One-pot Multicomponent Synthesis of Novel Polyfunctionalized Pyridines

Hayam H. Mohammed, Eman A. Ahmed, Bahgat R. M. Hussein* and Omran A. Omran
Chemistry Department, Faculty of Science, Sohag University, Sohag 82524, Egypt
*Email: bahgat.ramadan@yahoo.com \& bahgat@science.sohag.edu.eg

Received: $7^{\text {th }}$ August 2023, Revised: $10^{\text {th }}$ September 2023, Accepted: $25^{\text {th }}$ September 2023
Published online: $7^{\text {th }}$ October 2023.

Abstract

In this work, we synthesized a novel arylidene malononitrile $\mathbf{3}$ via the treatment of o-alkyl vanillin derivative $\mathbf{1}$ with malononitrile 2 in the presence of triethylamine (TEA) as a catalyst. The arylidene malononitrile $\mathbf{3}$ was subjected to react under one-pot multicomponent reaction (MCR) condition with respective methylarylketones $\mathbf{4 a - f}$ and sodium ethoxide $\mathbf{5}$ in ethanol to afford a new series of 2-(4-(6-aryl-3-cyano-2-ethoxypyridin-4-yl)-2-methoxyphenoxy)- N-phenylacetamides 6a-f. The structure of the new products was assured via spectral and elemental analysis. The reaction mechanism was suggested.

Keywords: o-alkyl vanillin, pyridine derivatives, arylidene, N-phenylacetamide, multicomponent reaction.

1. Introduction

Vanillin is considered one of the most important safe natural products for many uses. Not only that we can't do without it in our daily lives as a flavoring for taste and aroma [1], but also it has many biological properties as antitumor [2], antioxidant [3], antimicrobial [4], antibacterial [5], antiinflammatory [6], antimutagenic [7], antialzheimer's [8], antiproliferative activities [9], antidiabetic [10] and antidepressant [11]. Furthermore, vanillin is low toxicity, easy decomposition possesses general bio-safety, environmental friendliness, and specificity to target species [12]. In addition, it is easily extracted from orchids (Vanillaplanifolia, V. pompona, or V. tahitiensis) [13].

Moreover, vanillin is used as a prodrug in the manufacture of Aldomet which is used for the treatment of hypertensive, L dopa for the treatment of Parkinson's disease, and trimethoprim to treat some venereal diseases forms and upper respiratory tract infections (Fig. 1) [14].

Fig. 1: Some of the drugs that were prepared from vanillin as starting material.
On the other side, Pyridines naturally occur in important vitamins such as vitamin B3, vitamin B6, and some alkaloids [15]. They have diverse pharmacological and biological applications such as: antidiabetic [16], anti-HIV [17], antitubercular [18], anti-bacterial [19], anticonvulsant [20],
anticancer effects [21], COX inhibitor [22], antihypertensive [23], anti-oxidant [24], blood platelet aggregation inhibitors [25], and antifungal activities [26].

Furthermore, many marketing drugs contain pyridine moiety because it has effective biological activity such as amlodipine (anti-hypertensive) and isoniazide (antituberculosis) [27, 28] (Fig. 2).

Fig. 2: Drugs consist of the pyridine moiety.
As a result, the vanillin and pyridine rings are ideal structures, and they have piqued the curiosity of organic synthesis researchers. Therefore, the synthesis of polyfunctionalized aza-heterocyclic compounds especially pyridines from available simple natural starting materials via effectively one-pot multicomponent reactions (MCRs) technique, which has many advantages such as saving in cost, time of the reaction, and energy used, it achieves the most important principles of green chemistry, which is the atomic economy, in addition to their products can be easily separated and purified. [29].

On the basis of the abovementioned and for the continuation of our works [30-33], we have combined the properties of vanillin and pyridine to synthesize a novel series of 2-(4-(6-aryl-3-cyano-2-ethoxypyridin-4-yl)-2-methoxyphenoxy)- N-phenylacetamide 6a-f through an effective one-pot multicomponent reaction.

2. Results and Discussion:

Herein, we synthesized the arylidene $\mathbf{3}$ via Knoevenagel condensation reaction of O-alkyl vanillin 1 [34] with malononitrile 2 using TEA as a basic catalyst in ethanol (Scheme1). The chemical structure of arylidene $\mathbf{3}$ was confirmed using IR, ${ }^{1} \mathrm{H}$ NMR, and elemental analysis data. The IR spectrum showed the absorption bands for amidic carbonyl at $1683 \mathrm{~cm}^{-1}$, CN groups at $2216 \mathrm{~cm}^{-1}$, CH aliphatic groups at 2924 and $2837 \mathrm{~cm}^{-1}$, and CH of aromatic at $3040 \mathrm{~cm}^{-1}$. Whereas the ${ }^{1} \mathrm{H}$ NMR spectrum showed two singlet signals for NH and $\mathrm{CH}_{\text {olefinic }}$ at 10.24 ppm and 8.40 ppm , respectively beside one singlet, one multiplet, two triplet (coupling constant 7.8 Hz), and doublet signals (coupling constant 8 Hz) at range $7.70-7.08 \mathrm{ppm}$ due to eight aromatic protons, in addition to, two singlet signals corresponding to methylene and methoxy groups at 4.92 and 3.86 ppm , respectively.

A novel series of 2-(4-(6-aryl-3-cyano-2-ethoxypyridin-4-yl)-2-methoxy-phenoxy)- N -phenylacetamides $\quad \mathbf{6 a - f} \quad$ were synthesized via one-pot multicomponent reaction (MCR) of arylidene malononitrile $\mathbf{3}$, with sodium ethoxide 5 and respective methylarylketones namely: acetophenone $\mathbf{4 a}, 4$ chloroacetophenone $\mathbf{4 b}$, 4-methoxyacetophenone $\mathbf{4 c}$, 3acetylpyridine $\mathbf{4 d}$, 2-acetylthiophene $\mathbf{4 e}$ and/or 2acetylnaphthalene $\mathbf{4 f}$ in ethanol (Scheme1).

The chemical structure of pyridines $\mathbf{6 a - f}$ was confirmed via different spectroscopic methods (IR, ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$, Dept-135 NMR) and elemental analysis (see Experimental part). The IR spectrum of pyridine derivative $\mathbf{6 b}$ (as an example) showed the absorption bands corresponding to $\mathrm{NH}, \mathrm{CH}_{\text {arom. }} \mathrm{CH}_{\text {aliph. }}, \mathrm{CN}$, and $\mathrm{C}=\mathrm{O}_{\text {amidic }}$ groups at 3421,3055 , 2975-2829, 2211 and 1633 cm^{-1}, respectively. The ${ }^{1} \mathrm{H}$ NMR spectrum of pyridine $\mathbf{6 b}$ revealed thirteen aromatic protons that appeared as two singlet, two doublet, one multiplet, and one triplet signals at 7.82, 7.67, 8.29-8.27, 7.62-7.60, 7.32-7.22, 6.97-6.94 ppm, respectively, whereas three singlet signals due to $\mathrm{NH}, \mathrm{OCH}_{3}$, and CH_{2} at $7.44,3.97$ and 3.36 ppm , respectively, quartet and triplet signals for methylene and methyl groups of $\mathrm{OCH}_{2} \mathrm{CH}_{3}$ at 4.674.62 and $1.47-1.44 \mathrm{ppm}$, respectively.

Whereas the ${ }^{13} \mathrm{C}$ NMR spectrum showed seven signals due to carbonyl, nitrile, CH_{2} ethoxy, CH_{3} methoxy, CH_{2} and $\mathrm{CH}_{3 \text { ethoxy }}$ at 164.71, 116.42, 63.56, 61.90, 56.31, and 14.77 ppm , respectively in addition to, nineteen signals at 156.81, 156.13, 155.96, 148.60, 148.51, $142.35,136.15,135.85,135.77$, 129.61, 129.36, 126.26, 122.17, 121.85, 119.68, 113.91, $113.48,111.89,90.86 \mathrm{ppm}$ assign to $s p^{2}$ aromatic carbons.
Also, the Dept-135 spectrum of pyridine derivative $\mathbf{6 b}$ confirms its structure because it showed two signals in a negative direction for two methylene groups at 63.55 ppm and 61.90 ppm respectively, while the methoxy and methyl carbons appeared in a positive direction at 56.30 ppm and 14.77 ppm , respectively. Whereas $\mathrm{C}-\mathrm{H}$ aromatic carbon appeared at $129.60,129.56,129.35,122.17,121.84,119.68,113.91$, $113.48,111.89 \mathrm{ppm}$.

The plausible reaction mechanism for the synthesis of pyridines 6a-f can be postulated through the arylidene $\mathbf{3}$ experiences the reaction of nucleophilic addition by attacking an enolate ion of the activated methylarylketone $\mathbf{4 a}-\mathbf{f}$ in the presence of NaOEt to yield the intermediate \mathbf{I}, which is followed by nucleophilic addition of Eto anion on $\mathrm{C} \equiv \mathrm{N}$ group
to yield the intermediate II. The imino group of intermediate II experiences the reaction of intramolecular cyclization (Michael addition reaction) by attacking of $\mathrm{C} \equiv \mathrm{N}$ group to give intermediate III, which is easily aromatized via the elimination of $\mathrm{H}_{2} \mathrm{O}$ and H_{2} molecules to give the target products (Scheme 2).

Scheme1: Synthesis of a novel arylidene $\mathbf{3}$ and pyridine derivatives 6a-f.

Scheme 2: The possible reaction mechanism for the production of pyridine derivatives $\mathbf{6 a - f}$.

3. Conclusion

A novel series of 2-(4-(6-aryl-3-cyano-2-ethoxypyridin-4-yl)-2-methoxyphenoxy)- N-phenylacetamides 6a-f was obtained through two steps: (i) preparation of the arylidene 3 from a simple and available natural product (vanillin)
derivative 1. (ii) multicomponent reaction of the arylidene $\mathbf{3}$ with methylarylketones $\mathbf{4 a}-\mathbf{f}$ and sodium ethoxide $\mathbf{5}$ in ethanol to afford the target products.

4. Experimental

All melting points were measured and uncorrected by using the Kofeler melting point equipment. IR spectra (KBr pellets) were obtained using an FT-IR spectrophotometer. The ${ }^{13} \mathrm{C}$ NMR (DMSO- d_{6}) and Dept-135 (DMSO- d_{6}) spectra were recorded at 100 MHz on Bruker Bio Spin AG at Sohag University, while the ${ }^{1} \mathrm{H}$ NMR (DMSO- d_{6}) spectra were obtained at 400 M Hz . Perkin-Elmer CHN analyzer model provided elemental analysis. TLC plates (silica gel/UV light ($254 \mathrm{~nm} / 365 \mathrm{~nm}$) for visualization) were used to monitor all reactions.
4.1. Synthesis of 2-[4-(2,2-dicyanovinyl)-2methoxyphenoxy] - N-phenylacetamide (3):

A mixture of compound $1(0.5 \mathrm{~g}, 2 \mathrm{mmol})$ and malononitrile $(0.12 \mathrm{~g}, 2 \mathrm{mmol})$ in the presence of a few drops of TEA in 20 mL of ethanol was refluxed for 1 h . The formed precipitate was filtered off (on hot), washed with cold ethanol several times, and crystallized from acetonitrile.

Yellow powder, yield: 0.54 g (92%), mp. 234-236 ${ }^{\circ} \mathrm{C}$; IR (ATR) v max: 3377 (NH), $3040\left(\mathrm{CH}_{\text {arom. }}\right)$, 2924, 2837 $\left(\mathrm{CH}_{\text {aliph. }}\right), 2216(\mathrm{CN}), 1683\left(\mathrm{C}=\mathrm{O}_{\text {amidic }}\right) \mathrm{cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR $\delta: 10.24$ ($\mathrm{s}, 1 \mathrm{H}, \mathrm{NH}$), $8.40\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CH}_{\text {olefinic }}\right), 7.70(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-\mathrm{Ar})$, 7.637.59 (m, 3H, H-Ar), 7.36-7.32 (t, 2H, $J=7.8 \mathrm{~Hz}, \mathrm{H}-\mathrm{Ar}), 7.19$, $7.17(\mathrm{~d}, 1 \mathrm{H}, J=8 \mathrm{~Hz}, \mathrm{H}-\mathrm{Ar}), 7.11-7.08(\mathrm{t}, 1 \mathrm{H}, J=7.8 \mathrm{~Hz}, \mathrm{H}-$ Ar), $4.92\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 3.86\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right)$. Anal. Calcd. for $\mathrm{C}_{19} \mathrm{H}_{15} \mathrm{~N}_{3} \mathrm{O}_{3}$ (333.34): C, 68.46 ; H, 4.54 ; N, 12.61%. Found: C, $68.55 ; \mathrm{H}, 4.34$; N, 12.75%.

4.2. General procedure for synthesis of pyridines 6a-f

To a solution of arylidene $3(0.5 \mathrm{~g}, 1 \mathrm{mmol})$ in 30 mL of ethanol was mixed with sodium ethoxide $5(0.14 \mathrm{~g}, 2 \mathrm{mmol})$), and 1 mmol of respective methylarylketones 4a-f namely; acetophenone $(0.12 \mathrm{~g}, 1 \mathrm{mmol}), 4$-chloroacetophenone (0.15 g , $1 \mathrm{mmol})$, 4-methoxyacetophenone ($0.15 \mathrm{~g}, 1 \mathrm{mmol}$), 3acetylpyidine $(0.12 \mathrm{~g}, 1 \mathrm{mmol})$, 2-acetylthiophene $(0.13 \mathrm{~g}, 1$ mmol) and/or 2-acetylnaphthalene ($0.17 \mathrm{~g}, 1 \mathrm{mmol}$) was added. The reaction mixture was refluxed and monitored using TLC for around 5 hours then allowed to cool to room temperature and poured into 30 mL of ice-cold water. The precipitate was filtered, washed multiple times with water, dried, and crystallised from ethanol.

2-(4-(3-Cyano-2-ethoxy-6-phenylpyridin-4-yl)-2-methoxy-phenoxy)- N-phenylacetamide (6a)

Pale yellow powder, yield: 0.58 g (80%), mp. 203-205 ${ }^{\circ} \mathrm{C}$; IR (ATR) v max: $3423(\mathrm{NH}), 3051\left(\mathrm{CH}_{\text {arom. }}\right), 2977,2918,2847$ $\left(\mathrm{CH}_{\text {aliph. }}\right), 2212(\mathrm{CN}), 1692\left(\mathrm{C}=\mathrm{O}_{\text {amide }}\right) \mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR: $\delta 8.24$, 8.23 (d, 2H, J = $4 \mathrm{~Hz}, \mathrm{H}-\mathrm{Ar}$), 7.78 ($\mathrm{s}, 1 \mathrm{H}, \mathrm{H}-\mathrm{Ar}$), 7.62-7.54 (m, 4H, H-Ar), 7.43 (s, 1H, NH), 7.31-7.24 (m, 6H, H-Ar), 6.96 (s, 1H, H-Ar), 4.67-4.64 (q, $2 \mathrm{H}, J=7 \mathrm{~Hz}, \mathrm{OCH}_{2} \mathrm{CH}_{3}$), $3.97\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.38\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CO}\right), 1.47-1.45(\mathrm{t}, 3 \mathrm{H}$, $J=7 \mathrm{~Hz}, \mathrm{OCH}_{2} \mathbf{C H}_{3}$). Anal.Calcd. for $\mathrm{C}_{29} \mathrm{H}_{25} \mathrm{~N}_{3} \mathrm{O}_{4}$ (479.5): C, $72.64 ;$ H, 5.25 ; N, 8.76%. Found: C, $72.52 ;$ H, 5.44 ; N, 8.66%.

2-(4-(6-(4-Chlorophenyl)-3-cyano-2-ethoxypyridin-4-yl)-2-methoxyphenoxy)- N-phenylacetamide (6b)

Pale yellow powder, yield: 0.59 g (77%), mp. $198-200^{\circ} \mathrm{C}$; IR (ATR) v max: $3421(\mathrm{NH}), 3055\left(\mathrm{CH}_{\text {arom. }}\right)$, 2975, 2920, 2829 $\left(\mathrm{CH}_{\text {aliph. }}\right), 2211(\mathrm{CN}), 1633\left(\mathrm{C}=\mathrm{O}_{\text {amide }}\right) \mathrm{cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR: $\delta 8.29-$ 8.27 (d, 2H, H-Ar), 7.82 ($\mathrm{s}, 1 \mathrm{H}, \mathrm{H}-\mathrm{Ar}$), 7.67 ($\mathrm{s}, 1 \mathrm{H}, \mathrm{H}-\mathrm{Ar}$), $7.62,7.60(\mathrm{~d}, 2 \mathrm{H}, J=8 \mathrm{~Hz}, \mathrm{H}-\mathrm{Ar}), 7.44(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}), 7.32-7.29$ (m, 4H, H-Ar), 7.24-7.22 (m, 2H, J=8 Hz, H-Ar), 6.97-6.94 (t, $1 \mathrm{H}, J=7 \mathrm{~Hz}, \mathrm{H}-\mathrm{Ar}), 4.67-4.62\left(\mathrm{q}, 2 \mathrm{H}, J=7 \mathrm{~Hz}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right)$, 3.97 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{OCH}_{3}$) $3.36\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CO}\right), 1.47-1.44(\mathrm{t}, 3 \mathrm{H}$, $\left.J=7 \mathrm{~Hz}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right) .{ }^{13} \mathrm{C}$ NMR: $\delta 164.71,156.81,156.13$, 155.96, 148.60, 148.51, 142.35, 136.15, 135.85, 135.77, $129.61,129.36,126.26,122.17,121.85,119.68,116.42(\mathrm{CN})$, 113.91, 113.48, 111.89, 90.86, 63.56, 61.90, 56.31, 14.77, Dept-135 NMR: $\delta 129.60,129.56,129.35,122.17,121.84$, 119.68, 113.91, 113.48, 111.89, $63.55\left(\mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 61.90$ $\left(\mathrm{OCH}_{2} \mathrm{CO}\right), 56.30\left(\mathrm{OCH}_{3}\right), 14.77\left(\mathrm{OCH}_{2} \mathbf{C H}_{3}\right)$. Anal. Calcd. for $\mathrm{C}_{29} \mathrm{H}_{24} \mathrm{ClN}_{3} \mathrm{O}_{4}$ (513.97): C, 67.77; H, 4.71; N, 8.18%. Found: C, 67.60; H, 4.81; N, 8.08\%.
2-(4-(3-Cyano-2-ethoxy-6-(4-methoxyphenyl)pyridin-4-yl)-2-methoxyphenoxy)- N-phenylacetamide (6c)

Pale yellow powder, yield: 0.6 g (79%), mp. 198-200 ${ }^{\circ} \mathrm{C}$; IR (ATR) v max: 3403 (NH), 3051 ($\mathrm{CH}_{\text {arom. }}$), 2962, 2936, 2835 $\left(\mathrm{CH}_{\text {aliph. }}\right), 2209(\mathrm{CN}), 1691\left(\mathrm{C}=\mathrm{O}_{\text {amide }}\right) \mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR: $\delta 8.23$, $8.21(\mathrm{~d}, 2 \mathrm{H}, J=8 \mathrm{~Hz}, \mathrm{H}-\mathrm{Ar}), 7.71,7.69(\mathrm{~d}, 2 \mathrm{H}, J=6 \mathrm{~Hz}, \mathrm{H}-$ Ar), 7.41 (s, 1H, NH), 7.32-7.30 (m, 4H, H-Ar), 7.23-7.22 (m, $2 \mathrm{H}, \mathrm{H}-\mathrm{Ar}), 7.10,7.08(\mathrm{~d}, 2 \mathrm{H}, J=8 \mathrm{~Hz}, \mathrm{H}-\mathrm{Ar}), 6.96-6.92$ (t, $1 \mathrm{H}, J=7 \mathrm{~Hz}, \mathrm{H}-\mathrm{Ar}), 4.65-4.60\left(\mathrm{q}, 2 \mathrm{H}, J=7 \mathrm{~Hz}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right)$, $3.96\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.85\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.34(\mathrm{~s}, 2 \mathrm{H}$, $\mathrm{OCH}_{2} \mathrm{CO}$), 1.46-1.43 (t, 3H, J=7 Hz, OCH $\mathbf{C H}_{3}$). ${ }^{13} \mathrm{C}$ NMR: $\delta 164.68,161.81,157.23,156.59,156.50,148.64,142.60$, $135.54,129.83,129.54,127.07,122.06,121.60,119.51$, 116.61 (CN), 114.76, 114.20, 112.56, 112.07, 90.84, 63.27 $\left(\mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 61.61\left(\mathrm{OCH}_{2} \mathrm{CO}\right), 56.33\left(\mathrm{OCH}_{3}\right), 55.86\left(\mathrm{OCH}_{3}\right)$, $14.86\left(\mathrm{OCH}_{2} \mathrm{CH}_{3}\right)$. Anal. Calcd. for $\mathrm{C}_{30} \mathrm{H}_{27} \mathrm{~N}_{3} \mathrm{O}_{5}$ (509.55): C, 70.71 ; H, 5.34 ; N, 8.25%. Found: C, 70.60 ; H, 5.51 ; N, 8.37%.

2-(4-(5-Cyano-6-ethoxy-2,3'-bipyridin-4-yl)-2-methoxy-phenoxy)- N-phenylacetamide (6d)

Pale yellow powder, yield: 0.49 g (68%), mp. $176-178{ }^{\circ} \mathrm{C}$; IR (ATR) v max: $3405(\mathrm{NH}), 3054\left(\mathrm{CH}_{\text {arom }}\right)$, 2987, 2933, 2832 $\left(\mathrm{CH}_{\text {aliph. }}\right), 2216(\mathrm{CN}), 1657\left(\mathrm{C}=\mathrm{O}_{\text {amide }}\right) \mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR: $\delta 9.42$ ($\mathrm{s}, 1 \mathrm{H}, \mathrm{H}-\mathrm{Ar}$), 8.71 ($\mathrm{s}, 1 \mathrm{H}, \mathrm{H}-\mathrm{Ar}), 8.59-8.57(\mathrm{~d}, 1 \mathrm{H}, J=7 \mathrm{~Hz}$, H-Ar), 7.90 (s, 1H, H-Ar), 7.73 (s, 1H, H-Ar), 7.57 (s, 1H, HAr), 7.44 (s, 1H, NH), 7.31-7.23 (m, 6H, H-Ar), 6.97-6.94 (t, $1 \mathrm{H}, J=6 \mathrm{~Hz}, \mathrm{H}-\mathrm{Ar}), 4.67-4.61\left(\mathrm{q}, 2 \mathrm{H}, J=7 \mathrm{~Hz}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right)$, $3.98\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.36\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CO}\right), 1.47-1.44(\mathrm{t}, 3 \mathrm{H}, J$ $\left.=6 \mathrm{~Hz}, \mathrm{OCH}_{2} \mathbf{C H}_{3}\right) .{ }^{13} \mathrm{C}$ NMR: δ 164.80, 156.83, 155.09, 151.47, 149.01, 148.52, 142.41, 135.77, 135.24, 132.96, 129.57, 126.40, 124.32, 122.27, 121.71, 119.65, 116.35 (CN), $113.95,113.82,112.02,92.46,63.64\left(\mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 61.96$ $\left(\mathrm{OCH}_{2} \mathrm{CO}\right), 56.29\left(\mathrm{OCH}_{3}\right), 14.81\left(\mathrm{OCH}_{2} \mathbf{C H}_{3}\right)$. Anal. Calcd. for $\mathrm{C}_{28} \mathrm{H}_{24} \mathrm{~N}_{4} \mathrm{O}_{4}$ (480.51): $\mathrm{C}, 69.99 ; \mathrm{H}, 5.03 ; \mathrm{N}, 11.66 \%$. Found: C, 69.72; H, 5.22; N, 11.45\%.

2-(4-(3-Cyano-2-ethoxy-6-(thiophen-2-yl)pyridin-4-yl)-2-methoxyphenoxy)- N-phenylacetamide (6e)

Pale yellow powder, yield: $0.54 \mathrm{~g}(72 \%), \mathrm{mp} .158-160{ }^{\circ} \mathrm{C}$;

IR (ATR) v max: 3421 (NH), 3076 ($\mathrm{CH}_{\text {arom. }}$), 2924, 2835 $\left(\mathrm{CH}_{\text {aliph. }}\right), 2211(\mathrm{CN}), 1691\left(\mathrm{C}=\mathrm{O}_{\text {amide }}\right) \mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR: $\delta 8.06$, $8.05(\mathrm{~d}, 1 \mathrm{H}, J=2 \mathrm{~Hz}, \mathrm{H}-\mathrm{Ar}), 7.79,7.78(\mathrm{~d}, 1 \mathrm{H}, J=4 \mathrm{~Hz}, \mathrm{H}-$ Ar), 7.72, 7.71 (d, 2H, $J=3 \mathrm{~Hz}, \mathrm{H}-\mathrm{Ar}), 7.39$ (s, 1H, NH), 7.327.22 (m, 7H, H-Ar), 6.96-6.93 (t, 1H, J= $7 \mathrm{~Hz}, \mathrm{H}-\mathrm{Ar}$), 4.67$4.61\left(\mathrm{q}, 2 \mathrm{H}, J=7 \mathrm{~Hz}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 3.98\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.27$ (s, $\left.2 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CO}\right), 1.45-1.42\left(\mathrm{t}, 3 \mathrm{H}, J=7 \mathrm{~Hz}, \mathrm{OCH}_{2} \mathbf{C H}_{3}\right) .{ }^{13} \mathrm{C}$ NMR: δ 164.60, 156.47, 152.88, 148.53, 143.33, 142.51, $135.61,131.32,129.55,129.35,128.71,126.59,122.07$, $121.61,119.53,116.48(\mathrm{CN}), 114.03,111.94,111.76,90.98$, $63.55\left(\mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 61.89\left(\mathrm{OCH}_{2} \mathrm{CO}\right), 56.27\left(\mathrm{OCH}_{3}\right), 14.76$ $\left(\mathrm{OCH}_{2} \mathrm{CH}_{3}\right)$. Anal. Calcd. for $\mathrm{C}_{27} \mathrm{H}_{23} \mathrm{~N}_{3} \mathrm{O}_{4} \mathrm{~S}$ (485.55): C, 66.79 ; H, 4.77; N, 8.65\%. Found: C, 66.52; H, 4.88; N, 8.45\%.

2-(4-(3-Cyano-2-ethoxy-6-(naphthalen-2-yl)pyridin-4-yl)-
2-methoxyphenoxy)-N-phenylacetamide (6f)
Pale yellow powder, yield: 0.65 g (82%), mp. $178-180^{\circ} \mathrm{C}$; IR (ATR) v max: $3425(\mathrm{NH}), 3054\left(\mathrm{CH}_{\text {arom. }}\right), 2919,2842$ $\left(\mathrm{CH}_{\text {aliph. }}\right), 2207(\mathrm{CN}), 1695\left(\mathrm{C}=\mathrm{O}_{\text {amide }}\right) \mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR: $\delta 8.82$ (s, $1 \mathrm{H}, \mathrm{H}-\mathrm{Ar}$), $8.35,8.33$ (d, $1 \mathrm{H}, J=8 \mathrm{~Hz}, \mathrm{H}-\mathrm{Ar}$), 8.06-8.03 (m, 2H, H-Ar), 7.98, 7.96 (d, 1H, J=8 Hz, H-Ar), 7.93 (s, 1H, H-Ar), 7.72 (s, 1H, H-Ar), $7.60,7.58$ (d, 2H, $J=8 \mathrm{~Hz}, \mathrm{H}-\mathrm{Ar}$), 7.46 ($\mathrm{s}, 1 \mathrm{H}, \mathrm{NH}$), 7.32-7.24 (m, 6H, H-Ar), 6.97-6.94 (t, 1H, J $=7 \mathrm{~Hz}, \mathrm{H}-\mathrm{Ar}), 4.69-4.65\left(\mathrm{q}, 2 \mathrm{H}, J=6 \mathrm{~Hz}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 3.98(\mathrm{~s}$, $\left.3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.29\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CO}\right), 1.49-1.46(\mathrm{t}, 3 \mathrm{H}, J=7 \mathrm{~Hz}$, $\left.\mathrm{OCH}_{2} \mathbf{C H}_{3}\right) .{ }^{13} \mathrm{C}$ NMR: δ 164.75, 157.26, 156.64, 148.64, $142.59,135.67,134.80,134.32,133.34,129.54,129.36$, 128.82 , 128.06, $127.86,127.11,126.91,124.84,122.19$, $121.63,119.57,116.49(\mathrm{CN}), 116.19,114.19,113.87,112.12$, $91.88,63.55\left(\mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 61.80\left(\mathrm{OCH}_{2} \mathrm{CO}\right), 56.37\left(\mathrm{OCH}_{3}\right)$, $14.87\left(\mathrm{OCH}_{2} \mathrm{CH}_{3}\right)$. Anal. Calcd. for $\mathrm{C}_{33} \mathrm{H}_{27} \mathrm{~N}_{3} \mathrm{O}_{4}$ (529.59): C, $74.84 ;$ H, $5.14 ;$ N, 7.93%. Found: C, 74.62 ; H, 5.34; N, 7.74\%.

CRediT authorship contribution statement:

Conceptualization, B.R., O.A., E.A. and H.H.; methodology, O.A. E.A., B.R., and H.H.; software, O.A., E.A., B.R., and H.H.; validation, O.A., E.A., and B.R.; formal analysis, O.A., E.A., B.R., and H.H.; investigation, O.A., E.A., B.R. and H.H.; resources, O.A., E.A., B.R., and H.H.; data curation, H.H.; writing-original draft preparation, H.H.; writing-review and editing, O.A. E.A. and B.R.; supervision, O.A., E.A. and B.R.; project administration, B.R.; funding acquisition, H.H. All authors have read and agreed to the published version of the manuscript.

Data availability statement

The data used to support the findings of this study are available from the corresponding author upon request.

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

References

[1] K. Harshvardhan, M. Suri, A. Goswami, T. Goswami, J. Clean. Prod., 149 (2017) 485-490.
[2] P. Jantaree, K. Lirdprapamongkol, W. Kaewsri, C.Thongsornkleeb, K. Choowongkomon, K. Atjanasuppat, S. Ruchirawat, J. Svasti, J. Agric. Food Chem., 65 (2017) 2299-2306.
[3] L.F.Dalmolin, N.M. Khalil., R.M. Khalil, Mater. Sci. Eng. C., 62 (2016) 1-8.
[4] D.J. Fitzgerald, M. Stratford, M. J. Gasson, J. Ueckert, A. Bos, A. Narbad, J. Appl. Microbiol. 97 (2004) 104-133.
[5] V. Ahluwalia, N. Garg, B. Kumar, S.S. Walia, O.P. Sati, Nat. Prod. Commun., 7 (2012) 1635-1638.
[6] J.E. Galgani, B. Nunez, L.A. Videla, Food Funct., 3 (2012) 1319-1323.
[7] C. Keshava, N. Keshava, W.-Z. Whong, J. Nath, T. -M. Ong, Teratog. Carcinog. Mutagen., 17 (1998) 313-326.
[8] M. Scipioni, G. Kay, IL. Megson, Med. Chem. Comm., 10 (2019) 764-777.
[9] C.G. Roberto, K.W. Sarah, H. Martina, L. Lisa, S. Gisbert, S. Z. Manfred, P. Ewgenij, S. Birgit, Bioorg. Med. Chem. Lett., 24 (2014) 5063-5069.
[10] M. Kanedi, S. Nurhidayah, E. Nurcahyani, E.L. Widiastuti, Eur. J. Pharm. Med. Res., 6 (2019) 314-316.
[11] D. Dhingra, A. Sharma, Indian J. Pharmacol., 37 (2005).
[12] J. N. Seiber, J. Agric. Food Chem., 59 (2011) 1-2.
[13] N.J. Walton, M.J. Mayer, A. Narbad, Phytochemistry, 63 (2003) 505-515.
[14] B. Kaur, D. Chakraborty, Appl. Biochem. Biotechnol., 169 (2013) 1353-1372.
[15] A. Chaubey, S.N. Pandeya. A. J. Clin. Pharm. Res., 4 (2011) 58.
[16] I. G. Rathish, K. Javed, S. Bano, S. Ahmad, M.S. Alam, K.K. Pillai, Eur. J. Med. Chem., 44 (2009) 2673-2678.
[17] M.A. Ali, M.S. Yar, A.A. Siddiqui, D. Sriram, P. Yogeeswari, E. de Clercq, Acta Pol. Pharm,. 64 (2007) 423-428.
[18] M.C. S. Lourenço, M.V.N. de Souza, A.C. Pinheiro, M. de Lima Ferreira, R.S.B. Goncalves, T.C. M. Nogueira, M.A. Peralta, ARKIVOC, xv (2007) 181-191.
[19] P.C. Sharma, S. Jain, Acta Pol. Pharm., 65 (2008) 551556.
[20] C. Rubat, P. Coudert, B. Refouvelet, P. Tronche, P. Bastide, J. Bastide, Chem. Pharm. Bull., 38 (1990) 30093013.
[21] P. Thapa, R. Karki, H. Choi, J. H. Choim, M. Yun, B. -S. Jeong, M. -J. Jung, J. M. Nam, Y. Na, W. -J. Cho. et al, Bioorg. Med. Chem. 18 (2010) 2245-2254.
[22] V. K. Chintakunta, V. Akella, M. S. Vedula, P. K. Mamnoor, P. Mishra, S.R. Casturi, A. Vangoori, R. Rajagopalan, Eur. J. Med. Chem., 37 (2002) 339-347.
[23] R. Barbaro, L. Betti, M. Botta, F. Corelli, G. Giannaccini, L. Maccari, F. Manetti, G. Strappaghetti, S. Corsano, J. Med. Chem., 44 (2001) 2118-2132.
[24] E.B. Caliskan, M. Sukuroglu, T. Coban, E. Banoglu, S. Suzen, J. Enz. Inhib. Med. Chem., 23 (2008) 225-229.
[25] E. Sotelo, N. Fraiz, M. Yanez, V. Terrades, R. Laguna, E. Cano, E. Ravina, Bioorg. Med. Chem. 10 (2002) 28732882.
[26] J. Wu, S. Kang, L. Luo, Q. Shi, J. Ma, J. Yin, B. Song, D. Hu, S. Yang, Chem. Cent. J., 7 (2013) 64.
[27] G. Ananchenko, J. Novakovic, J. Lewis, Elsevier Inc., 37 (2012) 31-77.
[28] M.C.S. Lourenço, M.V. N. de Souza, A.C. Pinheiro, M. de Lima Ferreira, R. S. B. Goncalves, T. C. M. Nogueira, M. A. Peralta, AKIVOC xv (2007) 181-191.
[29] A. Domiling, W. Wei, W. Kan, Chem. Rev., 112 (2012) 3083-135.
[30] B.R.M. Hussein, A.M. Ali, J. Heterocyclic Chem., 56 (2019) 1420-1425.
[31] A. B. A. G. Ghattas, A. Khodairy, H. M. Moustafa, B. R. M. Hussein, J. Heterocyclic Chem., 54 (2017) 879-888.
[32] A. B. A. G. Ghattas, A. Khodairy, H. M. Moustafa, B. R. M. Hussein, M. M. Farghaly, M. O. Aboelez, Pharm. Chem. J. 51 (2017) 652-660.
[33] A. B. A. G. Ghattas, A. Khodairy, H. M. Moustafa, B. R. M. Hussein, J. Pharm. Appl. Chem., 1 (2015) 21-26.
[34] M. M. Petrović, C. Cornelia Roschger, S. Chaudary, A. Zierer, M. Mladenović, V. Marković, S. Trifunović, D. Milan, M. D. Joksović, Bioorg. Med. Chem. Lett. 46 (2021) 128194.

