Mexico 2020;64(4), 339–348.

[91] Nwachukwu IN, Allison LN, Chinakwe EC, Nwadiaro P. Studies on the effects of Cymbopogon citratus, Ceiba pentandra and Loranthus bengwelensis extracts on species of dermatophytes. Journal of American Science 2008;4(4):58-67.

[92] Diehla MS, Atindehoub KK, Betschart B. Prospect for anthelmintic plants in the Ivory Coast using ethnobotanical criteria. Journal of Ethnopharmacology 2011;95(2-3):277-284.

[93] Bizimana N, Tietjen U, Zessin K, Diallo D, Djibril C, Melzig MF, Clausen P. Evaluation of medicinal plants from Mali for their in vitro and in vivo trypanocidal activity. Journal of Ethnopharmacology 2006;103:350-356.

[94] Sarkiyayi S, Ibrahim S, Abubakar MS. Toxicological studies of Ceiba pentandra Linn. African Journal of Biochemistry Research 2009;3(7):279-281.

[95] Gandhare B, Kavimani S, Rajkapoor B. Acute and subacute toxicity study of methanolic extract of Ceiba pentandra (Linn.) Gaertn. on rats. Journal of Scientific Research 2013;5(2):315-324.