
MJCIS Vol.15 No.1 Jun 2019

Mansoura Journal of Computers and Information Sciences

53

An efficient uniform model to integrate SQL and NoSQL

databases

R. Zaki
Faculty of computers and

information systems, I.S dep.
Mansoura University, Egypt

eng.rzaki@scc.mans.edu.eg

A. Rezk
Faculty of computers and

information systems, I.S dep.
Mansoura University, Egypt

amira_rezk@mans.edu.eg

Sh. I. Barakat
Faculty of computers and

information systems, I.S dep.
Mansoura University, Egypt

sherifiib@yahoo.com

ABSTRACT

In recent years, systems become more complex due to

massive growth and variety of data which stored in different

formats (structured and unstructured). In many cases the

organizations need to use both SQL and NoSQL databases to

store their data and get the advantages of both systems. A big

challenge for organizations is how to integrate these data and

retrieve it in a uniform format. The difficulty of integration is

not only because the heterogeneity of query language and the

data format but also the heterogeneity of semantic and

structure. Although many researches were done to overcome

these challenges, it introduced a specific solution for a special

case or limited feature rather than a general model. This paper

introduces a standard solution to integrate SQL with NoSQL

databases and retrieve data from them in a unified form. The

proposed model allows developers to write and execute

queries against different data sources easily at the same time.

This model solves the problems of heterogeneous data

integration along three diagonal structure, semantic, and

syntax heterogeneity. A web-based application is developed to

ensure the usefulness of the proposed solution.

General Terms

Database System, Data Integration

Keywords

NoSQL, SQL, Integration, Uniform Database Access

1. INTRODUCTION
Recently, Database domain becomes more heterogeneous than

ever due to the rapid growth in digital data generated by real-

time web applications and social networking websites which

is very huge and unstructured. [1, 2]

Although Relational databases provide the easiest way to store

and retrieve data as they follow a predefined schema with a

well-known structured relation and a standard query language

called SQL (Structured Query Language), they can’t handle

such huge amount of digital unstructured and semi-structured

data generated by current applications. As a result, new

database model is gaining significant attention in the

enterprise called NoSQL (Not Only SQL). [2, 3] NoSQL

emerged to serve as the core system of Big Data applications

because it can handle massive volumes of unstructured data

and it is characterized by its high availability, scalability, and

performance. [1, 4] NoSQL databases fall into four models

(key-value, columnar, document, and graph) each is

convenient for specific scenario. [1]

The “one size fits all” thinking about database systems has

been questioned because new current applications started to

require unprecedented needs that can’t be fulfilled easily by

relational databases. These needs are not only managing huge

amounts of data but also providing more flexible schemas to

handle rapidly changing needs of organizations, high

throughput, and quick scaling up or down. [1, 3] Relational

databases can handle large volumes of data but with some

weaknesses; unstructured and semi-structured are hard to be

handled, it is very complicated in scaling up as well as higher

cost, and performance is affected when data is distributed over

geographically distant sites. [1]

There are many situations where NoSQL databases are the

right tool for the job, but many others are well suited for

traditional relational data storage. For example, a software

application requires data storage where a part of the data is

perfectly suitable for traditional relational databases, whereas

the other part of data is stored ideally in NoSQL databases.

This raises a problem regarding which type of data storage is

the perfect choice for the application. Since, different parts of

data are suitable for different types of data storage, then

choosing one type of database means that a part of the data is

stored in a less convenient way. [5]

A compromise solution is to store structured data in SQL

database and unstructured data in NoSQL database. [5] By

this way, it will be possible to take advantage of both

relational and NoSQL databases, but this solution raises a

problem of how to retrieve and provide users with a unified

output from these different data sources. The best solution to

this problem is to integrate data from different sources and

retrieve it as if stored in one place. As a result, ERP

(Enterprise Resource Planning) systems emerged to support

the integration of different systems in organization and handle

communication between them. Over time, ERP systems

become more painful to implement due to a serious drawback

which is the incompatibility between ERP standards and

organization’s business model. [6, 7]

So, organization starts to seek for new approaches to integrate

their disparate systems. A new class called EAI (Enterprise

Application Integration) spotted in the community of software

integration to merge different systems within organization. [8]

EAI is handled through four levels: Data Level, Application

MJCIS Vol.15 No.1 Jun 2019

54

Interface Level, Method Level, and User Interface Level. [7]

However, applying EAI in the process of integrating and

retrieving data from different sources is facing an important

challenge of semantic, structural, and syntactic heterogeneities

of data described as follows:

• Semantic Heterogeneity of data means that the same

real-world entity has different names in different database

systems (synonym), or different real-world entities have the

same name in different database systems (homonym). [9]

• Structural Heterogeneity of data means

heterogeneity in data models. Because of different approaches

of database design, the same data can be modeled in different

ways (schemas). [9]

• Syntactic Heterogeneity of data means differences

of data access methods due to heterogeneity of data sources.

Although SQL is the standard language to manage relational

databases, it is not appropriate for managing NoSQL

databases because they follow different data models with

different access methods. [9]

There exist many solutions that aim to integrate data from

different relational and NoSQL databases and solve problems

of data heterogeneities as explained in the following section.

1.1 Related Work
This section gives an overview of related work performed

regarding the intended goal of this paper which is bridging the

gap between relational databases and NoSQL databases.

Roijackers presented a framework based on creating an

abstraction layer responsible for retrieving relevant data from

SQL and NoSQL, transforming NoSQL data to a triple

representation, and integrating fetched data into single query

result. Obviously, his approach required much work to be

done in transforming data from one form to another which

could lead to data loss and delay in data access. [5]

Adeyi et al presented DualFetchQL platform for integrating

data from relational database and NoSQL databases. They

introduced new aggregate query syntax to present a unified

output of the system. Their approach required manual

alteration by users before full knowledge of data pulls from

database, and the aggregate query could be reviewed to merge

both components into one to avoid learning two languages.

[10]

Ooju et al presented TripleFetchQL platform which was based

on the idea of DualFetchQL with the introduction of

transformation agent. The system eliminated any manual

alteration by users and unified results of involved databases

into one tabular SQL-Like format. Their approach could be

enhanced by looking into transformation time and merging the

aggregate query components into one. [3]

Agnes et al introduced a data integration methodology to

query data individually from relational and NoSQL databases.

The solution was based on a meta-modeling approach where

results of database queries were translated to JSON objects

and finally data merge was done by concatenating separate

JSON files. The model could be more useful when new

different databases are added to the application. [9]

Although there were many researches try to solve problems of

integrating data from different sources, there are still some

shortages that have not been resolved definitively.

The rest of the paper is organized as follows. In section 2, the

proposed framework is explained from a theoretical

perspective as well as presenting the application that

implements the proposed framework. Section 3 handles the

evaluation of the proposed framework. Finally, section 4

concludes the paper.

2. The Proposed Model
This paper proposes a generic framework to integrate data

from different SQL and NoSQL data sources into a unified

format without the burden of moving data between different

stores. To fulfill this goal, the paper aims to achieve the

following objectives:

• Integrate data from different databases in uniform

format.

• Provide a standard access method to query data

from different sources without moving data between data

stores or any conversion between NoSQL and SQL data.

• Solve problems of syntax, semantic, and structure

heterogeneities of data by developing an intermediate model

between different sources and users.

2.1 System Architecture
The architecture of the proposed solution consists of five

major components namely, Controller, View, EF Layer,

ADO.Net Providers, and data stores represented as SQL Data

Store, Cassandra Data Store, and MongoDB Data Store as

seen in Figure (1).

Fig 1: Architecture of proposed model

The architecture is based on the Model-View-Controller

(MVC) architectural pattern which separates the application’s

logic from its data and presentation. [11]

Controller is a middle layer between the Model and the View.

It is responsible for handling user requests from the view,

implementing business logic, communicating with Model

layer to call database queries, and sending result back to the

view. [11, 12]

View is a layer responsible for displaying data from the

Model to the user in a particular format triggered by decision

of the controller. [11, 12]

EF (Entity Framework) Layer is built based on Microsoft’s

ADO.NET Entity Framework architecture which is a platform

designed to help developers create data access applications by

MJCIS Vol.15 No.1 Jun 2019

55

programming against a conceptual model instead of directly

programming against a data storage schema, and it supports

both relational and NoSQL databases. [13, 14] EF layer

consists of a Model layer and an EDM (Entity Data Model)

layer.

Model is a layer responsible for application data management

routines to handle database operations. [11] It contains a set of

domain classes to represent each element in the database in

the form of entity within the application regardless of real

database structure and type. This facilitates the

communication between application and data source.

EDM is a mapping layer responsible for creating a

relationship between application data and data stored in

database. It describes the structure of data despite how it is

stored. [13, 15] It consists of three basic components:

• Conceptual Schema is responsible for representing

the structure of data in form of entities and relationships using

a domain-specific language called Conceptual Schema

Definition Language (CSDL). [15]

• Mapping Schema contains information about how

entities and relationships from conceptual layer are mapped to

actual tables at logical layer. Mapping information is

represented using an XML-based language called Mapping

Specification Language (MSL). [16]

• Storage Schema contains the entire database schema

(tables, relations, views, and keys) represented using an

XML-based language called Store Schema Definition

Language (SSDL). [16]

ADO.Net providers are responsible for communicating with

specific data store. Each database has its own provider that

allows easier and faster access to data. [17]

Data Stores represent databases where data is stored in (SQL

data store, Cassandra data store, and MongoDB data store).

Choices of data stores are made mainly because of their wide

popularity and the fact that they are supported by EF

architecture, so they implement their own database providers.

2.2 Resolving data integration problems
The proposed solution to resolve problems of semantic,

structural, and syntactic heterogeneities of source systems is

introduced in following sections.

2.2.1 EF Layer: Solve semantic and structural

heterogeneity problem
The basic idea is to create a middle layer between data source

and user to retrieve and execute queries easily. Then, merge

results and display them in a unified form to the user.

EF layer represents the middle layer in the proposed

architecture. This layer is built automatically through EF

graphical user interface or manually by writing codes of

domain model classes and EDM schemas. In case that data in

data stores are identical (e.g. the same table in SQL server

refers to the same collection in MongoDB) then the developer

can generate EF layer automatically. If data is not identical in

data stores, then the developer will create the EF layer

manually to handle semantic differences easily. Figure (2)

shows how EF layer works.

Fig 2: Example of how EF Layer works

Domain Classes allow the developer to focus on domain

object instead of database object. Each object in database (e.g.

table in SQL, collection in MongoDB) has a domain model

class that contains all its metadata information (e.g. table

name, column name, and column datatype) in form of

properties to facilitate developer’s work.

EDM is responsible for generating general and independent

descriptions of the data models of source systems called SS

(Storage Schema), CS (Conceptual Schema), and MS

(Mapping Schema).

EDM schemas contain all metadata about source system that

will help in resolving semantic and structural heterogeneities.

The data model descriptions are based on XML elements as

mentioned in section (2.1) because XML is a text based

markup language with self descriptive tags that provide easy

and understandable structure of the data of schemas.

SS allows the developer to overcome the problem of

differences in the data model of source databases by

representing the real information of the source database as

XML tags regardless of its structure. For example, in SQL

database, it stores database name and type, table name, table

columns metadata (name, datatype, length… etc.), and table

keys. The same SS schema with the same structure can

created for MongoDB and Cassandra DB.

Domain Classes and CS help the developer solve the semantic

differences between source databases by defining aliases for

elements that have the same meaning in different databases as

properties in Domain Classes. These alias properties

guarantee consistent name conversion for database elements.

CS contains a description for each domain class by storing all

its properties as XML tags (e.g. property name, datatype,

keys, and relationships).

MS contains information about linking both SS and CS

together to guarantee consistent semantic mapping of database

elements. It consists of XML entities where each entity

contains SS element and its matched CS element.

As it can be seen, EF layer is a flexible intermediate layer that

describes schemas of source databases independently from the

implemented data model’s type. The proposed solution proved

that the principle of generating general and independent

schemas of source systems is applicable for different

relational databases (SQL), NoSQL document-oriented data

stores (MongoDB), and NoSQL column-oriented data stores

(Cassandra DB). It can be possible to describe schemas of

other NoSQL databases easily with EDM general schemas.

MJCIS Vol.15 No.1 Jun 2019

56

2.2.2 Database Providers & LINQ Query: Solve

syntactical heterogeneity problem
Syntactic heterogeneities can be resolved by developing

database providers which can translate different queries to

different database query languages. In the proposed solution,

database queries are integrated into the programming

language of the application, written as a set-based queries, and

are called LINQ (Language Integrated Query).

LINQ queries help the developer handle data as objects when

retrieve, as well as generating queries in one format without

the need for separate query language for each database.

Providers connect to the database, translate LINQ queries into

the appropriate database query language, execute queries

against data source, and retrieve results.

Figure (3) shows an example of a LINQ query. In this

example, the developer wants to query all students’

information that is recorded in a specific subject. The query

consists of database context object that contains all database

connection information and allows the provider to identify in

which data store information is stored. The domain model

class contains all information about the student object

identical to its counterpart in the database as explained in

section (2.2.1). The condition method allows the developer to

apply specific conditions on the domain class and accepts the

conditional parameters in form of Lambda Expression.

Fig 3: Example of a LINQ Query

The LINQ query is expressed as a set of standard declarative

operators. These operators are translated by EF to command

trees representation and with the help of database providers

the CS and SS descriptions map entities of domain model

class to their counterparts in the data store, generate native

query expressions as presented in Figure (4), and execute

them in the appropriate data store.

Fig 4: Example of different query syntaxes

2.2.3 System Flow Chart
Figure (5) presents a flow chart of the proposed solution and

illustrates how different queries are executed and merged into

single output.

Fig 5: Flow Chart of the proposed solution

The user defines the requirements through the application

(e.g. the user needs to retrieve all student data in a particular

subject) and the controller receives these requirements and

translates them into a LINQ query. Then, the LINQ query is

sent to the EF layer which specifies the query type and sends

it to the appropriate data provider. The data provider translates

the LINQ query to the appropriate native query language and

executes it on the original data store. Results of queries are

materialized into a collection of objects identical to domain

classes, then, it will be easy to perform the integration process

by concatenating the resulting objects. The merged result is

sent to the user in a unified format (e.g. tabular form) as

shown in Figure (6).

Fig 6: Flow Chart of the proposed solution

3. The Proposed Model Evaluation
The proposed model was evaluated for its performance and

types of queries supported using hardware and software

configurations displayed in Table (1).

Table 1: System Hardware and Software Configurations.

Hardware
Intel(R) Core i7 3.40GHz, 8 GB RAM,

and Windows 10 Pro 64-bit operating

system.

MJCIS Vol.15 No.1 Jun 2019

57

Software
Microsoft SQL Server 2014 x64,

MongoDB 3.4.4, Cassandra 3.0.9, and

Microsoft Visual Studio 2015 x64.

Data Providers
Cassandra CData.Cassandra

v18.0.6719

MongoDB CData.MongoDB

v18.0.6705

Implementation C# Language.

This section proceeds as follows. Section 3.1 analyzes the

performance of the developed system. Section 3.2 discusses

different types of queries supported by the developed system.

3.1 Performance Evaluation
Performance tests were based on Training Center databases.

Same database schema was used for SQL, MongoDB, and

Cassandra databases. Tables of Student, Subjects, and Cert

were used during the tests. Tests were performed on two

databases with different sizes. All tests were performed 15

times to avoid result’s skewing. Different database queries

were performed on these datasets.

Each query contained only a few selected attributes. Two

queries performed select statement that affected only one

object in the source system, one without a condition and the

other one with a condition. Two queries performed join

statement; the first join statement was performed on two

objects of the source systems while the second join statement

was performed on three objects of the source systems. Data

rows resulting from executing previous queries on both

Dataset 1 and Dataset 2 are listed as follows in Table (2).

Table 2: Data rows of test queries

 Dataset 1 Dataset 2

Query 1 87401 276444

Query 2 8771 9567

Query 3 87401 182208

Query 4 8051 39622

Each query was evaluated regarding to the application’s entire

running time and data retrieval time. Entire running time starts

when the user sends a request to the system and ends when the

queried data is available in HTML table format. It includes

execution time on the application and execution time on the

database as illustrated in Equation (1).

ERT = AET + DET (1)

Where:

ERT refers to Entire Running Time.

AET refers to Application Execution Time.

DET refers to Database Execution Time.

Equation (1.1) illustrates the execution time on the application

which includes sending query request to the controller,

identifying type of query and translating it to data source’s

appropriate query language, transforming native query result

into objects, and merging results in single output. Execution

time on the database includes executing translated queries on

the data source and sending native query results to the

application.

AET = QTN + QTO + QMT (1.1)

Where:

AET refers to Application Execution Time.

QTN refers to Query Translation Time to Native Language.

QTO refers to Query Result Transformation Time to Object.

QMT refers to Query Merge Time.

Data retrieval time starts when a user request is sent from the

system to the data source and ends when the queried data is

available in object format. The data retrieval time includes

executing translated queries on original data source, retrieving

native query results, and transforming them to objects of the

system as illustrated in Equation (2).

DRT = QET + QTO (2)

Where:

DRT refers to Data Retrieval Time.

QET refers to Query Execution Time on database.

QTO refers to Query Result Transformation Time to Object.

The performance of the tested queries according to previously

mentioned time measures is presented in Figure (7) and

Figure (8).

Fig 7: Time measures of Dataset 1

The time measures of tested queries performed on the first

dataset of the test are shows in Figure (7). In Dataset 1, the

highest average values of the entire running time were in third

and fourth query with values 0.719 and 0.663 seconds

respectively. These values were affected by many factors the

number of records returned from the queries about 87401 and

8051 records respectively, the complexity of join operation

(query 3 affects 2 objects of source systems and query 4

affected 3 objects of source systems), and the execution time

on each data source separately.

The next step after data was retrieved from each data source

was to merge them in single output. The concatenation

process is very fast. It required about 0.005 seconds merging

29151 records from SQL with 29099 records from Cassandra

with 29151 records from MongoDB which was highest

average value according to Figure (7), and in case of smaller

number of records the merge took about 0.000 seconds.

MJCIS Vol.15 No.1 Jun 2019

58

Fig 8: Time measures of Dataset 2

The time measures of tested queries performed on the second

dataset of the test are shown in Figure (8). In Dataset 2, the

entire running time increased dramatically in case of query 3

and query 4 with values 2.020 seconds and 2.004 seconds

respectively. The reason for this increase was the complexity

of join operation which in turn increased the execution time

on each data source. Another reason was the big number of

records retrieved, about 182208 records were retrieved from

query 3 whereas about 39622 records were retrieved from

query 4 which was smaller than records retrieved from query

3; however, joining three objects on three different data

sources is a very complicated and exhausted process.

Concatenating records retrieved from each data source is a

very fast process. To merge about 92148 records from each

data source together, it needed about 0.014 seconds and with

smaller number of records it needed about 0.004 seconds to

perform the merge operation as shown in Figure (8).

Overall, it can be stated that the entire running time of the

solution depends primarily on the speed of executing native

queries on different databases and on the transfer time

between application and databases. The transfer time can be

enhanced by increasing the capabilities of the server which

hosts the application (e.g. higher processor and bigger RAM).

3.2 Supported Queries
The purpose of the application of the proposed solution is to

retrieve data from heterogeneous data sources (SQL,

MongoDB, and Cassandra) regardless of how it is stored. This

means that the application depends primarily on the SELECT

statement in its multiple forms, which depends on the nature

of the user's requirements. In the proposed solution, the

application uses LINQ as a standard query language for

different data sources with the help of data providers and EF

layer. LINQ allows developers to execute almost all kinds of a

select statement on different databases easily. Table (3)

presents a list of some forms of a select statement which

performed on the proposed solution.

Table 3: Supported Queries List.

LINQ

 Query

SQL

DB

Mongo

DB

Cassandra

DB

Select

All
✓ ✓ ✓ ✓

Select

Where

✓

with

restrictions

on

Cassandra

✓ ✓

✓

with

restrictions

Join ✓ ✓ ✗ ✗

Order By ✓ ✓ ✓

✓

with

restrictions

Aggregate

Functions
✓ ✓ ✓ ✓

Group By ✓ ✓ ✓ ✗

According to Table (3) Cassandra allows filtering data on a

select statement but with a restriction that the filtering column

is a primary key or an indexed column. Unfortunately, the

LINQ query couldn’t solve this issue.

The join operation is not supported by MongoDB (until v. 2.3)

and Cassandra (until v. 3.10). In the proposed solution, LINQ

query succeeded in executing the join operation on both

databases with the help of their data providers.

The group by operation can’t be executed on Cassandra (until

v. 3.10 with restriction that the group by column is a Partition

Key or Partition Key and Clustering Key), but it was executed

easily using LINQ query.

The order by operation is supported on Cassandra but only if

the select statement has a where clause and the ordering

column is a clustered column, this was solved by a LINQ

query and data could be sorted easily.

As it can be seen in Table (3), the proposed solution focused

on the most common used forms of the select statement and

provided an efficient way to execute them despite of the

restrictions mentioned above.

3.3 The Proposed Model Advantages and

Disadvantages
Based on the model evaluation and the performance analysis,

the proposed model advantages and disadvantages can be

declared as following:

Advantages of the proposed model:

1. Only one query language LINQ.

2. Add any type of database if it has the appropriate

ado.net provider.

3. Allow developers of any organization build their

own integrated application easily using the same

structure of the proposed model.

4. Overcome heterogeneity problems (syntax,

structure, semantic).

5. Handle almost all common clauses used for

retrieving data easily even if they are not supported

by native database.

6. No data conversion from SQL to NoSQL or from

NoSQL to SQL because data is executed on each

data source and retrieved in uniform format.

Disadvantages of the proposed model:

MJCIS Vol.15 No.1 Jun 2019

59

1. Performance is not good enough due to slow

running time but can be solved if host server has

better specifications.

2. Support only Cassandra and Mongo but can be

solved if provider of other types is available.

3. Support some selected clauses from SELECT

statement but can be tested and applied in future.

4. Conclusion & Future Work
This paper focuses on solving problems which result from

integrating and retrieving data stored in different data sources.

A uniform model to integrate SQL and NoSQL databases is

introduced. The proposed solution depended on an EF layer to

represent meta-data information about different data sources

in EDM schemas and map them to original database objects in

order to execute queries. The solution used LINQ as a

standard query language to write different database queries in

single format, and then translated by database providers to

native queries. The results were concatenated and displayed in

single tabular form.

The proposed solution provides the developer with an easy

and effective solution to write queries against different data

sources using one query language. The solution succeeded in

performing operations that are not supported by Cassandra

and MongoDB. Also, it provided an efficient way to retrieve

data in uniform format.

4.1 Future Work
In the future, supporting all other forms of the select statement

is an important issue to be considered. Also, the proposed

system was built specifically for SQL, MongoDB, and

Cassandra databases so an area to be researched will be to add

other NoSQL databases to the system.

5. ACKNOWLEDGMENTS
I would like to thank Dr. A. Rezk and Dr. Sh. I. Barakat for

their help and guidance when supervising this research.

Thanks and gratitude goes to my family and friends for their

support in my study.

6. References
[1] Bc. Ondrej Pánek. Integration of Heterogeneous Data

Sources Based on a Catalog of Master Entities (May 2015).

Czech Technical University in Prague - Faculty of Electrical

Engineering - Department of Computer Science and

Engineering. Pages (1-4)

[2] Sunita Ghotiya, Juhi Mandal, Saravanakumar Kandasamy.

Migration from relational to NoSQL database (2017). IOP

Conference Series: Materials Science and Engineering. Vol

(263). Page (1)

[3] Oluwafemi E. Ooju, Sahalu B. Junaidu, S.E. Abdullahi.

TripleFetchQL: A Platform for Integrating Relational and

NoSQL Databases (February 2016). International Journal of

Applied Information Systems (IJAIS). Vol (10) - No. (5).

Pages (54-56)

[4] Ayman E. Lotfy, Ahmed I. Saleh, Haitham A. El-Ghareeb,

Hesham A. Ali. A middle layer solution to support ACID

properties for NoSQL databases (2015). Journal of King Saud

University - Computer and Information Sciences. Vol (28).

Page (134)

[5] John Roijackers. Bridging SQL and NoSQL (2012).

Eindhoven University of Technology - Department of

Mathematics and Computer Science. Pages (2-4, 65-67)

[6] Tommi Kähkönen. Understanding and managing

enterprise systems integration (2017). Page (13)

[7] Ananias Laftsidis. Enterprise Application Integration.

IBM Sweden. Pages (1-3, 8)

[8] Marinos Themistocleous, Zahir Irani, Peter E.D. Love.

Enterprise Application Integration: An Emerging Technology

for Integrating ERP and Supply Chains (2002). ECIS 2002

Proceedings, 88. Page (1089)

[9] Agnes Vathy-Fogarassy, Tamas Hugyak. Uniform data

access platform for SQL and NoSQL database systems

(September 2017). Journal of Elsevier - Information Systems.

Vol (69). Pages (8-11, 31)

[10] ThankGod S. Adeyi, Saleh E. Abdullahi, Sahalu.B

Junaidu. DualFetchQL System: A Platform for Integrating

Relational and NoSQL Databases (December 2013).

International Journal of Engineering Research & Technology

(IJERT). Vol (2) - Issue (12). Pages (1975 – 1980)

[11] Leon Forte. Building a modern web application using an

MVC framework (2016). Oulu University of Applied

Sciences. Page (11)

[12] Basic MVC Architecture (24/12/2018). URL:

https://www.tutorialspoint.com/struts_2/basic_mvc_archite
cture.htm.

[13] Atul Adya, José A. Blakeley, Sergey Melnik, S.

Muralidhar. Anatomy of the ADO.NET entity framework

(2007). SIGMOD '07 Proceedings of the 2007 ACM

SIGMOD international conference on Management of data.

Pages (878-879)

[14] The ADO.NET Entity Framework Data Provider

(24/12/2018). URL:

http://docs.actian.com/psql/PSQLv13/index.html#page/adon
et/psqldotntty.htm.

[15] Entity Data Model (24/12/2018). URL:

https://docs.microsoft.com/en-

us/dotnet/framework/data/adonet/entity-data-model.

[16] Entity Framework Architecture (24/12/2018). URL:

http://www.entityframeworktutorial.net/EntityFramework-
Architecture.aspx.

[17] Suela Isaj , Moditha Hewasinghage. Entity Framework

Advanced Databases (2015). Page (4)

https://www.tutorialspoint.com/struts_2/basic_mvc_architecture.htm
https://www.tutorialspoint.com/struts_2/basic_mvc_architecture.htm
http://docs.actian.com/psql/PSQLv13/index.html#page/adonet/psqldotntty.htm
http://docs.actian.com/psql/PSQLv13/index.html#page/adonet/psqldotntty.htm
https://docs.microsoft.com/en-us/dotnet/framework/data/adonet/entity-data-model
https://docs.microsoft.com/en-us/dotnet/framework/data/adonet/entity-data-model
http://www.entityframeworktutorial.net/EntityFramework-Architecture.aspx
http://www.entityframeworktutorial.net/EntityFramework-Architecture.aspx

