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ABSTRACT 

Multiple sclerosis (MS) could be considered one of the most 

severe neurological diseases, which can cause damage to the 

central nervous system. Because of the regular change in size, 

location and anatomical variation of MS lesions, it is a 

challenge to accurately identify, characterize and quantify MS 

lesions on magnetic resonance imaging (MRI). Therefore, MS 

lesion segmentation and detection become an active point of 

research. 

Recently, deep neural networks (DNN) have seen a rapid 

advance in various medical image analysis fields, i.e., image 

registration, image segmentation, lesion detection, and shape 

modeling. Furthermore, convolution neural networks (CNN) 

have gained popularity in medical imaging, especially in brain 

imaging. 

In this study, an automated technique is proposed to segment 

MS lesions in MRI. This technique depends on a 3D patch-

wise region-based convolution neural network (R-CNN) for 

MS lesion segmentation in T2-w and FLAIR. 

The proposed method is evaluated using the public 

MICCAI2008 MS lesion segmentation data set, which is 

compared to other MS lesion segmentation tools. 

General Terms 

Deep learning 
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1. INTRODUCTION 
Multiple sclerosis (MS) is a chronic disease of the central 

nervous system (CNS), which causes the immune system to 

attack the protective sheaths of myelin around the axons in the 

brain. MS infects over 2.5 million individuals, as it is the 

primary cause of non-traumatic neurological paralysis in 

youth in Europe and North America, [1]. The pathological 

symbol of MS is the focal area’s existence of inflammatory-

mediated spinal cord white matter (WM) and demyelination 

of the brain. Therefore, symptoms of MS differ from a patient 

to another according to the size, number, and location of the 

affected lesion. Some patients have moderate symptoms 

which do not need medication, while, others may have a 

physical disability, cognitive decline problems, problems in 

moving around and doing the daily activities. The reason for 

MS is unknown until now; many researchers proposed that the 

disease could result from the complex interaction between 

environmental, genetic and immunological issues.  

 

In the early 1980s, MRI was presented to evaluate and 

diagnose MS [2].  MRI has become the most valuable 

mechanism for evaluating MS patients, as it not only helps in 

diagnosis but also monitors the progress of the disease and 

determines the pattern of the disease. Conventional MRI such 

as proton density-weighted (PD), fluid-attenuated inversion 

recovery (FLAIR), T1-weighted (T1) and T2-weighted (T2) 

are sensible to lesions and demonstrate these lesions with 

various intensity to peripheral tissues. Further, the intensity of 

MS lesions and the brain tissue are various in different MRI 

sequences; therefore, to accomplish an adequate algorithm, it 

is essential to use multispectral images. Segmentation 

techniques depend primarily on the quality, application, and 

characteristics of MRI. Segmentation of MS lesions in MRI is 

challenging because of various reasons, for instance, irregular 

intensity, partial volume effects, noise and the parameters of 

imaging [3]. 

 

Although manual segmentation of MS lesions is time-

consuming besides it focuses on inter- and intra –expert 

variability, it is still acknowledged as the MS standard. 

Therefore, over the last 20 years, the necessity to develop a 

fully automated MS lesion segmentation technique becomes 

vital in the medical imaging community research [4]. The 

validation of segmentation in medical images is complicated 

because of the deficiency of an adequate standard reference 

required to compare the results of any segmentation approach. 

It is helpful to compare the segmentation results to histology, 

however, for clinical data, it is scarcely available, and it can 

be challenging to relate histology to MRI [5]. Hence, in 

general, validation studies depend on expert imaging data 

evaluation. 

2. RELATED WORKS 
Nowadays, standard techniques used for image analysis in 

medical trials are manual; which is expensive, complicated 

and time-consuming. In manual segmentation, errors exist 

because of partial volume effects; indefinite borders resulted 

from the change in tissue characteristics and low lesion 

contrast. Inconsistencies in the segmentation are also 
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common, including experienced specialists. Several 

researchers have studied the variability ingrained to manual 

segmentation of MS lesion who stated that the intra-rater 

volume variability of 6.5% and inter-rater of 14% [6]. Hence, 

an automatic multitude of methods for MS lesion 

segmentation and detection have been suggested [7]. The 

recommended methods for segmentation of MS lesions 

comprise supervised and unsupervised learning. 

 

Unsupervised methods are suitable for practical employment 

since they do not participate in previous knowledge. 

Unsupervised lesion segmentation methods are based on brain 

tissue intensity models, where the image voxels, including 

high intensities in FLAIR, are modeled as abnormal values 

that depend on intensity distributions [8]. Optimal 

segmentation finally has achieved via an expectation 

maximization algorithm. After that, the outlier voxels turned 

into the potential candidates for lesions and later a simple 

threshold can improve the segmentation [9]. Instead, Bayesian 

systems such as mixtures of Gaussians [10] or Student’s 

mixture models [11] characterized lesions as outliers of the 

mixture model. In addition, Garc´ıa-Lorenzo et al. [12] joint 

this technique with a mean shift algorithm to segment the MS 

lesion.  

 

Further information on the intensity distribution and the 

predicted location of normal tissues can be included through a 

collection of healthy subjects [2] to determine lesions with 

greater accuracy. Local intensity information may also be 

included through a Markov random field (MRF) to achieve 

soft segmentation [13]. The detected lesions in the range of 

the white matter (WM) using the mathematical morphology 

method of coarse-to-fine of T1-w, FLAIR, and diffusion-

weighted imaging (DWI) sequences. In [14], fuzzy clustering 

specifies WM voxels and outlier gray matter (GM), and after 

that, lesion maps are being produced. In order to correct for 

noise and image artifacts, graph-cut techniques are applied for 

combining spatial information from the local neighborhoods 

with the intensity model [12].  One of the principal challenges 

of unsupervised methods is that, frequently, the outliers are 

not specific to lesions, which may be due to structures of a 

small anatomical, for instance, blood vessels, imaging 

artifacts, partial volume, and intensity inhomogeneity which 

lead to false positive results. 

 

Supervised methods for lesion segmentation apply atlases or 

templates, which in general consist of multi-contrast MRI 

besides their manually delineated lesions. As seen in the ISBI-

2015 lesion segmentation challenge [15], supervised 

techniques have become more common and significant than 

unsupervised methods, with 4 of the top 5 supervised 

methods. Supervised techniques learn how to transform the 

intensity of MRI into lesion labels in atlases. After that, the 

learned transformation is implemented to a new invisible 

image to generate the lesion labels of this image. Logistic 

regression [16] and support vector machines [17] was applied 

for lesion classification, where features include voxel intensity 

of the voxel-wise from multi-contrast images and the task of 

classification is to label the voxel image as a lesion or not. In 

[18], the authors used k-NN classification with tissue type 

before classifying WM lesions from 3.0T MRI. In [19], MS 

lesions in FLAIR images with noise, also, other types of 

artifacts are automatically segmented using the Cellular 

Neural Network. Another method proposed in [20] requires 

the user to supply some ROI's (Regions of Interest), which 

include lesions as the ground truth rather than the labeled 

lesion map. As an alternative to the voxel-wise intensities, 

patches have proven to be a convenient and robust feature. 

Roy et al. [21] proposed patch-based lesion segmentation 

using samples from an atlas corresponding to patches in input 

images by applying a sparse dictionary method. The 

algorithms based on random forests and k-NN [22, 23] 

utilized patches besides other features, calculated at a specific 

voxel, for predicting the label of that voxel. The dictionary-

based approaches [24-26] apply patches of an image from 

atlases to learn a patch dictionary, which adequately defines 

patches of potential lesions and non-lesions. For a new unseen 

patch, identical patches are discovered from the dictionary 

and associated with weights based on the similarity.  

 

The recent advance in automatic segmentation applying deep 

learning originates from a domain of the cell membrane 

segmentation proposed by Cires¸an et al. [27]. They had 

suggested applying a convolution neural network (CNN) to 

classify the image patch centers without the feature extraction 

step. Alternatively, the lower layer of the network learns the 

features indirectly during the training, whereas the higher 

layers perform the classification using the learning ability of 

features. Despite, if the number and size of patches are large, 

the time required for training makes the approach not 

applicable. 

 

Recently, CNN or deep learning [28], have achieved 

sophisticated results in various computer vision challenges 

like object recognition and detection. CNN become popular in 

brain imaging, particularly in tissue segmentation [29] and 

brain tumor segmentation [30, 31]. The principal advantage of 

CNN over traditional machine learning algorithms is that 

CNN does not require hand-made features, so it is suitable for 

a different set of problems when finding the optimal features 

is unclear. CNN can manage 3D images or image patches. 

Therefore, 2D [35] and 3D [34] algorithms have been 

proposed, but 2D patches are often favored because of the 

speed and memory efficiency. With progress in graphics 

processor units (GPU), neural network models can be trained 

on a GPU within a fraction of time taken by that with multiple 

CPUs. Brosch et al. [34] submitted a cross-sectional method 

to segment MS lesions rely on deep 3D CNN with two 

interconnected pathways and shortcut connections. Havaei et 

al. [31] proposed a segmentation structure for lesions 

including convolution pipes of autonomous image modality to 

diminish the missing modalities impact of new unseen 

instances. Maleki et al. [36] used the CNN architecture to 

extract features from 2D MR FLAIR images and a three-layer 

neural network as a classifier. 

This paper proposes a patch-wise region-based convolution 

network (R-CNN) for the automated segmentation of MS 

lesion. First, the input images are pre-processed to reduce 

noisy artifacts and as a result, enhance the segmentation 

accuracy. For this purpose, the skull stripping, and bias field 

correction have been applied. After that, 3D patches have 

been extracted from the input images for training the R-CNN 

model and producing a probability map of the MS lesion. The 

proposed method has been tested on the publicly available 

MICCAI2008 MS challenge dataset to differentiate its 

performance from other MS lesion segmentation methods. 

3. THE PROPOSED METHOD 
Since 2012, CNN has gained much acceptance after the 

ImageNet classification challenge, where Alex Krizhevsky’s 

network obtained a wide margin [37]. Since then, CNN has 

been used favorably for additional applications like object 
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segmentation and detection. Because of the enormous number 

of CNN parameters and the compact structure, recognizing 

the reason why they perform so well is not identified, 

numerous researches have been committed for this purpose. 

Recently, CNN has been utilized favorably in an analysis of 

medical images, wherever volumetric data are usually 

obtainable. 

CNN learns the relations between the pixels of input images 

by obtaining the representative features through the 

convolution and pooling processes. The features detected in 

every layer that use the learned kernels differ in terms of 

complexity, that is to say, the first layers extract the simple 

features, such as the edges and the successive layers, 

extracting more complex and high-level features. The 

convolution procedure in CNN has three essential benefits. 

First of all, the weight sharing technique allows managing 

high dimensional data, whether 2D or 3D, like videos and 

volumetric images. Secondly, the local connectivity of input 

topology can be employed using 2D or 3D kernels. Finally, a 

slight change invariance is obtained by applying the pooling 

layer. 

The proposed system overview is shown in Figure 1. First, the 

input of modality FLAIR or T2 is pre-processed. Second, a 

patch-wise technique used for region proposal generation and 

finally, extract a fixed-length feature vector from every region 

and fed it to the R-CNN. 

Figure 1. The proposed system overview 

The initial step aims to pre-process the original images. In the 

pre-processing phase, the skull stripping was performed in 

addition to the bias field correction. After pre-processing the 

images, 3D patches were obtained from the input images 

obtained for training an R-CNN model and producing a 

probability map of the MS lesion. The proposed method has 

been tested using MICCAI 2008; the MS challenge data set 

compares its performance and other MS lesion segmentation 

methods. 

3.1 Pre-processing 

Segmentation of the brain MRI is complicated due to various 

reasons, such as normal anatomical variations, blurred edges, 

noise, overlapping intensities, and the variable imaging 

parameters [8]. Thus, pre-processing steps should be 

performed before implementing any strategy for MS lesion 

segmentation. Pre-processing of MRI has a significant 

influence on the accuracy of segmentation results, which 

composed of these steps: co-registration, skull stripping, bias 

field correction, normalization of the intensity as well as noise 

reduction. It is significant to perform these steps respectively 

to improve the influence of image quality. The MICCAI 2008 

dataset have been previously co-registered, which refers that 

the same voxel in various sequences indicates an identical 

location in the brain. 

3.1.1 Skull stripping 

Magnetic resonance volumes in the brain incorporate parts of 

the non-brain tissue of the head, e.g., the spinal cord, eyes or 

skull. Removing the brain tissue from a non-brain tissue 

called skull stripping. For this purpose, an automated brain 

extraction algorithm was applied to images using brain 

extraction tools (BET) in the MRIcro software [38]. 

3.1.2 Denoising and bias-field correction  

The inherent characteristics of the MRI acquisition process, 

such as eddy currents driven by field gradients, bandwidth 

filtering of data, or differences in the magnetic field lead to 

image artifacts, which itself leads to a negative influence in 

the performance of methods [44 39]. Spurious intensity 

variations should be eliminated due to lack of homogeneity of 

magnetic fields and coils. At such states, a correction of the 

magnetic resonance intensity is implemented as part of the 

tissue segmentation pipeline or before tissue segmentation. 

The well-known procedure for solving that issue is applying 

the field correction for a bias. Image inhomogeneities occur 

when the same biological tissues created by the bias field have 

a different intensity. In this case, the N3 method proposed in 

[40] to estimate and correct these inhomogeneities. Moreover, 

the filter of anisotropic diffusion was used to lower the noise 

without blurring insignificant morphological characteristics 

[41]. To normalize the intensity of the image profiles (from 0 

to 255), the docile based piecewise linear transformation 

method is used. Magnetic resonance data sets of the brain can 

have volumes obtained from different scanner manufacturers 

or even from the same scanner but with different protocols. 

Hence, volumes can show a representation of the non-uniform 

intensity of the same models of tissue, that is, the inter-class 

variability. 

3.2 Convolution Neural Network (CNN) 

architecture 
CNN was introduced in 1989 [42], but in 2012 it gained an 

excessive interest, especially when deep CNN had achieved 

tremendous results in the Image Net competition [37]. CNN 

has been used in many data sets of millions of images, 

including many different classes. CNN has almost decreased 

the error rates of the previous top computing methods [37]. 

The architecture of CNN is usually complex since in some 

structures it can have more than a hundred layers, millions of 

weights, and billions of neuron connections. The architecture 

usually includes convolution layers, pooling layers, activation 

layers, and classification layers. The convolution layer 

generates feature maps by involving a kernel through an input 

image. The pooling layer has applied for reducing the output 
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of previous convolution layers. To this end, an average or 

maximum of a specified neighborhood is applied as a 

transferred value to the following layer. The Rectified Linear 

Unit (ReLU) beside its modifications, like Leaky ReLU, is 

considered as activation functions. ReLU converts data non-

linearly by decreasing negative input values to zero, but the 

positive is transferred as an output value [43]. 

The output of the last CNN layer is linked with the loss 

function (such as cross-entropy) to predict the input data. 

Finally, the network parameters are identified by decreasing 

the loss function among the ground truth and prediction labels 

with regularization constraints, whereas, network weights are 

updated at every iteration by applying the back propagation 

till convergence. 

3.3 Modified R-CNN 

Many procedures have been indicated in computer vision 

research for region proposals. R-CNN [44] outperforms 

traditional methods in PASCAL VOC, benefiting from these 

two ideas: First, object proposals have been applied instead of 

sliding windows. R-CNN has proposed a specified number of 

boxes for all images that probably has target objects. The 

various scales' problem is managed automatically by 

generating the proposal. The lesser proposals, although better, 

shows offer more for the superior performance of R-CNN. 

Secondly, the pre-trained DNN prototypes of Image Net were 

used, which were subsequently fine-tuned by applying 

PASCAL VOC. The procedure of pre-training is approved as 

essential for performance. Given proposals of the region, 

training of the R-CNN object detector includes two main 

stages: domain-specific fine-tuning and supervised pre-

training. 

Fast R-CNN [45] has adjusted some of the weaknesses of R-

CNN, by proposing a layer of ROI Pooling, which produces 

proposals from the feature map rather than from the input 

image. It also presents a regression step for refining the 

region's box. Faster R-CNN [46] presented a common end-to-

end training for a region's classification module. Moreover, 

the CNN region proposal module (applied a selective search 

for region proposal instead) included a substantial weight 

sharing, which improved the quality and speed of the 

detection than the original R-CNN [44]. 

Despite that, Fast R-CNN reduces the cost of time as well as 

enhances the performance of the VOC PASCAL; the central 

concept of R-CNN is robust. The appending of ROIPooling 

results in the main distinction between these two approaches. 

In the R-CNN, all proposal boxes (including the small) have 

been resized to an approved dimension what indicates that a 

full map of features is created for every proposal box in the 

last pooling layer. While, in the Fast R-CNN, a small proposal 

box is assigned to a small map in the final pooling layer. This 

feature map might scarcity the essential data for the 

classification phase, which adds doubts to the research. 

Therefore, the R-CNN is adequate to our proposed method 

rather than the Fast R-CNN procedure. For example, 

visualizing the neuronal responses of R-CNN is further 

appropriate than the Fast R-CNN. Moreover, interpreting the 

impact of the up-sampling or context is simpler when working 

with the proposal patch input. Therefore, for MS lesion 

segmentation in the proposed method, the original R-CNN 

pipeline has been chosen. Despite being a regression of the 

bounding box is a more efficient method for enhancing the 

accuracy of localization, it is not the main difficulty in lesion 

segmentation; hence the bounding box regression has not 

implemented. 

In the proposed method, R-CNN was adopted to segment MS 

lesion. The 3D patches were extracted from the input MRI 

modalities to work as region proposal. The R-CNN was 

modified by adding a softmax layer to classify the input patch 

as a lesion or not. The output was used to generate a 

probability map of the lesion locations; as a result, there was 

no need for either a boundary box regression model or post-

processing classification. The proposed R-CNN method 

follows three phases; initially, region proposals were 

generated to localize MS lesions. Then, R-CNN architecture 

was built. Also, both the transfer learning and fine-tuning 

were applied to train the model. Finally, the probability map 

of lesion locations was generated.  

4. TRAINING DETAILS 
In this section, the details of the proposed lesion segmentation 

model are covered. 

4.1 Proposal Generation 

Although there are several methods to generate region 

proposals, for example, selective search [47], a patch-wise 

technique was used in the proposed method.  The patch was 

considered from the specified MRI by placing a window of 

size 7×7×3 around each pixel, which then is normalized to 

unit standard deviation and zero mean. Each patch label was 

specified by the center pixel.  

4.2 Feature extraction  

The fixed-length feature vector was extracted using the CNN 

per region proposal. To compute the region proposal features, 

first, the image data in this region was converted into a 

compatible format with CNN. Therefore, an input patch was 

to 32 × 32 × 3 to take advantage of the deep R-CNN 

architecture. 

4.3 Training procedure 

First, CNN was pre-trained on a large set of labeled data; 

CIFAR-10, which composed 32x32 images related to 10 

object classes. The proposed CNN model has one fully 

connected layer, three pooling layers, and three convolution 

layers. The first block of CNN is a convolution layer with a 5 

x 5 kernel that generates 32 feature maps and a max-pooling 

layer with a 3 x 3 kernel. These three levels are utilized for 

detection of low-level features in the patch. Subsequent, these 

layers are trailed with another block of a convolution layer, 

RELU and a max-pooling layer including the same kernels, 

which generate 32 feature maps that utilized for the detection 

of higher-level image structures. Following that, another 

convolution layer was applied with a 5 x 5 kernel, which 

generates 64 feature maps. The remainder of CNN has 

included two fully connected layers whose aim is to use these 

features to classify the input image to several classes. To 

generate a probabilistic lesion output, a softmax loss layer of 

size 2 was added. The ReLU function was applied as an 

activation function in every convolution layer. In this 

experiment, the learning rate was specified at 0.0001, which 

then is multiplied by 0.2 for every 15 epochs passed during 

the training. Then, fine-tuning this trained CNN on MS lesion 

dataset. To adapt the CNN to the MS lesion segmentation and 

the patches of MRI, the stochastic gradient descent (SGD) 

proceeded to train the CNN parameters utilizing the patch 

region proposals. The region proposal was handled that 

overlaps with ≥ 0.6 with the ground-truth as positive while 
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otherwise that, is as negative. To detect MS lesions, consider 

the training as a binary classifier, and a positive example is 

the image region tightly surrounding a lesion while the 

background is negative. In order to label a region, the IoU 

overlap threshold was applied, where below than 0.1 were 

defined as negative examples, whereas over than 0.6 could be 

defined as positive. The overlap threshold was named by a 

grid search in the validation set. It is essential to select the 

threshold carefully. After features extraction and applying 

training labels, the softmax loss layer of size 2 was optimized 

to generate a probabilistic output of lesion existence. 

5. EXPERIMENTS AND RESULTS  

5.1 Data 
The MICCAI 2008 MS lesion segmentation challenge 

includes 45 scans from research subjects assimilated at 

University of North Carolina (UNC, 3T Siemens Alegra) and 

Children’s Hospital Boston (CHB, 3T Siemens) ([32]). For 

every subject, the image patterns T1-w, T2-w and FLAIR are 

delivered with an isotropic resolution of 0.5 × 0.5 × 0.5 mm3 

in all images. Two datasets:  

 20 training cases (10 from CHB whereas 10 from 

UNC) with the manual annotations of WM lesions 

by a CHB and UNC experts 

 25 test cases (15 CHB and 10 UNC) without expert 

segmentation of the lesion. 

5.2 Evaluation 

The evaluation was blindly completed for the teams by 

delivering the segmentation masks of 25 test cases to the 

challenge website. The provided segmentation masks were 

compared to the manual annotations between the CHB and 

UNC evaluators. The following scores are based on the 

evaluation metrics: 

 The % error; the absolute difference in lesion 

volume (VD) between the output segmentation 

masks and the manual annotations masks: 

𝑉𝐷 =  
| 𝑇𝑃𝑎𝑢𝑡𝑜  −   𝑇𝑃𝑔𝑡|

 𝑇𝑃𝑔𝑡
    × 100    (1) 

where  𝑇𝑃𝑎𝑢𝑡𝑜and  𝑇𝑃𝑔𝑡represent the segmented voxels in the 

output and manual annotations masks. 

 Sensitivity; the True Positive Rate (TPR) between 

the output segmentation and the manual lesion 

annotations masks: 

𝑇𝑃𝑅 =  
𝑇𝑃

( 𝑇𝑃 + 𝐹𝑁 )
    × 100                  (2) 

in which TP and FN represent sequentially, the number of 

correct and missed lesion per region. 

 

 False discovery rate; the False Positive Rate (FPR) 

between output segmentation masks and manual 

lesion annotations: 

𝐹𝑃𝑅 =  
𝐹𝑃

( 𝐹𝑃 + 𝑇𝑃 )
       ×   100              (3) 

where FP represents lesion region candidates numbers 

incorrectly classified as a lesion. 

 

5.3 Experiment details 

The T1-w image was rigidly co-registered to the standard 

Montreal Neurological Institute (MNI) atlas. Both of FLAIR 

and T2-w image modalities had been rigidly co-registered to 

the T1-w space. Therefore, the proposed method began with 

skull stripping using the brain extraction tools BET in the 

MRIcro software [38] and then intensity correction was 

applied using N3 [40]. All training and testing images had 

been supplied with an isotropic resolution of 0.5 × 0.5 × 0.5 

mm.  

The training of the proposed method on the available 20 

images provided with their manual expert annotations. It is 

adjusted the maximum number of the training epochs at 100 

with early stopping at 15 to every network. 

5.3.1 MICCAI2008 Public Dataset (Training Set) 
The measures were calculated utilizing the expert label map 

given in a dataset. In terms of DSC, the proposed method 

using FLAIR modality achieved the highest average score of 

25% and 29% for UNC and CHB datasets, respectively, 

compared to the other modalities. T2-w was better than T1-w 

with an average DSC score of 17% and 27% for UNC and 

CHB, respectively. According to these results shown in Table 

1, the proposed R-CNN gave the best results using FLAIR, 

then T2-w while T1-w modality gave the lowest scores. 

Therefore, only FLAIR images were estimated for the test. 

 

5.3.2 MICCAI2008 Private Dataset (Testing Set)  
The set of known metrics defined in [32] was used for a 

quantitative evaluation performed on the private data set. The 

organizers of the challenge had defined the average score to 

allow a quantitative comparison between approaches and 

human exports. If an independent human observer would 

perform manual segmentation, each metric is related to the 

result that could be expected. Therefore, 100 points mean that 

it is a perfect result and for an independent human observer, a 

predefined amount of 90 for a score is typical. The algorithm 

results on the MICCAI2008 private dataset is an average 

score of 72%. The comparison between the proposed method 

and other methods using the MICCAI challenge test data set is 

shown in Table 2. The performance of the proposed system is 

superior to the method by Mechrez et al. [48], but not as well 

as Geremia et al. [33], Roura et al. [9], and Shiee et al. [49]. 

Figure 2 shows some examples of the proposed MS lesion 

segmentation results. 

 

6. CONCLUSION 

An automated MS segmentation method was presented to 

delineate lesions in MRI sequences based on the R-CNN 

model. The lesion of MS can be of any size, shape or position 

in the entire brain. As a result, traditional R-CNN is not 

adaptable for accurate segmentation and classification of MS 

lesions. Therefore, an R-CNN patch technique is proposed for 

segmenting the MS lesion. In future work, it is proposed to 

use a deeper network, which can potentially increase 

performance. Moreover, adding more experiential results into 

a larger dataset. Finally, adding a false positive reduction step 

utilizing another CNN to classify the lesion from the 

background. 
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Table 2. Comparison among our proposed R-CNN technique and the more advanced 

methods in the MS challenge test set 

Method UNC Rater CHB Rater Score 

 VD TPR      FPR VD       TPR      FPR  

Roura et al. [9] 65.2    44.9      43.2 158.9    55.4     40.5 82.34 

Geremia et al. [33] 42.1     43.5      76.7 52.4     59.0     71.5 82.07 

Shiee et al. [49] 63.7    49.0       74.9 85.2     55.8    70.5 79.90 

Proposed method 267.9     63.4   85.8 238.0     70.2      86.2 72 

Mechrez et al. [48] 119.4   20.1      72.9 73.2     21.1     73.0 71.83 

   

 

Table 1.  The results of the proposed patch-wise R-CNN method tested individually on FLAIR, T2 

and T1 modalities of the MS challenge training set using LOSO cross-validation. 

                         Flair T2 T1 

Patient TRP PPV DSC TRP PPV DSC TRP PPV DSC 

UNC 01 43 3 6 22 2 4 10 1 2 

UNC 02 79 21 33 41 14 21 25 12 16 

UNC 03 40 26 32 20 17 18 14 14 14 

UNC 04 75 29 42 47 17 25 28 13 18 

UNC 05 72 10 18 65 6 10 55 7 12 

UNC 06 22 6 9 17 5 8 9 4 6 

UNC 07 51 7 12 79 7 14 27 2 4 

UNC 08 65 20 30 49 15 23 47 16 24 

UNC 09 74 24 36 53 19 28 37 14 20 

UNC 10 59 25 36 37 14 20 20 11 14 

Average 58 17 25 43 12 17 27 9 13 

CHB 01 59 28 38 25 19 21 20 24 22 

CHB 02 62 18 27 46 19 27 60 15 26 

CHB 03 77 13 22 59 16 25 38 19 23 

CHB 04 78 9 16 37 16 22 38 11 17 

CHB 05 56 16 24 48 22 30 30 14 19 

CHB 06 41 31 35 30 23 26 27 20 21 

CHB 07 23 29 26 42 30 35 30 21 25 

CHB 08 52 33 40 29 33 31 24 32 27 

CHB 09 55 26 35 39 24 30 39 22 28 

CHB 10 35 17 23 34 16 22 24 14 16 

Average 54 22 29 39 22 27 33 19 22 
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Figure 2: MS lesion segmentation results. (a) Ground-

truth. R-CNN results using T2 images (b) and FLAIR 

images (c). 
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