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Abstract

The bivariate Exponentaited Weibull distribution is an important
lifetime distribution in survival analysis. In this paper, Farlie-
Gumbel-Morgenstern (FGM) copula and Exponentaited Weibull
marginal distribution are used for creating bivariate distribution
which is called FGM bivariate Exponentaited Weibull (FGMBEW)
distribution. FGMBEW distribution is used for describing bivariate
data that have weak correlation between variables in lifetime data. It
i1s agood alternative to bivariate several lifetime distributions for
modeling real-valued data in application. Some properties of the
FGMBEW distribution are obtained such as product moment,
moment generating function, reliability function and hazard
function. Estimation method for parameters estimation is discussed
for FGMBEW distribution namely maximum likelihood estimation.
A simulations study is conducted to evaluate the performance of the
estimators. Also, a real data set is introduced, analyzed to investigate
the model and useful results are obtained for illustrative purposes.

Keywords Exponentaited Weibull distribution . FGM copula
. Maximum likelihood estimation.
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1 Introduction

The Exponentaited Weibull distribution has been attained
more attention in the literature and has inherent flexibility.
Mudholkar and Srivastava (1993) introduced the
probability density function and the cumulative density
function of univariate Exponentaited Weibull distribution
respectively as

A
x

F(x;a,B,4) = (1—e_(F) > x>0, a,B,A>0, (D

and

x\% -1

Fla B, ) = %A(f)a_le‘(@ (1 ) ) Jx>0, @B A>0, (2)

where B and a , A are the scale and shape parameters respectively.
Suppose that there exist two related failure time variables X; and X,. To
describe them, various bivariate models or distributions have been
proposed in the literature and this is especially the case when X; and X,
represent the times of the two components of a system in a reliability
study. The references for this include Block (1977), Nair and Nair (1988),
Balakrishnan and Basu (1995), Sahu and Dey (2000), Iyer et al. (2002).
Galiani (2003) concluded that bivariate Weibull are specifically oriented
towards applications in economics, finance and risk management. Flores
(2009) wused Weibull marginal to construct bivariate Weibull
distributions. And others such as Hanagal and Ahmadi (2009), Kundu
and Gupta (2009), Regoli (2009), Diawara and Carpenter (2010), and Xie
etal. (2011). Recent researches have been made for the bivariate Weibull
distribution. Kundu and Gupta (2013) introduced the Marshall-Olkin
bivariate Weibull distribution. Almetwally et al. (2020) introduced FGM
Bivariate Weibull Distribution and others.
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A copula is a convenient approach for description of a multivariate
distribution. Nelsen (2006) introduced Copulas as following; copula is
function that join multivariate distribution functions with uniform [0,
1] margins. A copula is a convenient approach to describe
amultivariate distribution with dependence structure. The n-
dimensional copula (C) exists for all xq, x5, ..., X, F(x1, %5, ..., X,) =
C(Fy(xy), Fy(x3), ..., Fy(x,)), if F is continuous, then C is uniquely
defined.

Sklar (1973) states that, considered the two random variables
X, and X,, with distribution functions F;(x;) and F,(x,) the
following cdf and pdf for copula are given respectively as

F(xqy,x,) = C(F1(x1)'F2 (xz))' (3)
and
f(x1,xp) = f1(x1)f2(x2)C(F1(x1)'Fz(xz))- 4)

Farlie-Gumbel-Morgenstern (FGM) is one of the most popular
parametric families of copulas, the family was discussed by Gumbel
(1960). The joint cdf and joint pdf for FGM copula given  as
following respectively

C(x1, %) = F1(x1)F5(x3) (1 + 9(1 - F1(x1))(1 - F (xz)))’ (5)
and

et x) = (1+6(1 -2 ()1 - 2F,(xy))),  -1<6<1 . (6)
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Fredricks and Nelsen (2007) introduced the formula for Spearman’s
and Kendall’s correlation coefficient in case of FGM copula as
follows

Psperman = (12 ﬂ uv(1+6(1—u)(1 - v)dudv)) -3 = g,

ac aC 2
Pkendant = 1 — 4ffac(% v)%C(u, v)dudv = 59,

where
oc
aC(u, v) = v+ 0v — 0v? — 20uv + 20uv?,
oc
%C(u, v) = u + 6u — Ou? — 26uv + 26u?v,
-1 1 -1 1 )
such that 5 = Psperman =3 > 5 = Pkendau =73 the correlation

coefficient measures

the strength and direction of a linear relationship between two variables,
where (-1 < 6 < 1).

In this article, we study the bivariate extension of the
Exponentaited Weibull distribution based on FGM copula function
(FGMBEW) and discuss its statistical properties. FGMBEW
distribution is used for describing bivariate data that have weak
correlation between variables in lifetime data. It is a good alternative
to bivariate several lifetime distributions for modeling non-negative
real-valued data in application.

The objective of this article is to study the properties of the
FGMBEW distribution, and to estimate the parameters of the model.
The attractive feature of the marginal function of FGMBEW
distribution is the same as the basic distribution (Ex Weibull). Other
features of the FGMBEW distribution: it contains closed forms for
its cdf, product moment, moment generation function and hazard rate
function. The final motivation of the article is to develop a guideline
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for introducing the best estimation method for the FGMBEW
distribution, which we think would be of deep interest to statisticians.
A simulation study is conducted to the MLE estimation method.
Also, a real data set is introduced and analyzed to investigate the
model. The uniqueness of this study comes from the fact that we
introduce a comprehensive description of mathematical and
statistical properties of FGMBEW distribution with the hope that
they will attract wider applications in medicine, economics, life
testing and other areas of research.

The rest of this paper is organized as follows: FGM bivariate
Exponentaited Weibull distribution is obtain in section 2. Some
statistical properties of FGMBEW distribution in section 3.
Parameter estimation method for the FGMBEW distribution based
on copula in section 4. In section 5, asymptotic confidence intervals
are discussed. Application of real data are discussed in section 6. In
section 7 the potentiality of the new model is illustrated by simulation
study. Finally, Conclusion of some remarks for FGMBEW model are
addressed in section 8.

2 FGM Bivariate Exponentaited Weibull Distribution

Let X;~ EW(aq,B1,41) and X,~ EW (a,, 2, 4,) , then according to
Sklar theorem the joint pdf of bivariate Exponentaited Weibull
distribution for any copula is defined as follows

-1

f(Xl,XZ) — “‘1;_:1 (;[;_1)011—1 e_()[%) (1 — e_()l;_i) ) %(;{)az—l e_(’l;_;) (1 B
az\ A2-1 x1\*1 xp\ %2 A2

o) ) c ((1 _e (@) ) ,(1 _ e (®) ) ) (7)

and the joint cdf of FGMBEW for any copula is defined as follows

ap\ M x2\%2 Py
F(Xl,XZ) =C ((1 — e_(B_i) ) B (1 — e_(ﬁ) > ) (8)

Then the pdf of a FGMBEW distribution can be given as

M
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-1

f(x1,x5) = M(X_l)al_l e_()l;_i)m1 (1 - e_()[;_i)%) x “2_}‘2("_2)“2_1 e_@_i)az (1 _

B1 \B1 B2 \B2

" frvofa-a(ae )Y (a2 a-e 7))

e_(,é_;)az> X

)
and the cdf of a FGMBEW distribution can be expressed as
x\@1\ xp\02\ A2
FOymalm - @) )ngojz_ﬂ?_ %) ) X 1+9<1—
(1—e‘(ﬁ_1) 3 (1—(1—(3 & ) ) . (10).

We can show the flexability of new distribution by figures with various
value of the parameters especially the copula parameter in figure (1), the
curve would have very light tails. It is not unusual. This does not necessarily
mean that FGMBEW distribution differs significantly from a bivariate normal
distribution. Figure (1) show the plot 3-dimension for the pdf and cdf of
FGMBEW distribution with diferent value of (a4, 81, A1, a2, B2, ;) and 6.

Figure (1) The pdf and cdf of FGMBEW distribution with various
value of the parameters
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3 Properties of FGMBEW Distribution

In this section, we give some important statistical properties of the
FGMBEW distribution such as marginal distributions, product
moments, moment generating function, conditional distribution,
generating random variables, reliability function. Establishing
algebraic expressions to determine some statistical properties of the
FGMBEW distribution can be more efficient than computing them
directly by numerical simulation.

3.1 The Marginal and Conditional Distributions

The marginal density functions for X; and X, can be shown
respectively as,

a Ay (x\@—1 (2 _(x\™
fxaq, B, A1) = ; : <ﬁ—1) e (51) <1 —e (31) ) X1 >0,
1 1
all ﬁl; /11 > Or (11)
and
ar—1 N X0\ 92 Az—-1

f(XZ; (Xz, BZ'AZ) = aéiz (%) ’ e_(ﬁ) (1 - e_(ﬁ) ) 'XZ > 0' (12, BZ'}‘Z

>0, (12)

which are Ex Weibull distributed, where the marginal distribution of
X; and X, can be calculated directly by

fOx) = O, x)dx;; i,j =1,2,0 #j.

allxj

The conditional probability distribution of X, given X; is given as

f(x1,x3)

f(x1)
=v[1+6(1-20)1 -2V)] (13)

fxgy 1xg) =
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Ap—1

_ (X_z)1 B (1 _ e-(’é-i)”)

b2 P2 ey A xoyiz A2
1+9<1—2<1—e_(ﬁ_1) ) )(1—2(1—e_(ﬂ_§> > )] (14)

where f(x;) is the above marginal density functions for X;.

X

The conditional probability distribution of X; given X, is given as

f;x(z:;) = ull+6(1—20)(1 - 2V)] (15)

flxg 1xp) =

ap\ A—1

k1) )" <1 o) )

C BB
1+86 (1 -2 <1 - e'(%)M)M) (1 -2 (1 - e'(%)(n)h)], (16)

X

where f(x,) is the above marginal density functions for X,.
The conditional cdf is

X2
F(XZ |X1) = J‘ f(XZ |X1) dXZ = V(l + 9 - BV - ZOU + ZGUV) (17)
0

= <1 - e‘(%)%)Az 1+0-0 <1 - e‘(%)h)Az —-20 (1 - e‘(;_i)M)M + 20 <1 -
Y (1_e—<z—;>‘“>“] , (18)

where v = f,(x;), u = fi(x;), U =Fy(x1), V = F,(xy).
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3.2 Moment Generating and Product Moment Functions

Let (X;, X,) denote abivariate random variable with the probability
density function of FGMBEW. Then, the moment generating

function of (X;, X,) is given by

M(xl,xz)(tl, tz) = E(etlxletzxz)
:f J elt1x1pt2X2 f(x1,xz)dx1dx2 (19)
0 “o

ny A1-1 k
Z 02,11_1 (t1) 1( 7)1( 1) (1+1) y
aq

niBy (k411

41
m!B,(k+1)%2

20512, (72) - 20 xi, (1) + 40 2z, 202 (1) ()]

If the random variable (X, X,) is distributed as FGMBEW, then its
" and s” moments around zero can be expressed as follows

(t2)™2 -1k
s _ it 2 () (ﬂ+1) x[1+9—
az

rs =OOE(O§{XZS)

= j f x1x3 f(xy, x2)dx,dx; (20)
o Jo
A Ao
= yhi-l A et (Z+1) | x 2zt 2 et (=+1) [1+
- k=0 r L+1 r aq s i+1 r a;
By (k+1)%1 B2” (k+1)%2

9—20%" (’12)—292 (Al)+492k0 ﬁzo(/}cl)(/}f)]
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Mardia (1970) defined measures of multivariate and bivariate
skewness (SK) and kurtosis (KU), and we used this measures to
introduced table (1) respectively as

SK =0 —-p*)3yde +v5s + 30+ 2pH) (¥ioevs1) —
2P3V30V03 + 6p{(V30(PV21 — V12) + Y03 (V21 — V12) —

(2 4+ P71, (21)
+ Vo4 + 2y, + 4 — Y13 —
KU = Y40 T Yoa V22 P(PY22 — V13 — V31) (22)
(1 - p?)?
Table (1) Covariance, skewness, and kurtosis of FGMBEW
distribution
7] Cov P SK KU
1 0.7207 0.3003 1.3523 29.5719
0.8 0.5545 0.2340 1.3644 21.8483
0.6 0.3884 0.1728 1.3664 20.4443
0.4 0.2232 0.1225 1.3640 19.4227
0.2 0.1552 0.0512 1.3622 14.4085
0 0.0000 0.0000 1.3609 9.4224
-0.2 -0.1552 -0.0512 1.3625 4.5549
-0.4 -0.2232 -0.1225 1.3673 -0.6369
-0.6 -0.3884 -0.1728 1.3752 -6.2269
-0.8 -0.5545 -0.2340 1.3848 -12.727
-1 -0.7207 -0.3003 1.4027 -20.457

Where (al = 0.6, ﬁl = 0.5, /’11 = 0.4‘, a, = 0.5, ﬁz = 0.7, AZ = 0.3)
the strength and direction of a linear relationship between two variables,
where (-1 <0 < 1).
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34 Reliability Function

Osmetti and Chiodini (2011) discussed that the reliability function is
more convenient to express a joint survival function as a copula of its
marginal survival functions, where X; and X, be random variable with
survival functions  Fg, y and F, y as following.

The reliability function of the marginal distributions is defined as
N\ A1

NENN
R(X']'; a],ﬁ],ﬂ.]) =1- F(Xj; a],ﬁ],lj) =1—-|1-e¢ <BJ> (23)

The expression of the joint survival function for copula is given
as follow

R(xy,x;) = C(R(x1);R(x2)) =1—F(xy) — F(xp) + F(x1,x;)
= R(x;) + R(x;) — 1+ C(F(xy), F(x5)).

Then the reliability function of FGMBEW distribution is
a1\ M az\ Az
_(*\™? _(*2\™?
21\ %1 Al x5\ X2 AZ
(1—e‘(ﬁ_i) ) (1—e‘(ﬁ_§) ) x 1+9<1—<1—
x4\ %1 Al x5\ %2 /12
e () ) )(1 — (1 _e @) ) ) :

The first one uses the bivariate failure rate function defined in Basu
(1971) by

24)
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f (x1; xz)

h(xli xz) - R (x1; xz)
for all (x;,x,) such that R(x;,x,) > 0. Puri and Rubin (1974)
characterized a mixture of exponential distributions by h(xy,x,) =
¢ for x; > 0and x, > 0. However, in general, h does not necessarily
determine R. This fact was noted by Yang and Nachlas (2001) and
Finkelstien and Esaulova (2005). The second option is to use the hazard
gradient defined in Johnson and Kotz (1975) by

h(xy,x;) = (h1(x1»x2)» hz(xpxz))
where
0
hi(xq, %) = —=—InR(xy, x,)

axi
fori = 1,2 (x;,x;) such that R(x;,x,) > 0.

Then the hazard rate function of FGMBEW distribution is

h(xpxz)

fiGx)fa(x2) [1 +6 (1 —2 (1 _ e—(%ﬁ—)a‘)a‘) (1 ., (1 B e_(i%)a:)ﬁ-:)]

Az

A

L (1 G") = (1= 67) 1 (-G

(:- (ﬂ)

(25)

Figure (2) show the plot 3-dimension of hazared
function of FGMBEW distribution with different
value of (ay, By, A1, @3, Bo, A,) and 6
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4 Maximum Likelihood Estimation (MLE)
Elaal and Jarwan (2017), discussed the maximum likelihood
estimator to estimate all model parameters jointly, it is a one-step
parametric method. Therefore, the log-likelihood is given as
Inl
n

_ Z[ln(fl(xu)fz (20) ¢ (Fy (15, 8, Fy (2, 85): 6)) | (26)

=1

The parameter estimates are obtained by maximizing the log-
likelihood function with expect to each parameter separately.

The likelihood function of a FGMBEW distribution is defined as

L(xq,x, 10)
n

= 1_[ f(x1,x2)
i=1
-5 TIG™ G (8 6)

=1
n A1—1 ).2—1

(- ) " (1o )
(((—)))(((—)))l

WheTe 0 = (al; Bll }\11 oo, BZJ )\21 e)

<[

i=1

Then let
a(xj; a;, B 4;)

then the likelihood function can be written as
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L(xy,x, 10) = (%)n i[ <(%)a1_1 (%)aﬂ) (e—(%fle—(z—z)”)

(1 - e-(%)a2>

X 1_[[1 + H(a(xl; al,ﬁl./ll))(a(xz; az,ﬁz.lz))] (27)

n

1(-6)

i=1

and the log-likelihood function of a FGMBEW can be written as

[(x1,x, 10) = InL = n(lna, + Ind; — InB;) + n(lna, + In, —
o) + (@ = DIy In (32) + (@2 — DI, In () -
1 2

a a _(*1\*1
i=1 (%) T (%) A - DI, In <1 ) > +
x2

A-1DX In <1 — e_(E)%) + YL In[1+
H(a(xl; aq, ﬁl-h))(a(xz; sz, Ba. Az))]-

The estimates of all parameters are obtained by diferentiating the

log-likelihood function with respect to each parameter separately, as
following:
0l(x1,x, 109)

day

n —202 (al(xy; az»ﬂz-ﬂz))e_(%)al (ﬁ)al n <ﬁ) (1 B e_(%)lh) |

N Z B B

= [1 + e(a(xlial'ﬂph))(a(xz;0’2;52-12))] ’
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0l(x1,x, 10)
da,

+(/12—1)z - Bzx = 2
= (1_e () )
az RN
n _ZQAZ(G(M ay, B 11))9 (Z) (%) In (ﬁz) (1—e (ﬁ_;) >

)
i=1

[1+ 0(alxy; ay, B, 1)) (alxs; @z, B2 22))]

0l(xq,x, 10)
9B
n

_ o @
TR T ﬁ1; (&)
w o) ()
e \B1
B
— (4 - 1)
'81 Z <1 — e_(ﬁ_l) >
n 202 (a(xy; az,ﬁz./lz))e_(%) 1 (%)al (1 - e_(%) 1)

[1 + G(a(xl; ay, B, /11))(‘1(952} az, Ba- /12))]

1

A1-1

+
i=1

)
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dl(xq,x, 10)
9B

T TR (%)“Z

_(Az—l)giz i _é_; )

n 20,(a(xy; al,ﬁl.ll))e_(z_z) (%)az (1 — e_(%) >
[1 + H(a(xl; a1:ﬁ1'A1))(a(xz; az, P /12))]

+
i=1

0l(x1,x, 10)
o,

a
+Zln(1—e ﬁl )
1\ M

n —20(a(xy; az, f2.13)) <1 — e_(%) > In <1 - e_(%) 1>

[1+60(alrs; s, B1,40)) (a(xz; a2, B2 22))]

+
i=1

)

al(xl X, IE) n
B
6}_2 +zm 1—e Bz

172\ 22 @2
n —204,(a(xy; ay, B1-244)) <1 - e_(m) ) In <1 - e_(ﬁ) )
[1 + e(a(xl; “1'131'11))(11(3‘2: az'ﬁz-lz))]

+
i=1

and
al(xl, Xy |@) _ i (a(X1; ayq, ﬁl’ Al))(a(xz; as, 182'/12))
[1 + B(a(xl; 061»31»/11))(‘1(9521 az»ﬁz»/lz))] .
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Where

()" &
a(xj; a;, B 2;) =| 1 —2<1—e b ) j=1,2.

The MLE § = (Ex}, B1, 11,05, By Ay, @) can be obtained by solving
simultaneously the likelihood equations

o =0 =0 0 —0j=12
99 =0 = Vgq, @@ T Tgp =BT Dy =T D) T e

But the equations has to be performed numerically using a
nonlinear optimization algorithm.

5 Asymptotic Confidence Intervals
We propose important method to construct confidence intervals
(CI) for the parameters of FGMBEW distribution, which called
asymptotic confidence interval. The most common method to set
confidence bounds for the parameters is to use the asymptotic
normal distribution of the MLE. In relation to the asymptotic
variance-covariance matrix of the MLEs of the parameters, Fisher
information matrix [(®), where it is composed of the negative
second derivatives of the natural logarithm of the likelihood
function evaluated at
0= (d}, B1, 21,05, By, Az, §). Assuming the regularity condition
are satisfied. The MLEs of the parameters based on the log-
likelihood functions for MLE, we have the second derivatives.
Therefore the asymptotic variance-covariance matrix of the
parameter vector ® can be written as follows
L1 Ly Lz Ls Ls Lie L]+
121 122 123 124- 125 126 127
131 132 133 134 135 136 137
V.COV(0) = =1(0)' = —|lasx Lz laz laa las lie a7
151 152 153 154 155 156 157
161 162 163 164 165 166 167
-171 172 173 174- 175 176 177-

Assuming the regularity condition are satisfied. An approximate
95% two side confidence intervals for parameter © =
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(a1, B1, A1, 02, B2, A2, B) can be constructed based on the
asymptotic normality conditions of the MLE as

(@, B1, 4, @2, B2, 1, 6)
a1 +Z]/\/V11, ﬁ1+Zy1/V2 , i %\/_,

G2 Va,  BatZplVs, ThtZy 6

B
)}

I+

ZyVay

where Zv is the percentile of the standard normal distribution
2

with right tail probability g

6 Application to Real Data Sets

We study the parameter estimation of the appropriate distribution of
data, where the correlation between the two variables (bivariate data) is
low. And through this access to a fit model specialized in the study of
weak relations and the extent of their impact and effectiveness.

A comparison has been done between FGM Bivariate Weibull
(FGMBW), which was discussed by Almetwally et al. (2020), FGM
Bivariate Generalized Exponential (FGMBGE), which was discussed
by Abd Elaal and Jarwan (2017), FGM bivariate Gamma (FGMBG),
which was discussed by Kotz et al. (2004).

6.1 Economic Data

The economic data set, which is reproduced in table (2) consists of 31
yearly time series observations [1980-2010] on response variable:
exports of goods and services (X;) and GDP growth (X,), which was
discussed by Almetwally et al. (2020), The main reasons for selecting
the economic data for the present study may due to the fact that,
economic is an important sector for many developed and developing
countries. Thus, the government is interested in increasing GDP growth
and Exports of goods and services.

To show the usefulness of the proposed bivariate estimators obtained from
section 2 to section 4 with real situations, we considered here the real
economic data to estimate parameters of FGMBEW distribution for the
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GDP growth and exports of goods and services. The data is relevant to the

FGMBEW distribution, since the correlation between data is weak (_?1 : g)

, see table (3) the correlation coefficient and test of correlation for data of
economics. Goodness of fit test of FGM copula is obtain in table (4). We
obtained the proposed estimators for economic data in table (5) the
estimates parameters of FGMBEW distributions. Table (6) show the
Corresponding Stander Erorr and L.CI for FGMBEW distribution using
Economics Data and

table (7) show the variance - covariance matrix of FGMBEW distribution.

Table (2): Economics Data

Years X1 X2 Years X1 X2
1980 30.51 10.01 1996 20.75 4.99
1981 33.37 3.76 1997 18.84 5.49
1982 27.03 9.91 1998 16.21 4.04
1983 25.48 7.40 1999 15.05 6.11
1984 22.35 6.09 2000 16.20 5.37
1985 19.91 6.60 2001 17.48 3.54
1986 15.73 2.65 2002 18.32 237
1987 12.56 2.52 2003 21.80 3.19
1988 17.32 7.93 2004 28.23 4.09
1989 17.89 4.97 2005 30.34 4.48
1990 20.05 5.70 2006 29.95 6.85
1991 27.82 1.08 2007 30.25 7.09
1992 28.40 4.43 2008 33.04 7.16
1992 25.84 2.90 2009 24.96 4.67
1994 22.57 3.97 2010 21.35 5.15
1995 22.55 4.64

Xi: Exports of goods and services (EGS)
(% of GDP) 1980:2010, X>: GDP growth
(% per year) 1980:2010.
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Source: The employed of economics data are collected by World
Bank National Accounts data and OECD National Accounts data
Table (3): The Correlation Coffiecient and Test of Correlation for

Data of Economics

Corr P- value
Pearson's 0.2705 0.1411
Kendall's 0.1397 0.2791
Table (4): Goodness of Fit test of FGM Copula for Economics Data
Statistic o p-value
Anderson 0.5263 0.6271 0.1794
Darling-type

Table (5): The Estimates Parameters of Bivariate Distributions for
Economics Data

FGMBEW | FGMBW | FGMBG | FGMBGE | BMOW
@ 19390 | 4.5225 | 15.7109 | 50.9233 | 2.2795
B, 14971 | 253230 | 14633 | 0.19577 | 24.4983
I 5.8760 - - - -
@ 1.7371 | 2.6953 | 5.6643 | 7.4094 | 23545
B, 41712 | 58395 | 09113 | 05080 | 3.6319
T 2.2701 - - - -
4 0.5950 | 0.6712 | 0.6049 | 0.6338 -
LL | -146.938 | -162.810 | -162.850 | -164.210 | -167.070
AIC | 307.877 | 335.617 | 335703 | 338.418 | 342.133
BIC | 317.915 | 342.789 | 342.869 | 345.589 | 347.680
CAIC | 303.007 | 338.017 | 338.103 | 340.818 | 344.533
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Table (6): The Estimates, the Corresponding Stander Erorr and L.CI
for FGMBEW distribution using Economics Data

Par | Estimates SE L.CI CI

(2] 1.939 0.160 0.628 [1.625,2.254]

B, 14.971 1.062 4.163 [12.890, 17.053]
1 5.876 0.007 0.031 [5.861,5.891]

a, 1.737 0.272 1.068 [1.203,2.271]

B, 4.171 0.229 0.897 [3.723 ,4.620]

A, 2.270 0.472 1.850 [1.345,3.195]

0 0.595 0.501 1.964 [-0.387, 1.577]

Table (7): The variance - covariance matrix of FGMBEW
distribution by MLE for Economics Data

@ 3 & @ Pa A 0

a 0.026 | -0.013 0.083 0.0017 0.011 -0.0056 | -0.011

By -0.013 | -0.074 0.119 -0.0014 0.083 0.0095 | 0.0017

A 0.083 0.119 1.128 -0.032 -0.083 0.079 -0.029

a, 0.0017 | -0.0014 | -0.032 0.052 -0.0086 | -0.056 | 0.0051

B, 0.011 0.083 -0.083 -0.0086 | -0.0061 | 0.0023 | 0.0025

A, -0.0056 [ 0.0095 0.079 -0.056 0.0023 0.223 | -0.0020

0 -0.011 | 0.0017 -0.029 0.0051 0.0025 | -0.0020 | 0.251

Conclusion from tables, in table (4) it is observed that, the economic data is
fit for FGM model, and in table (5) it is observed that, the FGMBEW model
provides a better fit than the other tested models (FGMBW FGMBG
FGMBGE), because it has the smallest value of LL, AIC, BIC, CAIC and
HQIC. Table (6) shown the Estimates, the Corresponding Stander Erorr and
L.CI for FGMBEW distribution using Economics Data and table (7) shown
the variance covariance matrix of FGMBEW distribution by MLE for
Economics Data. The FGMBEW distribution is a good alternative to bivariate
several lifetime distributions for modeling non negative real-valued data in
application.
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5.2 Medical Data

The data for 30 patients set from Mc Gilchrist and Aisbett in (1991). Let (X;)
refers to first recurrence time and (X,) to second recurrence time in table (8).
Abd Elaal and Jarwan (2017), discussed the estimation of the parameters of
bivariate generalized exponential distribution for this data. The correlation
coefficient and test of correlation for medical data are obtained in table (9),
Goodness of fit test of FGM copula for medical data is obtain in table
(10).We obtained the proposed estimators for medical Data in table (11) the
estimates parameters of FGMBEW distributions. Table (12) show the
Corresponding Stander Erorr and L.CI for FGMBEW distribution using
Medical Data. Table (13) show the variance - covariance matrix of
FGMBEW distribution.
Table (8): Medical Data

No. X1 X2 No. X1 X2
1 8 16 16 17 4
2 23 13 17 185 117
3 22 28 18 292 114
4 447 318 19 22 159
5 30 12 20 15 108
6 24 245 21 152 362
7 7 9 22 402 24
8 511 30 23 13 66
9 53 196 24 39 46
10 15 154 25 12 40
11 7 333 26 113 201
12 141 8 27 132 156
13 96 38 28 34 30
14 149 70 29 2 25
15 536 25 30 130 26
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X: refers to the first recurrence time, X»: refers to the second
recurrence time.

Table (9): The Correlation Coefficient and Test of
Correlation for Medical Data

Corr P-value
Pearson's 0.13342 0.4902
Kendall's 0.00495 0.4851

Table (10): Goodness of Fit test of FGM Copula for Medical Data

Statistic

~

0

P-value

Anderson
Darling-type

0.29031

0.46704

0.3936

Table (11): The Estimates Parameters of Bivariate Distributions for

Medical Data
FGMBEW FGMBW FGMBG FGMBGE
o 0.26813 0.75106 0.67780 0.66607
B: 0.83764 100.119 175.526 0.00631
T 6.47635 - - -
a, 0.37933 0.92435 0.92321 0.92584
B, 3.62927 98.2466 107.753 0.00958
7 7.55139 - - -
0 0.27716 0.34801 0.37959 0.3780
LL -327.111 -338.907 -339.492 -339.545
AIC 668.222 687.814 688.984 689.090
BIC 678.031 694.826 695.986 696.106
CAIC 663.131 690.314 691.484 691.590
HQIC 671.266 688.061 689.221 689.870
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Table (12): The Estimates, the Corresponding Stander Erorr and L.CI
for FGMBEW distribution using Medical Data

Par Estimates SE L.CI CI

a; 0.359 0.029 0.115 [0.302,0.417]
B, 7.649 0.700 2.746 [6.276 ,9.021]
N 4.858 0.337 1.322 [4.197 , 5.519]
a, 0.421 1.847 7.238 [-3.198 , 4.040]
B, 9.132 0.035 0.138 [9.063 ,9.201]
1, 5.435 0.989 3.876 [3.497 ,7.372]
] 0.226 0.493 1.934 [-0.741 , 1.193]

Table (13) : The variance - covariance matrix of FGMBEW

distribution by MLE for Medical Data

@ B M @ B> A 4

ay 0.0086 -0.0290 0.0180 0.0020 0.0290 -0.0070 0.0051
B -0.0290 -3.410 1.120 -0.0011 3.631 0.0043 -0.0010
A 0.0180 1.120 0.491 0.00109 -1.103 0.0380 -0.0200
a, 0.0020 -0.0011 0.00109 0.00123 -0.0076 -0.0091 0.0049
B, 0.0290 3.631 -1.103 -0.0076 0.114 0.0024 -0.0028
A, -0.0070 0.0043 0.0380 -0.0091 0.0024 0.977 -0.014
0 0.0051 -0.0010 -0.0200 0.0049 -0.0028 0.014 0.243

Conclusion from table (9), it is observed that, the FGMBEW
model provides a better than the other tested models (FGMBW,
FGMBG, FGMBGE), because it has the smallest value of LL, AIC,
BIC, CAIC and HQIC. The FGMBEW distribution is a good
alternative to bivariate several lifetime distributions for modeling
non negative real-valued data in application.
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6 Simulation Study
In this section; a simulation study is done for estimation method
based on copula which is MLE. For estimating FGMBEW
distribution parameters by Mathcad language.

Simulation Algorithm: the simulation experiments were carried
out based on the following data generated form Exponentiated
Weibull Distributions, where X;, X, are distributed as Exponentiated
Weibull with «;, A; shape parameters and f3; scale parameter, i = 1,2,
the values of the parameters (a4, 81,41, @3, B2, 1) and 6 is chosen
as the following cases for the random variables generating:

Case l: (a¢; = 06,8, = 05,14, =04,a, =0.5,8, =0.7,1, =
0.3and 6 = 0.2)

Case 2: (¢; = 0.6,8, = 05,4, =0.4,a, =0.5,8, =0.7,4, =
0.3 and 6 = 0.5),
for different sample size (n = 50, 100, 160, 200). All computations
are obtained based on the Mathcad language. The simulation method
is performed by calculate in the Bias and MSE as following cases for
the random variables generating:

Bias=0 -0, MSE=E(0—0)="Vvar(d)+ (Bias(@))z,
where 0 = (&], B., 1,5, By, Ay, §)

We restricted the number of repeated-samples to 1000.

On the basis of the results summarized in tables (10,11), some
conclusions can be drawn which are stated as follows: It is observed
that as sample size increases and fixed vector value of ®, the Bias
and MSE of the estimates decreases in the considered method. Also
when the sample size increases and fixed vector value of ® in each
cases, Total MSE of the estimates decreases in the considered
method. In large sample size all of them are nearly equivalent, where
the difference is less and there are no significant differences in Bias
and MSE values for MLE method
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Table (14): Estimation of the Parameters of FGMBEW
Distribution: Case 1

n par Mean Bias MSE SE L.CI
&= 0.6 . . 0.022 0.085 0.333
Fim05 2:272 2:072 0.024 0.112 0.439
- 0.095 0.007 0.005
1= 0.4 0.697 0.297 0.538 0.010 0.040
S0 @=0.5 1.221 0.721 0.407 0.143 0.562
B2=0.7 0.062 -0.638 0.066 0.075 0.293
1,=03 0.548 0.248 0.017 0.377 1.478
5 02 0.198 -0.009 T—0.685
&=0.6 0.020 0.067 0.264
Fim05 3‘226 3‘526 0.086 0.084 0.330
- : : 0.089 0.001 0.003
4= 04 0.685 0.285 0.533 0.006 0.027
100 @;= 0.5 1211 0.711 0.404 0101 0.395
B2=0.7 0.065 -0.635 0.063 0.054 0.210
=03 0.539 0.239 0.015 0.272 1.064
e 02 0.204 0.003 T—0.679
0.017 0.059 0.230
1= 0.6 0.347 -0.253 %.012168 0.071 0.276
Bi=05 0213 0287 0.017 0.030 |  0.001 0.003
o 0.0070.018 | 003 0.016
41=04 0.231 -0.169 T=0.165
160 a;=05 0.401 -0.099 0.073 0.287
Fozon | 0356 | 0344 g‘z"l‘z g;j;
=03 0.221 -0.079
i 0.082 -0.118
8=10.2
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0.012 0.049 0.130
a;=0.6 0.380 0220 0.025 0.061 0.165
B1=0.5 0214 0.286 0.023 0.011 0.0003
1= 0.4 0.253 0.147 0.012 0.003 0.014
200 @=0.5 0.453 -0.047 0.018 0.051 0.276
Foeor | 0356 0344 0.005 0.032 0.155
s 0.246 0.054 T‘}::t)i 4 0.206 0.606
o0 0.081 -0.119 -

Table (15): Estimation of the Parameters of FGMBEW Distribution:

Case 2
n Par Mean Bias MSE SE L.CI
a=0.6 0.019 0.082 0.323
0.676 0.076
Bi=0.5 0.058 0.106 0.414
1= b 0.561 0.061
_ 0.088 0.099 0.037
A4=04 0.659 0.259
0.713 0.056 0.022
50 @,=0.5 1.230 0.730
N 0.462 0.151 0.592
B=07 | 0020 0680 0.126 0.078 0305
_ 0.567 0.267
A;=0.3 0.054 0.731 2.865
- 0.423 -0.077
6=0.5 T=0.867
_ 0.013 0.063 0.248
a1: 0.6
- 0.670 0.070 0.050 0.078 0.414
bi=053 0.628 0.128 0.094 0.040 0.015
A4=0.4 0.683 0.283 0.429 0.033 0.013
100 a;=0.5 1.110 0.610 0.460 0.112 0.582
B, =0.7 0.020 -0.680 0.058 0.058 0.205
—_ 0.500 0.200 0.023 0.538 2.110
1,=023
- 0.474 -0.026 -
5= 0.5 T=0.641
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a;= 0.6 0.003 0.055 0.214
0.282 -0.318
Bi=0.5 0.091 0.068 0.267
= 0.204 -0.296
- 0.046 0.026 0.013
1,=0.4 0.187 -0.213
0.038 0.013 0.050
160 @;=0.5 0.317 -0.183
N 0.122 0.094 0.370
=07 | 0311 039 0.015 0.048 0.199
— 0.181 -0.119
1,=0.3 0.092 0.402 1.575
N 0.203 -0.297
6=0.5 T=0.188
_ 0.001 0.022 0.211
a’1: 06
- 0.319 -0.281 0.081 0.160 0.125
Fi=035 0.221 -0.279 0.036 0.0034 0.013
A=04 0.211 -0.189 0.033 0.0016 0.006
200 a;=0.5 0.336 -0.164 0.122 0.069 0.272
B, =0.7 0.351 -0.349 0.013 0.034 0.189
—~_ 0.189 -0.111 0.081 0.288 0.872
1,=03
0.220 -0.280 =
=05 T=0.174
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Figure (3) show the plot of MSE of FGMBEW distribution
parameters with different sample size(50,100,160,200)

"] Conclusion
In this paper, we have proposed a FGMBEW distribution based on
FGM copula function. Moreover, we have the reliability functions
for FGMBEW distribution; therefore, it can be used quite effectively
in life testing data. Additionally, the new FGMBEW model can be
used as an alternative to any bivariate Weibull distribution; it might
work better, where the marginal function of FGMBEW distribution
has the same basic distribution and has closed forms for product
moment. The MLE estimation method of the FGMBEW distribution
is concluded. Hence, we can argue that MLE are the best performing

estimators for FGMBEW distribution.
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