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ABSTRACT 
    The Cellular Neural Network is a 2D array of analog 

processors which forms a parallel computing framework. The 

main key factors in this model are the values of the neighborhood 

of each cell, which are called templates. These templates are 

usually set by a domain expert in this framework to determine 

the optimal values of the templates. In this paper, a novel 

approach was proposed to discover the templates of the cellular 

neural networks based on mutual information and firefly 

optimization. The mutual information discovers the hidden 

pattern in the templates by measuring the similarities among cells. 

The firefly algorithm navigates the search space to find the 

optimal values of the templates. The benchmarking and 

validation have been performed on the ChestX-ray8, which is a 

real-world X-ray images dataset. The proposed method achieved 

significant results when compared to other meta-heuristics 

algorithms such as Genetic Algorithm and Particle Swarm 

Optimization.  

Keywords 
Cellular Neural Networks, Medical Images, X-Ray Images, 

Firefly Algorithm, Evolutionary Algorithms 

 

1. Introduction 

Cellular neural network (CeNN) is a modern hardware-based 

information-processing system which is based on cellular 

automata and neural network. The CeNN consists of a two-

dimensional array of analog processors, where each processor is 

called a cell. Each cell is connected to its surrounding cells by a 

set of parameters named cloning template. The behavior of the 

CeNN is strongly dependent on the cloning template. Because of 

the similarity between the CeNN and neural networks, the 

feedback behavior is determined by a set of parameters obtained 

from the feedback of the neighbor cells, which is called a 

feedback template. The main advantages of this paradigm are 

robustness, high-speed, and parallel computing. Thus, it has been 

used in many applications related to image processing, data 

encryption, and forecasting problems [1]–[7]. Image processing 

applications could be implemented effectively on CeNN platform 

because of its robust architecture and high-performance [1], [4], 

[8]–[11]. One limitation of this platform is the challenge in 

building both of the cloning and feedback templates. The 

behavior of the CeNN is wholly depended on the values of these 

templates. Thus, the robustness of these templates controls the 

stability of the application. A common approach for designing 

cloning and feedback templates is based on setting their values 

manually. However, this approach is considered unsatisfactory 

because the desired behavior has to be transformed into a set of 

dynamical rules manually, which is a time-consuming and a 

painstaking process [12], [13]. A different approach used to 

create the CeNN templates which are based on the usage of the 

supervised machine learning algorithm. These algorithms are 

regularly based on decreasing the error utilizing a gradient 

descent or evolutionary algorithms.  

X-ray images acquired by the direct digital radiography (DDR) 

are usually sensitive to various kinds of noise, such as impulse 

noise because of the produced error of the sensors and the 

communication channels. Moreover, X-ray images collected with 

low doses are usually contaminated by Poisson noise. These 

images appear as non-uniform, low-luminescence, and low-

contrast because of the real-world conditions of the capturing 

process. Since raw images may cause malfunction diagnosis, 

therefore, noise cancellation and contrast enhancement are 

required [14]–[17].  

In this paper, a hybrid algorithm was proposed based on mutual 

information and firefly optimization to improve the CeNN’s 

templates learning for denoising the X-ray images. A modified 

based on mutual information was used to calculate the 

uncertainty between the features and the decision and among the 

features themselves. The firefly algorithm was used to find the 

optimal templates to remove the noise in the X-rays images. The 

attractiveness function of the firefly population was based on the 

modified mutual information measure. The hybrid algorithm 

used SA to generate offspring candidates when required instead 

of random generation. A real-world dataset consists of X-ray’s 

images of belongs to Patients suffering from Pneumonia [18]. 

The obtained results were compared to traditional filters and 

proved the efficiency of the proposed algorithm. The remaining 

of this paper is organized as follows: in section (2) a brief related 

work was discussed to represents the state-of-art, in section (3), 

the fundamental knowledge of the CeNN and the firefly 
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algorithm were presented. In section (4), the hybrid algorithm 

was introduced to learn the templates of noise reduction. Section 

(5) demonstrated the experimental results and simulation details, 

followed by a discussion and a comparative study. Finally, the 

conclusion is presented in section (6).  

2. Related Work 

Several studies have been proposed based on the gradient descent 

method such as back-propagation and recurrent learning. The 

back-propagation method was used to learn the templates 

according to its specific task exhibiting propagation solutions by 

decomposition of the feedback templates into both symmetric 

and anti-symmetric sections. However, this method is not 

guaranteed to find the global minimum of the function [19]. 

Thus, the gradient descent method can be trapped into a local 

minimum easily [20].Several attempts have been proposed by 

researchers to overcome this limitation such as genetic 

algorithms, and statistical optimization techniques similar to 

Simulated Annealing (SA) for learning CeNN templates to find 

the optimal values of the models [21]. A Genetic Algorithm 

based on the rough set model was proposed to reduce the 

relations among the cells and hence improves the learning 

process [22]. This model converted the learning process to a set 

of inequalities. By solving these inequalities, a collection of 

parameters was obtained to learn the templates. However, this 

methodology neglected the effect of the irrelevant features 

among the cells. Moreover, the feature selection criteria used in 

this model could quickly eliminate a vital feature when it is 

located among relevant features because it is not relevant to the 

group. Although many learning algorithms were presented to 

solve this problem, there is no generic solution formulated yet 

[23]. 
 

3. Preliminary knowledge 

3.1. Cellular Neural Network (CeNN) 
The majority of neural networks were classified into two 

categories [24]: (1) Memory-less networks. (2) Dynamical 

networks. Both of the Hopfield Networks and CeNN were 

designed as dynamical systems such that their inputs were 

considered as constant values and hence the initial condition 

controls the equilibrium point and the stability conditions. The 

CeNN consists of large-scale nonlinear analog processors that 

process the signal in a real-time and with a high speed of 

processing. The essential unit of this paradigm is named a cell, 

and these cells interact with each other directly only through their 

nearest neighbors, as shown in Figure (1). The neighbor’s cells 

can communicate directly with each other. Moreover, each cell 

could be affected by its indirect neighbors’ cells because of the 

propagation effect obtained from the real-time dynamics [25]. 

Each cell is interconnected to a set of finite neighbors that 

belongs to the sphere of influence r denoted by 𝑁𝑟  and 

formulated as follows:  

 𝑁𝑟(𝑖,𝑗) = 𝐶(𝑘, 𝑙) ∣ max(|{𝑘 − 1}|, |{𝑙 − 𝑗}|) ≤ 𝑟 (1) 

 
Each cell 𝐶(𝑖, 𝑗)  could be implemented by an equivalent 𝑅𝐿𝐶 

circuit [24] where the input is denoted by 𝑢𝑖𝑗, a dynamical state 

that evolved by time is denoted by 𝑥𝑖𝑗 , and the output denoted by 

𝑦𝑖𝑗. The term 𝐴(𝑖, 𝑗; 𝑘, 𝑙) and 𝐵(𝑖, 𝑗; 𝑘, 𝑙) represents the feedback 

and control cloning (feed-forward) template respectively. A 

dynamic rule generation could be implemented due to the 

random effect of the feed-forward and feedback templates. The 

dynamical behavior of each cell is determined by a set of 

parameters that manage the cell interconnectivity called 

templates. The following equations characterize these templates: 

 

 

 
𝑐
𝑑

𝑑𝑡
𝑋𝑖𝑗(𝑡) = −

𝑋𝑖𝑗(𝑡)

𝑅
+ ∑ 𝐴(𝑖𝑗,𝑘𝑙)
𝐶(𝑘,𝑙)∈𝑁𝑟(𝑖,𝑗)

𝑌𝑘𝑙(𝑡)

+ ∑ 𝐵(𝑖𝑗,𝑘𝑙)
𝐶(𝑘,𝑙)∈𝑁𝑟(𝑖,𝑗)

𝑈𝑘𝑙(𝑡) + 𝑧 

(2) 

 

 𝑌𝑖𝑗(𝑡) = 0.5(|𝑋𝑖𝑗  (𝑡) + 1| − |𝑋𝑖𝑗  (𝑡) − 1|) (3) 

 

 −1 ≤ (0) ≤ 1,   − 1 ≤ 𝑢(𝑖𝑗 (𝑡)) ≤ 1, |𝑧| ≤ 𝑧𝑚𝑎𝑥 , 1 ≤ 𝑖

≤ 𝑀, 1 ≤ 𝑗 ≤ 𝑁 

(4) 

 
In the CeNN system, (𝐴, 𝐵, 𝑧) represents the local weights of 
the connection between each cell 𝐶(𝑖, 𝑗) and its neighbors. An 
analog processor could implement each cell of the CeNN 
system, and each cell is interconnected locally to its 
neighbors by matrix 𝐴 and receives the feedback by the 
matrix 𝐵. The variable 𝑧 denotes the search bias threshold. 
Technically, the CeNN can perform any complex task or any 
sophisticated algorithm by providing a memory unit and 
transfer registers for each cell. Thus, it improves the ability of 
each cell by allowing the output of each operation to be 
combined with the input of the next operation. For any input 
pattern 𝑈, the output of each cell is determined by a small set 
of neighbor cells as shown in Figure(1) where 𝑟 = 1 exposed 
to (2𝑟 + 1) × (2𝑟 + 1) transparent window centered at 𝐶(𝑖, 𝑗). 
The output 𝑦𝑖𝑗(∞) is considered to be a function in (2𝑟 + 1) 

of the input variables in addition to the initial state 𝑥0, 
according to the complete stability theorem of the uncoupled 
CeNN. 

 𝑌𝑖𝑗 = 𝑓(𝑥0, 𝑢1, 𝑢2, … , 𝑢(2𝑟+1)2) (5) 

 
The functionality of the uncoupled CeNN is a one to one 

mapping from 𝑈 to 𝑌 for a predefined initial state 𝑥𝑜that describe 

the dynamic behavior at 𝑡 =  0. The dynamic behavior of the 

CeNN could be implemented as a Knowledge Representation 

Systems such that 𝑆 =  (𝑈, 𝑥 0 ∪  𝑐 ∪  𝑌) where U denotes the 

search space of the input patterns, C denotes the neighbor cells 

and Y represents the output. Thus, each row ℎ is the knowledge 

 

Figure 1: The structure diagram of a 2D CeNN of size 3 × 3 

with the interconnection between cell 2 × 2  and its 

neighborhood 𝑟 = 1 
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systems 𝑆  is considered to be a set of conditional rules. This 

knowledge system could be also described as 𝐶𝑌 decision rule 

𝛷 →  𝛹, where 𝛷 is a conjunction of (2𝑟 + 1) × (2𝑟 + 1) + 1 

of the input cells 𝐶𝑖, 𝑢_{ℎ𝑖}  and 𝛹, denotes the classified output. 

Moreover, the knowledge system 𝑆 represents a collection of 𝐶𝑌 

decision rules, where these rules are formulated as follows:  
 𝐷𝑒𝑐(𝐶, 𝑌) = ϕ𝑘 → ψ𝑘𝑘=1

𝑚 ,  2  ≤ 𝑚 ≤ |𝑈| (6) 

 

2.2. Firefly Algorithm 
The firefly algorithm (FA) is a population-based stochastic 

search technique where each firefly presents a candidate solution 

in the search space [26]. Each candidate in the population moves 

towards the most attractive firefly which is called the leader. The 

leader firefly guides the other candidates to find the optimal area 

in the search space. The attractiveness of each firefly is 

determined based on the emitted light intensity. The 

attractiveness between two fireflies is formulated between two 

fireflies as follows:  
 

 𝛽(𝑟𝑖𝑗) = 𝛽0𝑒
−𝛾𝑟𝑖𝑗

2

 (7) 

 

 

𝑟𝑖𝑗 = √∑(𝑓𝑖𝑑 − 𝑓𝑗𝑑)
2

𝐷

𝑑=1

 

(8) 

 
Where 𝐷 represents the dimension of the problem such that 𝐷 =
1,2, . . . 𝑟𝑖𝑗  is the distance between 𝑓𝑖  and 𝑓𝑗 . The variable 𝛽0 

represents the attractiveness at 𝑟 =  0 , 𝛾  represents the light 

absorption coefficient such that 𝛾 ∈  [0, 1] . Each firefly 𝐹𝑖  is 

compared with the other fireflies𝑓𝑗  where 𝑗 ∈  1, 2, . . . 𝑁  such 

that 𝑖 ≠ 𝑗  and 𝑁  represents the total of the populations. If the 

firefly 𝑓𝑖  is better (brighter) than 𝑓𝑗 ,  then the firefly 𝑓𝑗  moves 

towards the 𝑓𝑖 with a step movement formulated as follows: 

 
𝑓𝑖𝑑(𝑡 + 1) = 𝑓𝑖𝑑(𝑡) + β0𝑒𝑖𝑗

−γ𝑟𝑖𝑗
2

(𝑓𝑗𝑑(𝑡) − 𝑓𝑖𝑑(𝑡)) + αϵ𝑖 (9) 

Where  𝑖  denotes a uniform distributed variable such that 𝑖 ∈
[−0.5,0.5]and 𝛼 represents the step move such that 𝛼 ∈  [0, 1]. 
4. Templates learning using mutual information and 

firefly optimization 
In this section, the template learning approach is proposed as 

shown in Algorithm(3). Most of the related studies discussed the 

relation among the neighborhood cells and the redundant cells. 

Although this approach was successful, the effect of features 

dependency was not mentioned. Moreover, some researches 

disregarded the relationship between the cells and the output 

decision. Therefore, the proposed system provided a framework 

to obtain a compact subset of cells depending on the mutual 

information and the interactivity among the cells. 

The proposed method used supervised learning to learn the 

templates of the CeNN that remove the noise from the images. 

The training phase was implemented using the Algorithm(1) to 

build a decision table based on the noisy pixels of the images. 

This decision table has been used for the training stage to provide 

the CeNN the ability to detect the original and the noisy pixel. 

The CeNN is used as a supervised learning to learn the templates 

for the noise removal by Algorithm(1) Then, the significance of 

each cell is determined to remove the redundant cell in the 

neighborhood of the cell, as shown in Algorithm(2). Then, the 

firefly population is initialized randomly to create the search 

space of each possible solution of the templates. The termination 

condition of the firefly population is defined as a maximum 

number of iterations or when the fitness between the best and the 

worst solution is less 10−3. when the firefly population obtains 

the final templates 𝑠𝑏𝑒𝑠𝑡 then, the templates are transferred to the  

CeNN to produce the refined image. When each cell of the 

CeNN reaches the stable region as defined in (12) or when the 

difference between the mean square error of the input and the 

output images the less than a specific threshold 𝜃𝑐 . The main 

stages of the template learning algorithm are presented as follows:   

1) Noise removal using a cellular model. 

2) Neighborhood cells reduction. 

3) Templates reduction using firefly optimization.  

 
4.1. Noise removal using cellular model 

The cellular model begins with determining the nature of the 

existing noise in the image by calculating the most frequent 

values in the histogram of the given image as shown in 

Algorithm (1). If the most common values are black and white, 

then the image contains a salt and pepper noise. Otherwise, the 

image includes a Poisson noise. At the beginning of the cellular 

model, the noise type is checked if the noise is declared as 

uniform noise then the minimum and the maximum values from 

the Moore neighbors are excluded [27]. Then, the median of the 

neighbors is computed for the remaining cells. Whereas, if the 

noise is salt and pepper, the current cell is checked if it is black 

or white, which means it may be corrupted. Then, the median of 

the neighbors that do not have black or white values and assign 

this median for the current cell. If all the neighbors have black 

and white values, the average of the neighbors is computed and is 

assigned to the current cell. Where 𝑥𝑖𝑗  denotes the pixel at 

location (𝑖, 𝑗)  in the given image, 𝑁𝑖,𝑗  denotes the Moore 

neighborhood cells, 𝑁𝑖𝑗̃ denotes the median of the neighborhood 

cells and 𝑁𝑖𝑗 denotes the mean of the neighborhood cells. Then, 

for each cell at location (𝑖, 𝑗)  the input and the output of the 

neighborhood of this cell are utilized to create the decision table 

using the following equation: 

 

𝑐𝑖𝑗: 𝑢(𝑖−1,𝑗−1), … , 𝑢(𝑖+1,𝑗+1), 𝑦(𝑖−1,𝑗−1), … , 𝑦(𝑖+1,𝑗+1) (10) 

 

where 𝑢𝑖𝑗, 𝑦𝑖𝑗 denote the input and the output of cell 𝑐(𝑖,𝑗) with 

𝑟 = 1. 

4.2. Neighborhood cells reduction 
In this stage, a feature reduction technique is applied to remove 
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the redundant and superfluous cells from the neighborhood based 

on the mutual information between features and decision and 

among each feature[28]. Let 𝐼𝑆 = (𝑈, 𝐶 ∪ 𝐷) is an information  

system formulated using (10), 𝐶 denotes the set of conditions and 

𝐷 denotes the set of decision. The significant of any condition 

𝑐𝑖 ∈ 𝐶 is determined using Algorithm(2).  

 

𝑠𝑖𝑔(𝑐𝑘 , 𝐶, 𝐷) =
∑ 𝐼(𝑐𝑘, 𝐷𝑗)
𝑚
𝑗=0

∑ 𝐼(𝑐𝑘, 𝐷𝑗)
𝑚
𝑗=0 + ∑ 𝐼(𝑐𝑘 , 𝑐𝑖)

𝑛
𝑖=0

 

 

(11) 

where the term 𝐼(𝑐𝑘 , 𝑐𝑖)  represents the redundancy between 

features 𝑐𝑘  and 𝑐𝑖  and the term 𝐼(𝑐𝑘 , 𝐷𝑗)  represents the 

dependency between the feature 𝑐𝑘  and the decision 𝐷𝑗 . The 

ranking function has been proved to be a monotonic function 

with a minimum value of zero and a maximum value of one[28]. 

Calculating the mutual information function using the standard 

method is an exponentially time complexity 𝑂(𝑛2)  which is 

time-consuming. Therefore, a non-parametric estimator was used 

based on a Local Non-uniformity Correction to minimize the 

time complexity of the feature selection process[29]. 

 
4.3. Templates learning using firefly optimization.  

In this section, the firefly optimization algorithm was proposed 

to find the optimal value of the templates. The firefly was trained 

based on the decision table obtained from Algorithm(1) and 

Algorithm(2). Then, the optimization algorithm transfers the 

templates to the CeNN to benchmark the accuracy of the 

templates. The CeNN keeps running until is stability condition is 

reached. The stability condition of the CeNN is achieved when 

each cell reaches a stability region according to the activation 

function shown in Figure(2). This function control the output 

rendering of the CeNN such that when 𝑥 ≥ 1$ 𝑜𝑟 $𝑥 ≤ −1, then 

the cell is stable with a value of white or black respectively. 

When the −1 < 𝑥 < −0.5 or 0.5 < 𝑥 < 1 then the cell is stable 

for the gray scale level. Otherwise, the cell is stable with black. 

In this research, the value of the threshold 𝛼−1 was set to 0.5. 

𝑓(𝑥) =

{
  
 

  
 

−1
𝛼𝑥

arcta n(𝛼)
+ 𝛼−1

0
𝛼𝑥

arcta n(𝛼)
− 𝛼−1

1

𝑥 ≤ −1
−1 < 𝑥 < −0.5
−0.5 ≤ 𝑥 ≤ 0.5
0.5 < 𝑥 < 1
𝑥 ≥ 1

 (12) 

 

Figure 2: An illustration of the activation function of the 

CeNN 

 

The initial population was generated randomly to ensure the 

diversity of each solution. Then, the attractiveness of each firefly 

was determined to select the best, the alternative, and the worst 

solutions. The best element was denoted by 𝑔𝑏𝑒𝑠𝑡 while the worst 

one was denoted by 𝑔𝑤𝑜𝑟𝑠𝑡. Furthermore, an alternative solution 

was denoted by 𝑆𝑏𝑒𝑠𝑡 such that it should have a high rival fitness 

and locate in a different zone. The alternative solution was used 

to provide a guideline with the best one for the weak solutions 

and to prevent the local optima problem. A modified solution was 

driven from the mean of the leader and the alternative solutions 

to represents the optimal solution which denoted by 𝑔𝑏𝑒𝑠𝑡́ . Both 

of the 𝑔𝑏𝑒𝑠𝑡  and 𝑔𝑏𝑒𝑠𝑡́  were used to guide the week solutions to 

move towards a better one according to the solution lightness. 

This algorithm is executed until it reaches the maximum number 

of iterations or when the difference between the fitness of the 

best 𝑔𝑏𝑒𝑠𝑡  and the leader firefly 𝑆𝑏𝑒𝑠𝑡 is less than 10−3. 

 

4.3.1. Initial Population 

The firefly optimization was initialized randomly according to 

the optimal CeNN template structure obtained from Algorithm 

(2). Each firefly represents a candidate solution for the best 

values in the template. Then, the attractiveness of each firefly 

was determined to select the best firefly 𝑔𝑏𝑒𝑠𝑡 , the alternative 

leader 𝑆𝑏𝑒𝑠𝑡, and the worst solution. 

 

4.3.2. Search space 

The training process begins with generating a decision table that 

consists of the input and output of each cell's neighborhood and 

its decision according to Algorithm(1). Then, the similarities 

among cells are determined using the significance measure 

provided in Algorithm(2) to remove the superfluous cells from 

the decision table. Each firefly describes a candidate 

configuration for the CeNN where the firefly is represented as: 
{𝑎1, 𝑎2, … , 𝑎9, 𝑏1, 𝑏2, … , 𝑏9, 𝑧} for typical CeNN with r = 1.  

 

4.3.3. Attractiveness function 

The mean squared error (MSE) is used to measure the 

attractiveness between the measured image and the estimated one, 

as shown in (13). After computing the fitness of each candidate 

in the population, then the candidates were sorted in ascending 

order according to their fitness value. The highest element was 
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denoted by 𝑔𝑏𝑒𝑠𝑡  while the lowest one was denoted by 𝑔𝑤𝑜𝑟𝑠𝑡 . 
Besides, an alternative solution was denoted by 𝑆𝑏𝑒𝑠𝑡 such that it 

should have a high rival fitness and was located in a different 

zone. 

ζ(. ) =
1

𝑀𝑁
∑(𝑥𝑖 − 𝑑𝑖)

2

𝑀𝑁

𝑖=1

 (13) 

Where 𝑥𝑖 denotes the measured pixel value, and 𝑀𝑁 denotes the 

number of pixels. The estimated pixel 𝑑𝑖 refers to the output of 

the CeNN such that 𝑑𝑖 = 𝑦𝑖𝑗(∞)  when the cellular network 

achieves the stability conditions defined in (2). The CeNN 

reaches stability regions according to the activation function 

defined in (12). 

 

4.3.4. Step movement 

A logistic map was used to initialize the population and thus 

increases the diversity and overcome the local optima. After the 

global solution 𝑔𝑏𝑒𝑠𝑡  has been obtained, then the alternative 

solution 𝑆𝑏𝑒𝑠𝑡  is defined with a rival fitness and a different 

location. Since both leaders are more likely to discover 

distinctive search zones, this approach minimizes the probability 

of being trapped in the local optima. Furthermore, the offspring 

solution was generated based on the global and the alternatives 

candidate. The obtained candidate was used to guide the low 

fitness candidates to move towards the optimal region and hence 

find the most attractive firefly. The movement step is represented 

by the following equations: 

𝑓𝑖(𝑡 + 1) = 𝑓𝑖(𝑡) + 𝛽0 𝐶𝑘  (𝑓𝑗
′ − 𝑓𝑖  ) + 𝐶𝑘  𝜀(𝑔𝑏𝑒𝑠𝑡

′ − 𝑓𝑖  )

+ α′ × 𝑠𝑖𝑔𝑛[𝑟𝑎𝑛𝑑 − 0.5] 
(14) 

 

𝑓𝑗
′ = 𝑓𝑗 + σ1 (15) 

 

𝑔𝑏𝑒𝑠𝑡
′ = 𝑚𝑒𝑎𝑛(𝑔𝑏𝑒𝑠𝑡 + 𝑆𝑏𝑒𝑠𝑡) + σ2 (16) 

 
Where 𝑓𝑖(𝑡 + 1)  represents the step movement of firefly 𝑗 
towards the optimal region using (14) with a brighter 

attractiveness, and 𝑔𝑏𝑒𝑠𝑡
′  represents the better offspring solutions 

of the mean of the leader and the alternative fireflies as shown in 

(15). The variables 𝜎1 and 𝜎2 are two random variables set by the 

normal distribution. The step of the firefly was calculated, as 

shown in (16). Where 𝐶𝑘 denotes the chaotic variable in the step 

movement and 𝜀 represents the randomized vector pre-defined in 

the firefly algorithm. The variable 𝛼′ represents an adaptive step 

initialized to 0.5 to guide the diversity of the search method. 

 

4.3.5. Diversity Method 

For each repetition, the worst solution was identified after 

ranking as shown in Algorithm(3). Remaining candidates were 

led by the mean position obtained from (16) where σ denotes a 

random value obtained by logistic map as shown as follow: 

 

𝑓𝑗
𝑤𝑜𝑟𝑠𝑡 =

𝑔𝑏𝑒𝑠𝑡 + 𝑆𝑏𝑒𝑠𝑡
2

+ σ(𝑓𝑗
𝑤𝑜𝑟𝑠𝑡 ×

𝑔𝑏𝑒𝑠𝑡 + 𝑆𝑏𝑒𝑠𝑡
2

) (17) 

 

 
5. Experimental Results 
In this section, the experimental results were discussed to 

demonstrate the effectiveness of the proposed algorithm and its 

efficiency in finding the best CeNN templates for removing the 

noise in the x-rays images. The training process and the 

parameters of the firefly algorithm were discussed in this section. 

Moreover, the dataset description was discussed in this section.  

 

 

 

 

 

 

 

 

5.1. Dataset Description  

 

The ChestX-ray8 is a real-world dataset was used for the learning 

and benchmarking of the proposed methodology[30]. The dataset 

consists of 108,948  frontal views X-ray images of 32,717 

patients with 1024 × 1024  resolution which is the largest 

collection available for public. A random noise generator was 

designed to simulate both the impulse and Poisson noise. The 

impulse noise was simulated using salt and pepper noise with 

5% and 10% of noise density. The original and the contaminated 

images are shown in Figure(3). 

 
 
 



MJCIS Vol.15 No.2  Dec 2019 

62 

 

 
 

(A) (B) 

(C) (D) 
Figure 3: (A) The original image of a random patient. (B) The 

contaminated image with (5%) of salt and pepper noise. (C) The 

contaminated image with salt and pepper noise (10%). (D)The 

contaminated image with Poisson noise.  

 
 
5.2. Simulations and Results 

        The development of this experiment was implemented 

using MATLAB on a core i7 machine with Microsoft Windows 

10 operating system. The CeNN simulator was also developed 

using MATLAB to overcome the limitation of the hardware 

absence. The firefly population was initialized randomly with ten 

fireflies such that each candidate represents the CeNN templates. 

The firefly population was set with the following settings, as 

shown in Table(1). The contaminated gray-scale image was 

passed to the firefly population with the pre-defined parameters. 

Figure(4) demonstrates the contaminated image with 5% noise 

corruption on the left as the input of the CeNN, on the right 

Figure the denoised image after total number of iterations using 

the proposed methodology In Figure (5), a comparison between 

the 10% contaminated image and the output image were 

illustrated. The final CeNN template obtained by the proposed 

methodology is shown in (18) and (19): For the Poisson noise, 

the proposed algorithm produced different templates, as shown 

below. A comparison between both of the contaminated with 

Poisson noise and the denoised image was shown in Figure (6). 

After the feature reduction performed by the firefly, these 

templates could be rewritten in generic formulas as follows in 

(20) and (21). 

 

𝐴 = [
0.2 0.19 0.15
0.2 0.98 0.2
0.1 0.18 0.21

] , 𝐵 = [
0.1 0.18 0.15
0.13 0.05 0.14
0.11 0.1 0.13

] , 𝑧

= −0.5 

(18) 

 
 

𝐴 = [
0.15 2.1 0.1
2.6 0.95 1.98
0.2 2.03 0.9

] , 𝐵 = [
0.15 0.25 0.18
0.17 2.6 0.12
0.12 0.18 0.17

] , 𝑧

= 0.13 

(19) 

 
 

𝐴 = [
0 0 0
0 1 0
0 0 0

] , 𝐵 = [
𝑎 𝑎 𝑎
𝑎 𝑎
𝑎 𝑎 𝑎

] , 𝑧 = 0 
(20) 

 

𝐴 = [
0 𝑎 0
𝑎 1 𝑎
0 𝑎 0

] , 𝐵 = [
0 0 0
0 1 0
0 0 0

] , 𝑧 = −0.5 
(21) 

 
        The evaluation process of the proposed system requires 

many measures to ensure the desired performance of the 

proposed systems and to ensure its effectiveness. The peak signal 

to noise ratio (PSNR), mean square error (MSE) and Structural 
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Similarity Index (SSIM) are used to determine the effectiveness 

of the proposed system which are defined as follows: 

 

MSE =  
1

𝑀𝑁
∑∑(𝑥𝑖𝑗 − 𝑥̃𝑖𝑗)

2
𝑁

𝑗=1

𝑀

𝑖=1

 
(22) 

 

PSNR = 10 log10 (
2552

MSE
) 

(23) 

 

SSIM =
(2μxμy + C1)(2σxy + C2)

(μx
2 + μy

2 + C1)(σx
2 + σy

2 + C2)
 

(24) 

 
Where 𝑀𝑁 denotes the two-dimensions of the image, 𝑥𝑖𝑗  is the 

value of the pixel located at (𝑖, 𝑗) in the original image and the 

𝑥̃𝑖𝑗  denotes the value of the pixel located at (𝑖, 𝑗)  in the 

reconstructed image. 𝜇𝑥  denotes the average of 𝑥𝑖 , 𝜎𝑥
2  is the 

variance of 𝑥𝑖 , 𝜎𝑥𝑦  denotes the co-variance of 𝑥  and 𝑦 . In 

addition, the terms 𝐶1  and 𝐶2  represents a constant value 

specified by the dynamic range of the image. Figure(7) 

represents a comparison among PSNR and SSIM obtained from 

the proposed method, PSO and GA of the contaminated image 

with 5% . The proposed method placed first place when 

compared to PSO and GA, then the PSO and finally the GA. The 

PSNR of the output image obtained from the proposed method 

increased rapidly after 800 iterations and achieved stability later. 

For the SSIM, the proposed method gained the first place when 

compared to PSO and GA. The noisy input image is compared 

with the generated image. When the value of the SSIM decreases, 

then the output image is not similar to the input. The proposed 

method reached stability after 800 iterations. Figure (8) 

represents a comparison among PSNR and SSIM obtained from 

the proposed method, PSO and GA of the contaminated image 

with 10%. The proposed method placed first place when 

compared to PSO and GA, then the PSO and finally the GA. The 

PSNR of the output image obtained from the proposed method 

reached a stable region after 800 iterations. For the SSIM, the 

proposed method gained the first place when compared to PSO 

and GA. The proposed method reached stability after 900 

iterations. Figure (9) represents a comparison among PSNR and 

SSIM obtained from the proposed method, PSO and GA of the 

contaminated image with Poisson noise. The proposed method 

placed first place when compared to PSO and GA, then the PSO 

and finally the GA. The PSNR of the output image obtained from 

the proposed method reached a stable region after 720 iterations. 

For the SSIM, the proposed method placed first place when 

compared to PSO and GA. The proposed method reached 

stability after 900 iterations. 

 

Table 1: Parameters settings of the firefly population 

Parameter Value 

Population count 𝒏 10 

Light absorption 𝜸 0.1 

Initial attractiveness 𝜷𝟎 0.01 

Initial adaptive step 𝜶́ 0.5 

Chaotic variable 𝑪𝒌 0.1 

𝝈𝟏 and 𝝈𝟐 0.1 

Max Iterations 1000 

Table 2: Parameters settings of the PSO population 

Parameter Value 

Population Size 10 

Maximum Velocity 𝑽𝒎𝒂𝒙 10 

Acceleration coefficient 𝒄𝟏 1.4 

Acceleration coefficient 𝒄𝟐 1.2 

Initial weight 𝝎 0.75 

The Maximum Generation 1000 

Table 3: Parameters settings of the GA population 

Parameter Value 

Population size 𝒏 10 

Maximum Position 𝑿𝒎𝒂𝒙 1 

Number of chromosomes 6 

Probability of Crossover 𝑷𝒄 0.65 

Probability of Mutation 𝑷𝑴 0.008 

The Maximum Generation 1000 

 

(A) (B) 

Figure 4: (A) the contaminated image with 5% noise corruption 

as the input of the CeNN. (B) the denoised image after the total 

number of iterations using the proposed methodology 

(A) (B) 

Figure 5: (A) the contaminated image with 10% noise corruption 

as the input of the CeNN. (B) the denoised image after the total 

number of iterations using the proposed methodology. 
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(A) (B) 
Figure 6: (A) the contaminated image Poisson noise corruption 

as the input of the CeNN. (B) the denoised image after the total 

number of iterations using the proposed methodology 

 
5.3. Comparative Study and Discussion 

 

In this section, a comparative study was provided to prove the 

efficiency of the proposed methodology. The final results were 

compared to Genetic Algorithms (GA) and Particle Swarm 

Optimization (PSO) with pre-defined settings shown in Table(2) 

and Table(3) respectively. The output was measured in the total 

number of error pixels of the three methodologies, as shown in 

Figure (10). The proposed method has provided a better 

performance compared to both the GA and the PSO after 250 

iterations. The performance of the PSO is higher than the GA 

with 10.25%. The proposed methodology achieved 9.6% better 

than the PSO. The progress of the proposed method is obtained 

from many factors which are summarized into the movement 

step and population diversity. Both of the GA and the PSO may 

suffer from being trapped into local optima, generate bad 

solutions, and inaccuracy in some problems. Therefore, a 

modified step movement was proposed for Firefly optimization 

to overcome these limitations. The results of these steps were 

significant for the optimization algorithm to generate new 

candidates and to avoid the worst solutions by keeping them into 

memory. The population diversity formula proved its 

effectiveness and efficiency when compared to the GA or the 

PSO from the first 100 iterations, and then the performance was 

in increasing slowly till the 250 iterations, then after 250 

iterations and up to 650 iterations, the proposed method was the 

leader. 

 
6. Conclusion 

 

    In this paper, a hybrid approach based on the modified firefly 

optimization was proposed to remove various kinds of noises in 

the medical images. The CeNN was suggested as a two-

dimensional processing paradigm which ideal for handling 

images because of its cellular architecture. Although the CeNN is 

an efficient processing paradigm, the correct values of its 

templates represent a challenge. Thus, the proposed method 

provided a hybrid algorithm to solve this issue. The proposed 

method utilized the firefly optimization algorithm to find the 

optimal solutions of the templates. The attractiveness of the 

modified firefly was based on a mutual information uncertainty 

measure to specify the attractiveness of each solution. The 

proposed method suggested its population diversity model based 

on the mean location of two leader fireflies to reduce the 

probability of begin trapped into local optima. The ChestX-ray8 

is a real-world dataset which is used for the learning and 

benchmarking of the proposed method. The obtained results were 

analyzed and discussed using the SSIM and PSNR to ensure the  
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(A) (B) 

Figure 8: (A) An illustration between (PSNR) and the number of iterations for the contaminated images with (10%) impulse noise obtained 

from the proposed method, (B) An illustration between the (SSIM) and the number of iterations for the contaminated images with (10%) 

impulse noise obtained from the proposed method. 

 

  
(A) (B) 

Figure 9: (A) An illustration between (PSNR) and the number of iterations for the contaminated images with Poisson noise obtained from the 

proposed method, (B) An illustration between the (SSIM) and the number of iterations for the contaminated images with Poisson noise 

obtained from the proposed method 

 

  
(A) (B) 

Figure 7: (A) An illustration between (PSNR) and the number of iterations for the contaminated images with (5%) impulse noise obtained 

from the proposed method, (B) An illustration between the (SSIM) and the number of iterations for the contaminated images with (5%) 

impulse noise obtained from the proposed method.  
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efficiency of the proposed method. It also provided a significant 

accuracy when compared to GA and PSO. 
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