D UNT,
S ¢

NP0,
#nG S

Roed Volume 22 No. 2

PORT SAID ENGINEERING RESEARCH JOURNAL
Faculty of Engineering — Port Said University
September 2018

pp: 56:63

Reliable Analytical Approach for Multi-taper Spectrum Sensing in

Cognitive Radio Networks
Heba Allah.O.Selim * , Heba Y.M.Soliman?,and Ahmed Ahmed Shaaban Dessouki®

ABSTRACT

Multi-taper detection method (MTM) is a powerful technique in spectrum sensing for Cognitive radio networks. In
this paper, reliable and simple analytical expressions for the mean and variance of the Probability Density Function
(PDF) of the MTM spectrum detector are derived. Then, closed-form expressions for detection and false alarm
probabilities for the MTM spectrum detector have been obtained. Intensive simulation based work is conducted under
AWGN channel conditions using MATALB to confirm and evaluate the proposed theoretical study. The confirmation
and the evaluation processes are designated to verify many perspectives such as: the receiver operating characteristics
(ROCs), the detection rate with respect to SNR, and minimum required sample points (N),,, to achieve a certain
performance. All these perspectives are simulated under setting of multiple Slepian tapers (k), sample points (¥), and
false-alarm probability ( P¢). Also, a comparison with energy detection method is presented. The simulation results
confirm that the proposed model is reliable and robust under all settings of the simulation parameters.

1. INTRODUCTION

The use of the electromagnetic radio frequency RF
spectrum is licensed by governments since it is a scarce
resource. In case of static RF access, fixed channels are
assigned to licensed primary users. These fixed channels
cannot be assigned to unlicensed secondary users even if
they are unoccupied.

Cognitive radio (CR) appeared as a suitable solution to
solve the problem of inefficient use of frequency resource
[1]. A cognitive radio system detects the available
spectrum, gains information about, and then captures the
spectrum holes. These unoccupied holes are assigned to
the unlicensed secondary users [2]. A monitoring of these
holes is very important to check the reappearance of the
licensed primary users [3-8]. Spectrum sensing can detect
spectrum holes in different techniques.

Matched filtering [9] and Cyclo-stationary detector
[10] are of the spectrum detection techniques. They have
high performance compared with other techniques. Their
problem is that they require prior knowledge about the
primary users’ signaling. Energy detection [11] is a non-
coherent detection technique. The main advantages of
energy detection are short time of sensing and simplicity.
These advantages come at the expense of moderate
performance due to the use of single rectangular window
tapering [12-13].

The multi-taper spectrum estimation method [14] is
another spectrum detection technique. It overcomes some
of the limitations of conventional Fourier analysis.
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When we apply the Fourier transformto get spectral
information from a signal, each Fourier coefficient is
assumed to be a reliable representation of the amplitude
and relative phase of the corresponding component
frequency. This assumption is not always true [15-18].

For instance, a single trial represents only one noisy
realization of the process considered. The same situation
happens in statistics when estimating measures of central
tendency, it is not accurate to estimate qualities of a
population using small samples. Likewise, a single sample
of a process does not provide a reliable estimate of its
spectral properties. These problems can be overcome by
averaging over many realizations of the same event.
Instead of ensemble averaging, the multi-taper method
reduces estimation bias by getting multiple independent
estimates from the same sample [19-24].

Each taper is multiplied by the signal to provide a
windowed trial to estimate the power at each component
frequency. Since each taper is orthogonal to all other
tapers, the windowed signals give statistically independent
estimates of the spectrum. The final spectrum is obtained
by averaging all the tapered spectra [25]. In [26] the
Discrete Prolate Slepian Sequences (DPSS), which are
developed by David J. Thomson [27], have been chose as
tapers since they are mutually orthogonal. In practice,
aweighted averageis often used to overcome the
increased energy loss at higher order tapers [28]. MTM is
considered as a less complex approximation of the
Maximum Likelihood (ML) optimal spectrum estimate
method [29].

Although, there are many published papers on the
Multi-taper spectral detector, there is a missing of
analytical closed-form equations suitable for numerical
evaluations.
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https://en.wikipedia.org/wiki/David_J._Thomson
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Few papers such as [18-21] work on reaching
analytical closed-form equations for detection performance
of the Multi-taper spectral detector in CR networks.

In [18], simple closed-form expressions for the
detection, and false alarm probabilities are presented for
spectrum sensing detection based on MTM. However, the
derived closed-form for both the mean and variance of
both hypotheses don't verify the nature concept of MTM,
which is a reduction in the variance at the cost of
decreasing resolution.

In [19], an optimal detector solution for investigating
detection performance of the Multi-taper spectral detector
in CR networks is proposed. The detector is robust for
various multiple data tapers and the detection performance
is reliable. However, it is difficult to implement the mean
and variance values blocks for their complexity. In
addition, the system building block need natural
logarithmic calculation block.

In [20], Multi-taper spectral detector is formulated as a
quadratic function of Gaussian vector, thereby facilitating
the determination of detection and false-alarm
probabilities. However, the false-alarm probability( Py) is
not a simple function of threshold (y). Therefore, the
Newton-Raphson method is used to determine y for a
given Pr. Also, its characteristic function (CHF) has
inherent singular values which exclude a simple
expression for detection probability.

In [21], Multi-taper spectral detector is formulated as a
quadratic function of Gaussian vector as illustrated in [20].
Also, the calculation of the false-alarm probability( Pf) is
not straight forward as a function of threshold (y).

In this paper, the energy detection and multi- taper
spectrum sensing methods are discussed. Closed-form
analytical expressions for the mean and the variance of the
Probability Density Function (PDF) of the MTM detector
are formulated, where the PDF of the MTM detector is
approximated to be Gaussian. Then, simple and reliable
closed-form expressions for the probability of detection
and probability of false alarm are derived.

The remaining parts of the paper are organized as
follows: Section Il describes the model of the energy
detection spectrum sensing. Section 1l gives a description
of the MTM spectrum sensing method with a complete
derivation of the probability of detection and the
probability of false alarm of the MTM detector. Section 1V
shows and discusses the simulation results. Finally,
Section V is devoted for the main conclusions.

2. ENERGY DETECTION

Energy detection is a non- coherent non- cooperative
detection technique. It detects the primary signal based on
the energy sensed. Existence or absence of the primary
user can be decided by comparing the received energy
with a predefined threshold.

The signal detection at the secondary user can be
expressed by the following hypothesis testing problem; H,
for absent signal and H; for present signal. As a result, the
received signal can be expressed as:
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Y(t) = n(0), €y
Y(®) =S@®) +n(), )

where Y(t) is the received signal, S(t) is the transmitted
signal, and n(t) is white noise which is assumed to be
Gaussian random variable with mean zero and variance
a2 and Y(n), S(n) and n(n) are their time sampled form.
The decision rule for the previous hypothesis problem is

for Ho
for Hy

0<t<T:H,
0<t<T:H

e<y
ey

(3)
4
where ¢ is the test statistic and y is the threshold voltage.
H, indicates that primary user is absent while it is actually
present. H; indicates that primary user is present. It is very
important to choose a suitable value for the threshold y.
Accordingly, the probability of false alarm P and the
probability of detectionP, can be defined as

Pr = P.(e 2 y)H- 5)

(6)
After comparing the test statistic with the threshold, the

final decision on existence or absence of the primary user
is taken. The test statistic can be given as

1 N
_ 2
e=— Y@
n=1

where N is the sample number such that N =~ TW, where
TW is the time-bandwidth product. In our model, the
power spectrum density PSD of the received signal is
approximated at higher values of N to normal distribution.
The mean of this process for both hypotheses are W/H; and
WHo, and variances are 6°/H; and o®/ Ho. The probability
of detection and false alarm are given by:

P =Q<L#/Ho>
! Va?/H,

y=(@Q™* (Pf))v o6%/Hy + u/Hy

P;=Q <M)
‘ Vo?/H
The mean and variance for energy detection has been
derived as follows [11-13].
For hypothesis H,, the mean of energy is o2, and the

Pq = P.(e 2 y)H,

Q)

®)
€)

(10)
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variance is (ﬂ)
N
For hypothesis H,;, the mean is (Eg + 02) and the
20¢(SNR+1)2)
— )
The probability of detection and false alarm can be
written as:

variance is (

y— (Es+ 0\2/\/)

( 20(},(5NR+1)2)
N

Pi"=Q

an



(12)
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3. MULTI-TAPER SYSTEM MODEL

A non- stationary signal generated from a random
statistical process is considered. The signal is sampled to
get the finite discrete sample sequence X; ; t = 0; 1; :N-1,
where t is time index. As shown in Fig. 1, X is then
multiplied with a number of discrete Slepian sequences
h % (N,W). The associated Eigen values of k" taper are .
Then, the products are applied to Fast Fourier Transform
(FFT) to get the power concentrated in a chosen
bandwidth W. The half time bandwidth product is NW and
the total number of generated tapers is 2NW. The received
data samples have been assumed to be scaled, so that the
noise variance is unity, i.e., o2, = 1.
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Fig. 1: Multi-taper system model.

The K different Eigen spectrums produced are defined as
N-1

V() = ) REQN, W)X,e 2t (13)
t=0

where f; are normalized frequency bins. Moreover, we got the
total estimated power, according to Thomson equation [18, 26].

k=0 (N, W)Y, (F)?

SMTM(fi) = 14)
On the other side, the energy detection method gives
the power spectrum density estimation as follows.

N-1
Sep(f) =% Z(;|Xte_2j"ft |A2 (15)

In order to compare the MTM detector with other
systems, we follow the hypothesis model stated in
equations (1) and (2).

In the proposed model, the power spectrum density
(PSD) of the received signal is approximated at higher
values of N to normal distribution. The mean of this
process for both hypotheses are p/H; and p/H,, and
variances are 6%/H; and 6%/ H.
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The probability of detection and false alarm are given
by equations (8) and (9).

Here, we follow the method that reported in [18] with
recalculation of the mean and variance considering the
MTM nature concepts.

Since we have a number of K independent random
variables g(x), the expectation of K tapers random process
G(x) with A, as the weights, can be calculated as:

K-1

EI6CO) = ) aiElg()i]

i=0

(16)

g(x); = YN FFT(Signal x Taper;)|?) and

a; = Zk—k and the variance is calculated as

where

Variance =

K=_()1 a’i2 Var[g(x)i] +
2 ¥lfej=0 a:a;Cov[g(x);g (x)] (17)
where covariance (Cov) for i #j is calculated by
Cov[g(x);g(x);] = paio; (18)

where p is correlation coefficient . For Hy hypothesis
where noise only exists, the MTM mean pyry and the
variance a2, can be calculated as ,

umrm\Ho =
(55) Ble(1] + (52) Blg(92] o oo+ (55 Elg (0]
= (Elﬁ;k) o2 + (ﬁ) 02 et (zgk) o2,
= (ZkA )(x1 FAg e AA) =02 (19)
CTI@TM/H" =

() % (G + (i) % () vt (i)
() + 2ol (G < 5O+ (W,c)z) ()]

(
(Ga5) < GO+ (@) < ()] +

o +|(FG5)
]+ (G < (5D
= (@ﬁﬁ) X (A2 + A% +22 )+ [(égz‘)’fvlv)
(PN Py PR B P +
Re-a )] (20)

For independent uncorrelated Tapers with p =0, and for
first higher order tapers where power concentration ~1.

2 +23
Xk A)? Y
20,
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For hypothesis H; where signal and noise exist,

+o+ 22 1

=7 (21)
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For independent uncorrelated Tapers, p =0, and for first

higher order tapers where power concentration =~1.
2 _ { 20%(SNR+1)?
ourm\H1 = (—NK ) (25)

So, the probability of detection and false alarm become

/y—a,f,(SNR+1) \

PY™ =Q (26)
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4. SIMULATION RESULTS AND DISSCUSION

In this section, the accuracy of the proposed theoretical
formulas for the mean and variance of the Probability
Density Function (PDF) of the MTM spectrum detector is
evaluated. Consequently, the verification of the closed-
form expressions for the probability of detection ( P}™),
the probability of false alarm PM™, and the threshold y
are verified. This is done by comparing the theoretical
values of Py'™, PM™ and y determined by equations
(26), (27), and (28) respectively, with their values
computed directly from computer-simulated data using
MATLAB software.

The computer-simulated data is computed under two
hypotheses Hy and H; and used in the verification process
through two approaches.

1. The first approach computes the mean and variance
of the primary users' received (PDF), then, Pf,y, and Py
are obtained by equations (8), (9), and (10), respectively,
under different simulation conditions. PDF for the energy
detector is (Y (t))%and for the MTM spectrum detector
can be obtained by equation (14), or using the MATLAB's

59

function (pmtm) which generate the power spectrum
density (pi x pxx).

2. The second approach computes the theoretical
threshold (y) by equation (9). Then, the decision rule given
by equations (3) and (4) is used to compute Py for a
given P; under different simulation conditions using Monte
Carlo simulation model. The decision rule depends on the
test statistic (¢) which can be obtained by calculating the
mean value of the primary users' received (PDF). Monte
Carlo simulation model is used; where the primary user's
signal is assumed to be normally random distributed
signal. The simulation runs 10000 times for realization.

Some simulation results are given using randomly
generated signals to illustrate the performance of the
proposed analytical detection approach. The system model
is simulated under different conditions, such as, different
number of tapers K, AWGN channel with different values
of Signal-to-Noise Ratio (SNR), and different number of
samples (N). Also, the performance of the MTM system is
compared with Energy detection under the same
conditions. We exploit our results under two hypotheses
Ho and H;

First, the accuracy of the relationship between
probability of detection and probability of false alarm has
been verified by comparing theoretical one determined by
equations (26) and (28) with the one derived directly from
computer-generated data using equations (9) and (10), i.e.,
using the first approach. The comparison results are shown
in Fig. 2.

In Fig. 2, the proposed system model was simulated
with N=512, K=5 & 3 respectively, and SNR = -10 dB.

=
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+|=P—Energy Simulation SNR=-10
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Probability of False Alarm
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Fig. 2: Probability of detection versus probability of false
alarm for MTM and Energy detection at SNR=-10 dB.

The Figure shows that the receiver operating
characteristics (ROC) which were generated from the
proposed theoretical formulas for the probability of
detection ( Py'™) and the probability of false alarm P}™
is matched well with that generated by simulation under all
settings of false-alarm rate. This confirms that the
accuracy of the proposed theoretical formulas for the mean
and variance of the Probability Density Function (PDF) of



the MTM spectrum detector matches well under all
settings of false-alarm rate and other system parameters.

From this Figure, it is obviously noted that, probability
of detection for MTM is significantly increased to reach
90% at probability of false alarm less than 10%. In the
same Figure, the detection performance of MTM is
compared with Energy detection. We notice that MTM
outperforms Energy detection by about 40% and 30% at
pr = 10% for K=5 and K = 3, respectively, under the
same conditions.

Second, the accuracy of the proposed formula to
determine the threshold, for MTM detector, has been
verified by comparing theoretical one determined by
equations (28) with one derived directly from computer-
generated data using equations (9) with the first approach
under HO hypothesis. The comparison result is given in
Fig. 3. The Figure also shows this comparison for Energy
detector.
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Probability of False Alarm
Fig. 3: Comparison between theoretical and simulated
thresholds for MTM and Energy detectors for N=1024,
K=2 and SNR=-15dB

From Fig. 3, it is observed that the proposed theoretical
threshold matches well with the threshold generated by
simulation under all settings of probability of false-alarm
for both MTM and ED detectors.

Also, the verification of the accuracy of the proposed
closed-forms formulas for both the mean and variance of
the Probability Density Function (PDF) of the MTM
spectrum detector is done through the simulation using the
second approach. In this simulation, to enhance the
matching between theoretical results with simulation
results, we multiply test statistic (¢) by an empirical
correction factor Cf which adapts according to the
simulation parameters as given in equation (29).

Cf =1+ 0.025 x K x (ps — 0.2) + 0.3 x SNR (29)

The suggested empirical correction factor Cf is tested
for different values of K, ps, N and SNR. It is found that,
Cf enhances the accuracy of the simulation results
effectively, as indicated in the following Figure.

In Fig. 4, for different values of K (K =5 and K = 2)
with SNR = —15dB, and N = 512 there is a good fitting
for ROC curves that are generated from the Monte Carlo
simulation (MTM Simulation), using adapted test statistic
g, with that generated from the proposed analytical
formulas (MTM Theory). Also, the Figure shows that for
increase in K, the detection performance is enhanced and
the detector becomes more reliable under the
same SNRand N. For example, at p; = 20% ,the P;
equals about 60 % at K = 5 while it equals about 45% at
K=2.
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Fig. 4: MTM probability of detection versus probability of false
alarm for different number of tapers at SNR=-15 dB.

Also, the proposed model verification and behaviour is
tested for a wide range of SNRs with different p, as
shown in Fig. 5.
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Fig. 5: Probability of detection versus SNR at K=4 and
N=512 for different values of pf.

The probability of detection values start to increase
with the increase in SNR with noticeable performance
enhancement with the increase in py .

In Fig. 6, the values of P; for both theoretical and
simulation results versus different SNR values with



different number of tapers K are shown. The Figure shows
that the probability of detection becomes higher with the
increase in SNR and number of tapers K.
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Fig. 6: Probability of detection versus SNR at Pf=0.
land N=512 for different number of tapers K.

The effect of sample size (N) on the relation between
P; and SNR is shown in Fig. 7. It is clear that the detection
performance is enhanced and the detector becomes more
reliable with increasing N under the same SNR, Kand P;.
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Fig. 7: Probability of detection versus SNR at pf=0.1
and K=4 for different values of sample size.

Moreover, the the proposed MTM model is well
confirmed by comparison with the model reported in [19],
as shown in the following Figures.

From Fig. 8, it is clear that the ROC curves generated
using the proposed model matched well with that
generated with the model reported in [23] under all
settings of false-alarm rate, especially, in the low and
moderate SNR ranges, which are the important ranges in
the detection process.

The performance comparison of the proposed model
with that reported in [23] is illustrated in Fig. 9. The
Figure shows reasonable matching under all settings of N,
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especially, at low SNR. Also, the probability of detection
increases as N increases.

Also, the proposed MTM model is tested for the
minimum required number of samples (N),,, to achieve
required p, and p;. (N)mim IS a function which
monotonically decreases with increasing K, as given by
equation (30).
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Fig. 8: Comparison between ROC curves generated
using the proposed model and the model reported in
[23] with N=512.
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Fig. 9: Performance comparison of the proposed model
with the model reported in [19] with respect to the
number of samples with Pf=0.1.

The number of samples required for the proposed
MTM model and the traditional energy detection
algorithms can be computed using equation (30) and
equation (31), respectively, and are given by

“1(p;) — 01 (pg)(SNR + 1) )\°
((Q (ps) Qs;gd)( ))) 30)

2
(N min = E X

-1 _ n-1 2
Q*(ps) -0 (Pd)(SNR+1))> G1)

(N)minzzx( SNR

The equations show that the required number of
samples for a target performance varies as order of



(1/SNR2) and can be considered as an important parameter
in calculating the computational complexity of the system.
Figure 10 shows the required sample size to achieve
the required probability of detection for K=2, 5 and ED as
a function of SNR, with Pd = 0.99 and Pf = 0.001. The
Figure shows that the proposed MTM model requires
smaller sample size to achieve the same performance of
the energy detection algorithm. Also, the sample size
decreases and N increases and could be decreased more by
increasing number of tapers K according to equation (30).
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Fig. 10: The sample size to achieve the required
probability of detection for K=2, 5 as a function of SNR
with Pd=0.99 and Pf=0.001.

Also, from Fig. 10, forK =2, if N, <6, the
desirable performance, i.e. Pf = 0.001 and Pd = 0.99,
cannot be achieved at any SNR. However, N,,;; can be
decreased by increasing K, e.g., forK =5, N, IS
decreased from 7 to 2. However, in "pmtm" MATLAB
function, which is used to estimate multi-taper power
spectral density, N,,;, must be greater than the time-
bandwidth product, i.e., (N,nin > (K + 1)).

5. CONCLUSION

In this paper, simple and reliable analytical closed-form
approach to analyse and evaluate the detection
performance of multi-taper detection based technique in
CR networks is proposed. Starting from formulating
closed-form expressions for the the mean and variance of
the two hypotheses Hy and H; of multi-taper detection
technique, closed-form expressions for the detection and
false alarm probabilities for the MTM spectrum detector
have been derived. The validity of the proposed theoretical
formulas is examined intensively through computer
simulations. The accuracy of validity of the computer
simulation using the decision rule which depends on the
test statistic (€) is enhanced by multiplying test statistic (g)
by a proposed empirical correction factor which is adapted
according to the simulation parameters. The simulation
results confirm the effectiveness of the proposed method
and it is reliable and robust under all settings of simulation
parameters. A comparison of the proposed model with one
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of the reliable existing models but with more
implementation complexity indicates well matched results.
Also, a comparison between the proposed model and the
energy detection method is presented. The results of this
comparison have been compared with those concluded and
reported in the well-known literature. Similar results and
highly concordant conclusion are obtained.
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