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Abstract: Over the last decade, several studies have been proposed 

in the field of earthquake early warning (EEW) systems. Deep learning 

can be used to determine the magnitude of earthquakes and predict the 

PGA (peak ground acceleration). Earthquake catalogs are essential for 

studying fault systems, modeling seismic events, assessing seismic 

hazards, predicting them, and eventually decreasing seismic risk. In 

this work, the seismic hazard analysis is given along with the scale of 

ground vibration in terms of peak ground acceleration (PGA), which 

would be crucial for constructing earthquake-resistant structures, i.e., 

the PGA earthquake prediction is crucial. We propose to use artificial 

neural networks (ANN) and convolutional neural networks (CNN) to 

predict the PGA using the waveforms of weak motion velocity 

recorded in Japan. In this study, we use 555 events recorded by 5 

seismic stations (velocity data) where the magnitude (Mg) is larger 

than 3. The selected earthquakes occurred between 2003 and 2022 

recorded by the K-NET, Kiki-NET, and Hi-Net networks. As a result, 

the mean absolute error (MAE) for the test set is 18.23. 

Keywords— peak ground acceleration, earthquake early warning, 

convolutional neural network, artificial neural network. 

I. INTRODUCTION 

   A variety of earthquake early warning systems (EEW) are 

available, and their main function is to alert locals to take action 

before there is significant shaking. EEW systems might be 

useful. Divided into categories based on the kinds of 

information offered as well as the number of sensors employed 

[1]. However, because current regional warning methods rely 

on data from a variety of seismic stations and require some 

computation time to obtain source characteristics, there is 

sometimes little to no lead time before a damaging wave strikes. 

Depending on the concept required for determining an 

earthquake's parameters, the algorithms of EEW systems can be 

classified into onsite and regional warning ones. Basically, 

regional EEW systems demand the collection of P-wave data 

from a variety of seismic network stations nearby the epicenter 

region. They frequently use the waveform amplitudes and P-

wave arrivals of many stations to predict the magnitude and 

epicenters of the earthquake's distance, and they can to 

determine the strength of the ground motion, utilize the ground 

motion prediction equations [2]. 

 

Artificial intelligence techniques have recently been used, 

especially for on-site EEW, to forecast the properties of the 

source of an impending earthquake at the stage of initial seismic 

waves, such as distance, magnitude of the epicenters, and 

seismic intensity PGA and PGV. Several P-wave properties are       

often collected from stations defined in the Fukushima and 

Ibaraki regions of Japan in the prediction model constructed 

using artificial intelligence methodologies for on-site EEW, as 

in Figure 1. Recently, a variety of cutting-edge techniques 

based on deep learning methods have been employed to assess 

the magnitude and amplitude of earthquakes [3]. Many 

researchers have used artificial intelligence techniques, 

particularly for on-site EEW, in order to predict the properties 

of the source of an upcoming earthquake at the stage of early 

seismic waves, including distance, the magnitude of the 

epicenters, and seismic intensity PGA and PGV. 

II. RELATED WORK 

   T.Y. Hsu et al. [4] discussed real-time seismic intensity 

measurement (IM) methods with the goal of examining the 

current state of the field. In the beginning, we examine various 

theories regarding the final earthquake magnitude and rupture 

initiation behavior. Next, we give a brief summary of how the 

IM predictions have developed in relation to regional and field 

warnings. The use of simulated seismic wave fields and finite 

faults in IM forecasts is examined. The approaches for assessing 

IMs are finally reviewed in terms of the accuracy of the IMs 

determined by various algorithms and the price of alerts. 

   Y.  Huang et al.  [5] Using the first three seconds of P-wave 

data gathered from a single location, this study is able to estimate 

the peak ground acceleration (PGA) of the approaching seismic 

waves using CNN. In order to allow CNN to view the input data 

at various scales, the multi-scale input of P-wave data is 

proposed in this study since the amplitude of P-wave data from 

large and minor earthquakes might vary. 

   J. Münchmeyer et al.  [6] directly separate transient signals 

from background signals for 3-component seismograms. This 

work creates a multi-task encoder-decoder network called Wave 

Decoder Net. Given its abundance of transients (tectonic and 

volcanic earthquakes) and diffuse ambient noise (strong 

microseism), we selected the active-volcanic Big Island in 

Hawaii as a natural laboratory. The method independently 

predicts the 3-component earthquake and noise waveforms from 

a noisy 3-component seismogram. 
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 Fig. 1. describes the Fukushima and Ibaraki regions of Japan. 

   D. Jozinović et al.  [7] used long-short-term memory (LSTM) 

neural networks in a deep learning strategy that may generate a 

highly nonlinear neural network and calculate an alert 

probability at each time step. Then, using two significant 

earthquake occurrences and one minor earthquake event that 

recently occurred in Taiwan, the proposed LSTM neural 

network is tested. 

   Ting-Yu Hsu et al.  [8] used machine learning to take many 

parameters into account at once in order to account for site 

impacts using site parameters along with P-wave parameters. 

Different site effect factors are taken into consideration when 

building a variety of ANN models. 

   In their study, R. M.  Allen et al.  [9] outline the seismological 

architecture and show that a short-term hazard warning system 

is feasible. We demonstrate that our Earthquake Alarm System 

(EAS) might, with the HI Net instrumentation in place, send a 

warning a few to tens of seconds before harmful ground motion 

by using data from previous earthquakes. 

   The waveforms of weak motion velocity recorded in Japan 
will be used to train ANN and CNN to predict the PGA. For this 
investigation, we used velocity data from 555 seismic events 
with magnitudes (Mg) greater than 3 that were captured by five 
seismic sites. The K-NET, Kiki-NET, and Hi-Net networks 
captured the earthquakes that were chosen between 2003 and 
2022. The test set's (MAE) as a result is 18.23. 

III.    EARTHQUAKE DATA 

The fukushima, miyagi, and ibaraki regional regions of the 
Japan National Strong Motion Network of Stations (N.IWEH,    

N.DGOH, N.THGH, N.JUOH, and N.YMAH), built and 
managed by NIED, K-NET, and KiK-net, served as the data 
sources for this study [10] [11]. To forecast the PGA of strong 
ground motion in Japan, full-waveform weak motion recodes 
were used. The ground-motion records for K-NET and KiK-net 
have been publicly available since May 1996 and October 1997, 
respectively, on the corresponding websites. To simplify the 
prediction problem, we considered an earthquake as a point 
source in this study and ignored earthquake source finiteness. To 
create the dataset, we first gathered accessible ground-motion 
data recorded by the Hi-Net network, The PGA value was 
obtained from the Strong Motion K-NET and KiK networks, 
which corresponded to the same earthquakes in the Japan 
network.  

   Then, for occurrences that satisfied the following 
requirements, week-motion data were obtained: (1) magnitude 
(Mg > 3), (2) epicenter distance less than 200 km, (3) event 
depth less than 210 km, and (4) ground-motion recordings taken 
from at least five sites as in Figure. 2. The top limit of Mg was 
selected since the effect of source quality in large earthquakes 
(Mg > 3) is predicted to be considerable and the assumption of 
a point source does not hold in extremely large earthquakes. The 
top limit of the event depth was selected to remove deep 
earthquakes from the dataset, which create aberrant intensity 
distributions of ground motion [12][13]. For both models, 85 
percent of the data was used for training and 15 percent for 
testing. We divided the epicenter distance event PGA and 
magnitude. 

 

 

 

 

 

 

Fig. 2. Give an example of an input (Earthquake M = 9).
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Fig. 3 shows the data steps prior to the model stage in block diagram format. 

dataset into training data with samples (555 events) ranging 
from 2010 to 2022 and calculated the common of the 
downloaded data and analyzed it by identifying the epicenters 
detected in the Hite catalogue, leaving a 2 second gap before and 
a 6 second gap after the pick [14] [15]. The data used is multi-
dimensional, with 3 channels, 5 stations, 799 features, and 555 
events getting entered into the model. Data on strong ground 
motion is being collected, employing full-waveform to predict 
the PGA. The data is ready for pre-processing and input into the 
model. Figure 3 depicts the data stages before the Moodle stage. 

IV. METHODOLOGY 

   In this research, deep learning is used to create a prediction 

model with maximum PGA values using two methodologies: 

ANN and CNN.  

A. Artificial Neural Network 

   Supervised deep learning using an ANN was employed to 

determine the maximum earthquake intensity. The full ground 

motion database was divided into two sections: training and 

validation. Because the ground motion database is organized by 

seismic event sequence and data with high PGA is highly 

regulated, two inputs of ground motion data were used for 

training and a modified number of inputs of ground motion data 

for validation. They can employ formulas for predicting ground 

motion to calculate the intensity of the ground motion based on 

the magnitude and epicenter distance of the earthquake. As a 

result, the training and validation data will be modified to 

contain essentially every seismic event, and the quantity of data 

with significant PGA training and validation. We used a four- 

layer, a fully connected, forward-looking neural network as 

shown in Figure 4, to build the regression model between the 

relevant parameters and the PGA. The input layer includes 15 

neurons, five of which are seismic stations, and each station has 

three neurons representing channels. The concealed layer has 

four steps for processing inputs, and the output layer consists of 

five PGA seismic stations. The activation functions of the 

hidden and output layers were exponential, curvilinear, and 

linear, respectively [16]. The earthquake collection is 

represented by each type of input transaction, which is 

represented in five stations to correctly train the regression 

model. Each The hidden neuron and output layers were linked 

to a nerve cell in the layer before them. The values of neurons in 

each layer were transmitted to the following layer through a 

weighting and bias term combination. The following is the 

general formula for each neuron [17]. 

𝑍𝑗 = U ∑(𝑊𝑖𝑗𝑋𝑖 + 𝑏𝑖)

𝑁𝑗

𝐼=1

                                                           (1) 

   Where   is the   neuron's output;  is the    neuron's output in the 

preceding layer, is the weight able to connect the   neuron in the 

preceding layer to the neuron of previous layers; is the neuron's 

bias, 𝑁𝐽is the previous layer's number of neurons; and U(x) is 

the function of activation. The network was trained by 

minimizing the cost function, defined as the mean-square error 

of the logarithmic difference between predicted and measured 

PGAs in Eq. "(1)”. 

𝑒𝑟 =
1

𝑁
∑(𝑦𝑗 − 𝑦𝑗⋀)

2
𝑁

𝐽=1

                                                                (2) 

   Where  and  are the dataset's output and aim, respectively, and 

N is the total number of datasets. All regression models have the 

same cost functions. The Marquardt back propagation 

algorithm, a mix of gradient descent and Newton's method, was 



International journal for Computers and Information, ICCI, Vol. 10 -3, Oct, 2023(Special Issue) 

 

Proceedings of 2nd International Conference on Computers and Information, ICCI 2023                                                               

178 

 

used to educate the network. If the accuracy of the training 

subset increased while the accuracy of the validation subset 

remained constant or declined, the training of the ANN models 

was terminated to avoid undesirable over fitting. Almost 

identical models were trained, each with a unique set of 

randomly generated weights and neuronal biases. The training 

models' comparable best-performing network was then picked 

to forecast the likelihood of avoiding local minimums in Eq. 

"(2)". 

 

   The artificial ANN in this study is a prediction approach used 

to create a mathematical model of an unknown system. [18]. The 

multi-layer perceptron’s' (MLP) most well-known class of is the 

ANN [19], which typically features feed-forward structures. 

MLPs are often taught using the back-propagation process and  

one input and one output layer, as well as at least one hidden 

layer. The network in this study is trained using a basic linear 

least-squares optimization approach known as the Marquardt 

back-propagation algorithm [20]. A regularization approach 

[21] is used in this procedure to reduce over fitting error, which 

refers to models that estimate the trained data too well while 

failing to forecast additional data (e.g., future observations) 

appropriately. 

 

   According to the process proposed by [22], the database of 

ground motion is divided into two subsets: training 85% and 

testing 15% of the database. The bias variables and connection 

weights are computed by the algorithm using the training subset. 

To avoid over fitting, the testing subset assesses the model's 

prediction power for data on which it has not been trained for 

future data. 

 

B. convolutional neural networks 

   CNN are a type of neural network with a strong ability to 

extract features from raw data and have been effectively applied 

to solve numerous real-world issues. Convolution, pooling, 

activation, and levels that are completely interconnected are 

common components of a CNN. The convolution layer collects 

features from input data using various kernels, allowing for the 

extraction of a huge number of features. Users can construct 

specific stride widths during convolution to sweep through the 

given data and generate feature maps with varied weights. The 

pooling layer subsamples the feature maps and removes the most 

important information from them, resulting in a reduction in the 

dimensionality of the feature maps while retaining their critical 

information. Several convolution and pooling layers can be 

placed together to handle increasingly complicated issues as the 

CNN becomes deeper. Lastly, using the flattened feature maps, 

fully connected layers with activation functions are employed to 

perform regressions. 

 

   The PGA, the largest absolute value of the total acceleration 

time history in three components, was anticipated using the 

observed acceleration time in the first 6 seconds after triggering. 

It is worth mentioning that the amplitude variations between big 

and mild earthquakes may be rather large. While training the 

CNN, the amplitude of input data with relatively small values 

may have less influence on the loss function than one with 

greater values. We tried using values of the acceleration time 

selection as the input of the CNN to obtain better regression 

results for data with different amplitudes, for example, 

predicting the PGA more accurately for earthquakes of varying 

intensities [23], but the prediction results were quite poor 

because the time history does not follow the lognormal 

distribution. 

 

   The deep learning model makes use of a CNN built using 

Keras (see Data and Resources). There are five convolutional 

layers in the network, with filters of size 64, and one fully 

connected layer, with VGG19 implemented with filters of size 

64, and one fully connected layer, with VGG19 implemented as 

in Figure 5. It helps in more accurately interpreting the picture 

to produce the best model. For an input array size of (555, 5, 3, 

799), where 5 is the number of stations, N is the number of 

samples (at a sampling rate of 100 samples per second), 555 is 

the feature, 799 is the fetcher, and 3 is the channel, the input to 

the model is a combination of all the waveform representations 

(all 5 stations) for the selected earthquake. [24]. the modified 

linear unit (Relu) activation function was utilised in this work to 

start all waveform data for each earthquake at the instant of the 

event's origin. [25], and the dropout operation was used to 

minimize over-diffing issues [26]. Normalization of waveforms 

(mean removal and amplitude scaling), filtering to extract 

seismic phases, temporal splitting, and windowing are often 

applied to raw seismic traces. The preprocessed data is then used 

for network learning and validation, which is most likely 

preceded by data selection to enable supervised learning [27]. 

The CNN network's output consists of five neurons indicating 

the regression value of five stations and the maximum value of 

the pick-ground acceleration. 

 

V. RESULTS AND DISCUSSION 

   The algorithms ANN and CNN are modified, including five 

PGA output parameters and two input parameters, magnitude 

and hypocentral distance. The trial-and-error approach is used 

to find the best network for the given set of training data. The 

residuals given below are computed using all 555 data points, 

including training and validation. 

 

A. Training and Validation 

 

   The goal of CNN was to predict PGA for earthquakes as 

accurately as possible. Some of the differences among these 

PGA were quite significant. To be more explicit, the PGA of 

huge earthquakes might be over 1,000 times greater than those 

of mild earthquakes. When the principle mean absolute errors 

were used to calculate the CNN's loss, only the PGA of bigger 

earthquakes were predicted with high accuracy since the errors 

of these earthquakes contributed significantly more to huge 

earthquakes, which might be over 1,000 times greater than 

those of mild earthquakes. 
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Fig. 4. ANN architecture was used in this research. 

 

 
 

Fig. 5. The proposed CNN Architecture in this Study. 

   The principle mean absolute errors are used to calculate the 

CNN loss; only the PGA of bigger earthquakes were predicted 

with high accuracy since the errors of these earthquakes 

contributed significantly more to inaccuracies in the root mean 

absolute than the errors of tiny earthquakes. absolute. After the 

processing of the CNN module, the outputs of the module Is 

concatenated in the merge layer of the feature-fusion module. 

The final prediction is generated after a fully connected layer. In 

this work, the principle of MAE was used to calculate the CNN 

loss, represented as Eq. “(3)”. 

   The predicted value PGA of the earthquake, where N is the 

size of training or test samples, and predicted value and actual 

value, respectively [28]. 

 

𝑀𝐴𝐸 =
1

𝑁
∑ |(𝑌𝑖 − 𝑌𝑗⋀)|

𝑁

𝐿=1
                                                        (3) 

 
There are a total of N earthquakes. Each PGA range's T-data in 

Table 2 was selected at some point and divided into training 

(85%) and test (15%) sets. 
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Fig. 6. Training and Validation in CNN 

 

   We used the Adam optimizer to update the CNN parameters: 

learning rate = 0.001, epochs = 100, validation split = 0.1. The 

CNN was updated during the train process by analysis, 

lowering the loss on a batch-by-batch basis with a batch size of 

64. The transformation of feature maps into the output PGA, 

the training procedure was terminated when the loss of the 

validation dataset exceeded the loss of the training dataset for 

five consecutive epochs, as in Figure 6. This measure is present 

in total params: 83,982,149, Trainable parameters: 83,965,765. 

Non-trainable parameters: 16,384. 

 

   The actual dataset on which we train the model (weights and 

biases in the case of a neural network) for the learning model, 

the back-propagation network model [29] is used here, which 

aims at minimizing iteratively the observed target and 

prediction MAE output at the 𝑘𝑡ℎ node of the 𝑝𝑡ℎ  pattern, 

respectively. The total variety of training patterns considered 

here is that at each iteration, the global MAE is minimized by 

adjusting the weights in each layer of the network until reaching 

convergence. This can be represented in the following formula 

[30] .  

 

𝑀𝐴𝐸 =
1

𝑁
∑ (𝑌𝑖 − 𝑌𝑖)

𝑁

𝐼
                                                                (4) 

 
The symbols N is the number of observations in the dataset. Yi 

is the true value, and Yi is the predicted value PGA of the 

earthquake. The learning epoch is defined as each step in the 

learning phase. Here, for the learning phase, the algorithm has 

been used that minimises E and is expressed as: where J is the 

error function E, I is the identity matrix, and marks the iteration 

step value in E. Here, an adaptable learning current is used that 

changes dynamically during the training stage from 0 to 1. We 

increase the learning rate by the factor learning increment if 

performance on the objective declines for an epoch. Otherwise, 

we adjust the learning rate by the factor of learning decline 

when performance increases for an epoch. Otherwise, we adjust 

the learning rate by the factor of learning decline when 

performance increases for an epoch. Throughout all FFBP 

simulations, we use a value of 0.0001 as the performance target. 

After successfully completing the Network’s training phase, 

 
Fig. 7.      Training and Validation in ANN 

 

   A testing dataset 15% of the total data points was used to 

evaluate the trained model performance in Eq. "(4)”. The 

validation set is used to evaluate a particular model, but only on 

a regular basis. This information is used to fine-tune the model 

parameters: optimizer = 'Adam', patience = 20, batch size = 32, 

epochs = 300, and validation split = 0.1. As a result, the model 

encounters this data on occasion but never "learns" from it. The 

validation set results are used to update higher-level hyper 

parameters. As a final result, the validation set has an indirect 

effect on a model. This measure is present. Total params: 

27,318,277, Trainable parameters: 27,310,597, Non-trainable 

parameters: 7,680, Figure 7. 

 

B.   Model performance 

   The current work uses ANN and CNN to try to build an 

attenuation connection. Based on waveform ground motion, 

PGA has been predicted as a function of earthquake magnitude 

and hypocentral distance. Using raw data, multi-station 

waveforms, and a 6-second time window starting at the 

earthquake genesis time, we demonstrated that a CNN model 

can reliably forecast earthquakes at five stations. The proposed 

CNN appears to be capable of accurately forecasting the PGAs 

and predicting separate severe earthquake occurrences. Figure 8 

Learn about the performance of PGA prediction using the CNN 

approach during a typical earthquake of smaller magnitude 

(between 3 and 9). The model has three steps: The first stage 

comprises the data form 5 * 3 * 799, which indicates the number 

of stations, channels, and features inside the waveform, and filter 

64 is applied to the model. In the second stage, the hidden layer 

consists of five stages, and each layer is a convolutional block 

3; a filter of 64 is applied, and flattening is done for the model. 

The dense is divided into 64, 128, 256, 512, and 512 layers, 

epoch 100, and a batch normalize is made for each layer with 

activation to be Relu. Figure 9 shows all stations, and error data 

were used to predict the model. 
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Fig. 8.      CNN predicted model and true PGA data. 

 

Fig. 9.      CNN predicted model in all stations and data. 

   The method used in this work has two input parameters, 

magnitude and hypocentral distance, and one output parameter, 

while the output is peak ground acceleration Figure 10. The try-

and-error approach is used to find the best network for a given 

set of training data. The model was developed as a sequential 

model, and it consists of three major stages: the first stage is an 

input to the model, as data is entered in the form of 3 * 5 * 799; 

the second stage is a hidden layer; and the model was designed 

in four stages, with a dense layer formed in each step. And it will 

be (2048, 1024, 512, and 256) and build a batch normalization. 

In the third stage, and the output will be in the form of 5 stations, 

reflecting the values that will occur for each station. Figure 11 

presents a predicted model for all stations and true data. 

Fig. 10.      ANN predicted model and true PGA data. 

 

Fig. 11.      ANN Predicted model in all stations and  error. 
 

C. Evaluation model 

   CNN to evaluate the difference in value between the predicted 

PGA and the actual PGA for each station, the model evaluation 

is shown in Figure 12. This table displays for CNN the average 

error value across five stations as well as the main absolute error 

for each station. For each station, a comparison of the ANN 

model's performance using the real and predicted PGA is shown 

in Figure 13. The average error value between the five stations 

is shown in this table, along with the main absolute error for 

each. 
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Fig. 12. PGA prediction for the 5 stations using CNN. 
 

 

I. CONCLUSION 

 

   Two methods were examined in this study. The execution of 

the various methods was trained and tested using a set of 

waveform data. PGA are predicted in this work using the full 

waveform of data velocity and the time histories of varied 

window lengths of P-wave data after the trigger recodes in 

locations. This uses the ANN and CNN models of the 555-

earthquake data set, which performed admirably, with five sites 

recording modest motion velocity. The K-NET, KiK-NET, and 

Hi-Net networks recorded the Mg > 3 earthquakes that occurred 

between 2003 and 2022 and had varied degrees of effect on 

humans and the built environment. The execution of the CNN 

and ANN models increased when larger time windows were 

used; however, the 6-s window Figure 14 used in our 

configuration appears to be a decent balance between accuracy 

and time lines. 

   The CNN model is split into 85% training and 15% testing, 

and it has a strong performance for predicting the PGAs of 

independent full-waveform earthquake occurrences. This model 

has five PGA outputs: a malty layer, a magnitude layer, an 

epicentral layer hidden with five stages, and these layers. The 

CNN model can accurately predict the PGAs of independent, 

entire waveform earthquake occurrences. Layers include things 

like convolutional layers, pooling layers, and layers that are 

entirely connected. These are only a few of the many 

components CNN uses to automatically and adaptively obtain 

spatial information hierarchies through back propagation. While 

preserving as much information in seismic waveforms as 

feasible, CNN is employed to automatically extract relevant 

characteristics from earlier P-wave data. Table 1 in the output 

model shows MAE, which is an acronym for all stations 

(18.2362). 

 

Fig. 13. PGA prediction for the 5 stations using ANN. 

TABLE 1. THE MEAN ABSOLUTE ERROR (MAE) OF THE TEST SET FOR 

DIFFERENT STATIONS USING CNN. 

Station # MAE Proposed 

Algorithm 

MAE Ref. [5] 

1 20.77867195790722 22.54646541  

2 17.10536413533347 19.89621314 

3 20.520488281778636 21.4789130 

4 18.02315130758853 19.5764132 

5 14.753509095027333 16.8974163 

Average 18.2 20.1 

 

   The ANN model was used to forecast the PGA values, 

utilizing the magnitude and epicentral distance of the velocity 

waveform as input criteria. This study shows that PGA models 

for restart locations in Japan may be efficiently estimated using 

ANN approaches. The created model has a hidden layer with 

four stages, a hidden layer with a malty layer, a magnitude layer, 

an epicentral layer, and five PGA outputs. The performance data 

for the model's implementation is divided into 15% testing and 

85% training. The dataset used to train the weights and biases of 

a neural network is the actual dataset. Here, learning is done 

using the back-propagation network model, with the aim of 

lowering the MAE in Table 2 for all stations (18.3434). 

 

 

 

 

 



International journal for Computers and Information, ICCI, Vol. 10 -3, Oct, 2023(Special Issue) 

 

Proceedings of 2nd International Conference on Computers and Information, ICCI 2023                                                               

183 

 

Fig. 14. Releasing alarm before the arrival of destructive wave (4s after the 

arrival time). 

TABLE 2.The mean absolute error (MAE) of the test set for different stations 
using ANN. 

 Station Mean absolute error 

1 Station 1 22.06624750154359 

2 Station 2 15.497577278386979 

3 Station 3 19.248799257335207 

4 Station 4 18.291703581809998 

5 Station 5 16.61311399085181 

Mean for all stations 18.3 
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