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ABSTRACT 

Disease susceptibility prediction is defined as follows. Given 

training set S and a test case t∉S as a tuple (known as SNP, 

unknown disease), trying predicting the unknown disease with 

maximum accuracy. DisGeNET is a proponent dataset in 

disease susceptibility research. This paper reviews DisGeNET 

comprehensive information, before introducing a proposed 

system operating atop it. First, vetting the dataset by 

consolidation, and removing genes with effects beyond a 

certain threshold. Second, computing the empirical cumulative 

distribution function, using it for plotting and printing gene 

associations for many diseases such as, and not limited to, 

Alzheimer, Anemia, and Brain, breast cancer proposed 

methods such as applying C4.5 & naïve Bayes give better 

accuracy then previous works  

Keywords 

DNA analysis, epidemiological, DisGeNET, DNA Disease 

susceptibility, and disease susceptibility prediction. 

1. INTRODUCTION 

Computational DNA analysis in epidemiological studies [1] is 

carried out in three phases:  finding useful single nucleotide 

polymorphisms (SNPs), search for SNPs-to-diseases 

associations, and Disease Susceptibility Prediction (DSP).  

This paper focuses on DSP using previously prepared standard 

dataset. Data acquisition is achieved by using DisGeNET data 

set [2]. It contains 17,381Genes and 15,093Diseases as shows 

in table1 

In this study, we used the disease susceptibility prediction 

defined as follows. Given training set S and a test case t∉S as a 

tuple (known as SNP, unknown disease), trying predicting the 

unknown disease with maximum accuracy to determine the two 

most important genes in the disease [3].  

The operation of the proposed system is clarified in view of the 

general operational framework, by combining C4.5 and 

decision tree. The result of the accuracy measure is 81.7% for 

Crohn disease for instance, compared to support vector 

machine (SVM). 

 

Table 1. Statistic of database [4], [5], [6], [7], [8], [9], [10], 

[11], [12], [13] 

Database Disease Gene 

Curated 1857 825 

UniProt 606 125 

Lhgdn 163 182 

Gad 133 2168 

Befree 8296 4819 

Literature 7416 9240 

CTD Human 3090 5269 

Predicted 133 16 

M.musculus 1021 871 

R.Norvergicus 664 1035 

Table 1. Displayed means, the curated has 1857 diseases, 825 

genes. The UNIPORT has 606 diseases, 125 genes. The 

LHGDN has 163 diseases, 182 genes. The GAD has 133 

diseases, 2168 genes. The Befree has 8296 diseases, 4819 

genes. The LITERATURE has 7416 diseases, 9240 genes. The 

CTD human has 3090 diseases, 5269 genes. PREDICTED has 

133diseases, 16 genes. The M.musculus has 1021 diseases, 871 

genes. The R.Norvergicus has 664 diseases, 1035 genes. 

2. RELATED WORK 

There were many researchers who have taken different ways to 

identify accurate methods for diagnosis of diseases such as 

Alzheimer's, anemia, brain and breast cancer. 

Main algorithms for Protein sequence-sequence alignment are 

PAM matrix (construct a score matrix for guide protein 

sequence alignment) [14], BLOSUM: (Most often-used score 

matrix for protein sequence alignment) [15], Needleman-

Wunsch :( A dynamic programming algorithm for sequence 

alignments) [16]. 

The General Method for Sequence Comparison is Smith-

Waterman: (An extension of Needleman-Wunsch algorithm) 

[17] A solution to asymmetric gap penalty by recursion [18], 

FASTA (A heuristic arrangement speedier than flow 

programming) [19], BLAST (The most often-used heuristic 
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alignment) [20] and Dumas look-up table for identifying 

common words from a sequence database [21]. 

Multiple sequence alignments algorithms include PSI-BLAST 

(The most often-used algorithm for sequence-profile 

alignment) [22], ClustalW (An algorithm to alignment multiple 

sequences) [23], Neighbor-joining method (for constructing 

phylogenetic tree) [24], protein sequence profile [25], and 

Hidden Markov Model [26], Profile-profile alignment 

algorithms include [27], [28] and [29]. Algorithms for Protein 

structure comparison are TM-score (propose TM-score which 

is more delicate to topology than RMSD) [30], Dali (a generally 

utilized program for protein structure arrangement) [31]. 

CE (a broadly utilized program for Protein structure 

arrangement) [32], and TM-adjust (a fast and productive 

calculation for protein structure arrangements) [33].  

Algorithms for Protein secondary structures [34] are [35], [36] 

and PSI-PRED: the most popular software for protein 

Secondary structure prediction. [37] Main algorithms for 

Protein structure prediction are protein folds recognition 

(threading) [38], HMM-based threading. [39]. 

Profile-profile based threading method [40], Rosetta: a free 

modeling algorithm based on fragment assembly [41], 

TASSER: a composite technique for protein structure 

expectation [42], [43] and [44]. 

The first paper introducing the replica-exchange Monte Carlo 

simulation was [45] while the first paper introducing the 

simulated annealing method was [46].  

Cell type-selective Disease-association of genes under high 

regulatory load [47], DisGeNET: a discovery platform for the 

dynamical exploration of human diseases and their genes. [48], 

DisGeNET: a Comprehensive platform coordinating data on 

human disease-associated genes and variants [49], the 

relationship of PLA2G2A single nucleotide polymorphisms 

with type II a secretory Phospholipase A2 level yet not its 

activity in patients with stable coronary heart disease [50].  

3. Proposed Methods 

Based on the code, the site shows that I have a disease in the 

data decreased and left 150 diseases called disease-ontology. 

3.1 Preprocessing  

Consolidation Table 2 shows a sample of data consolidated by 

doid name, and gene id. Then select the score max, score mean, 

and sort consolidated data frequency. 

3.2 ECDF  

ECDF stands for Empirical Cumulative Distribution Function. 

It is a preprocessing phase before actual classification. 

The Fig.1 shows the steps of Empirical Cumulative 

Distribution Function. In, python, ECDF is calculated as 

arrange (1, Len(x) +1) / Len(x).Frist, the disease name is set, 

then projection is done, then selection of data related to the 

disease. The ECDF is calculated, then threshold cut is 

performed, then the LOOP iterates to operate on the next 

disease. 

     
           Fig 1: ECDF Flow Chart

Table2.Sample of Dataset 

Do id 

code 
Do id name 

Gene 

id 
Gene symbol count 

Pub meds-

max 

Source 

max 
Source mean Association Type 

DOID: 
2377 

multiple 
sclerosis 

3123 HLA-DRB1 3 232 0.362439 0.124658 
Biomarker |Genetic 

Variation 

DOID: 

2377 

multiple 

sclerosis 
348 APOE 2 68 0.302967 0.259084 

Biomarker |Genetic 

Variation 

DOID: 
2377 

multiple 
sclerosis 

3119 HLA-DQB1 2 63 0.289955 0.147295 
Altered Expression| 

Biomarker |Genetic Variation 

DOID: 

2377 

multiple 

sclerosis 
3575 IL7R 1 38 0.274986 0.274986 Biomarker |Genetic Variation 

DOID: 
2377 

multiple 
sclerosis 

3559 IL2RA 3 46 0.266881 0.089244 Biomarker |Genetic Variation 

DOID: 

2377 

multiple 

sclerosis 
3456 IFNB1 3 149 0.253425 0.087027 

Biomarker |Genetic Variation 

|Therapeutic 

DOID: 
2377 

multiple 
sclerosis 

23274 CLEC16A 1 20 0.248286 0.248286 Biomarker |Genetic Variation 

DOID: 

2377 

multiple 

sclerosis 
3553 IL1B 1 21 0.239379 0.239379 

Biomarker |Genetic Variation 

|Therapeutic 

Stop 

ds = disease name 

d=ds [i] 

y = ECDF (x) 

Plot = ECDF (x, y) 

Threshold cut 

x = get data (d) 

i = i+1 

If 

 i < n 

Start 
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3.3 Classification  

 
Fig 2: Proposed system flowchart 

The previous flow chart is explained as follows:  

1. Reading DNA 

In this step, DNA sequence is acquired here is an example. 

a c g c a t c g g c t a t a c a a g 

 

2. Convert2RNA 

Are replaces T with U. The transcribed DNA into an mRNA sequence is  

a c g c a u c g g c u a u a c a a g 

 

3. Convert 2 Codon 

By splitting, sequence three by three letters,  

ACG/ CAU/ CGG / CUA/ UAC / AAG 

      4. Convert 2 Amino  

Is done using standard conversion table [51, 52], so, the amino acid sequence is 

T / H / E /L /Y /K 

      5. Search gene bank using Longest Common Subsequence [53].  A subsequence of a sequence S is a set of types that appear in left-

to-right direction, but not essentially successively. For AAACCGTGAGTTATTCGTTCTAGAA and 

CACCCCTAAGGTACCTTTGGTTC, LCS = is ACCTAGTACTTTG.

YES (hit) 

NO (miss) 

Read DNA, SNP 

RNA=convert2 RNA (DNA) 

Codons=convert2 codon (RNA) 

Amino-acid=convert2 amino (Codons) 

Protein=LCS_Search_GeneBank (amino-acid) 

Protein found 

Common 

Gene 

Bank 

Protein=BLAST_Search_GeneBank Bank (amino-acid) 

Disease=DSP (protein, SNP) 

BLAST 

Gene Bank 

End  

Start 

Table -Codon-amino-acid 

Codons Amino-acid 
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6. BLAST_Search_GeneBank operation is shown in 

figure 3. 

 

Figure 3:BLAST_Search_GeneBank 

For the tutorial how to implement BLAST_Search_GeneBank 

operation, refer to [52] to show how to connect to HTTP:// 

www.ncbi.nlm.nih.gov/ blast/ and get result report. 

4. EVALUATION  

4.1  ECDF  
In, python, ECDF is calculated the proportion of more 

genes affecting the occurrence of diseases. As shown 

figures. 

Fig 4. Shows ECDF for Alzheimer’s disease, the major gene 

contribute with 0.7, the minor gene contribute with 0.1, and the 

confidence is 0.8 

 

Fig 4: ECDF of Alzheimer’s-disease 

 

 

Fig 5. Shows ECDF for Grave’s disease, the major gene 

contribute with 0.59, the minor gene contribute with 0.01, and 

the confidence is 0.6 

 

Fig 5: ECDF of Grave’s Disease 

Fig 6. Shows ECDF for brain cancer, the major gene contribute 

with 0.68, the minor gene contribute with 0.22, and the 

confidence is 0.9 

 

Fig 6: ECDF of brain cancer 

Fig 7. Shows ECDF for breast cancer, the major gene contribute 

with 0.58, the minor gene contribute with 0.12, and the 

confidence is 0.7 

 

Fig 7: ECDF breast cancer 

  

Client 

Connect to server 

Upload query 

Result report  

Request result 
Blast  
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Fig 8. Shows ECDF for anemia, the major gene contribute with 

0.65, the minor gene contribute with 0.15, and the confidence is 

0.8 

 
Fig 8: ECDF of anemia 

Fig 9. Shows ECDF for Behcet’s disease, the major gene 

contribute with 0.44, the minor gene contribute with 0.35, and 

the confidence is 0.79 

 
Fig 9: ECDF of Behcet’s disease 

Fig 10. Shows ECDF for celiac disease, the major gene 

contribute with 0.39, the minor gene contribute with 0.01, and 

the confidence is 0.4 

 
Fig 10: celiac disease 

 

 

 

Fig 11. Shows ECDF for chronic kidney failure, the major gene 

contribute with 0.39, the minor gene contribute with 0.37, and 

the confidence is 0.76 

 
Fig 11: chronic kidney failure 

4.2 Classification 

For DSP, we use Weka [53] on data set from [54] containing 435 

Human chromosome sequences. 

There are too matters for implement are explained as follow: 

4.2.1    C4.5 - based classifiers 

Are a PC program for actuating characterization administers as 

choice trees from an arrangement of given examples and a 

product augmentation of the fundamental ID3 calculation 

Designed by Quinlan.  

Disentangled Algorithm: Let T be the arrangement of preparing 

examples, choose a characteristic that best separates the 

occasions contained in T (C4.5 utilizes the Gain Ratio to decide), 

create a tree hub whose esteem is the picked property, create 

tyke joins from this hub where each connection speaks to a one 

of a kind incentive for the picked trait, use the kid interface 

qualities to additionally subdivide the cases into Subclasses [55], 

[56]. 

Data is pipelined into a preprocessing phase, in which many 

operations are performed such as data wrangling then selection 

and projection of relevant pieces of information.  

𝚷𝐬𝐧𝐩𝐈𝐝,𝐠𝐞𝐧𝐞𝐒𝐲𝐦𝐛𝐨,𝐝𝐢𝐬𝐞𝐚𝐬𝐞 𝐍𝐚𝐦𝐞  

This means that Projection selecting columns. 

𝛔 𝐝𝐢𝐬𝐞𝐚𝐬𝐞 𝐍𝐚𝐦𝐞 𝐈𝐍(𝐎𝐛𝐬𝐞𝐬𝐬𝐢𝐯𝐞𝐂𝐨𝐦𝐩𝐮𝐥𝐬𝐢𝐯𝐞𝐃𝐢𝐬𝐨𝐫𝐝𝐞𝐫,𝐎𝐛𝐞𝐬𝐢𝐭𝐲,𝐈𝐧𝐟𝐥𝐚𝐦𝐦𝐚𝐭𝐨𝐫𝐲𝐁𝐨𝐰𝐞𝐥𝐃𝐢𝐬𝐞𝐚𝐬𝐞𝐬,𝐂𝐫𝐨𝐡𝐧𝐃𝐢𝐬𝐞𝐚𝐬𝐞 𝐧𝐚𝐦𝐞𝐥𝐲) 

For a matter of simplicity, this paper is scrutinizing only four 

diseases: Obsessive Compulsive Disorder, Obesity, 

Inflammatory Bowel Diseases, and Crohn Disease namely.  

Selection means selecting certain rows.  

Table 3. Accuracy measure 

Class 
F-

Measure 
Recall Precision 

FP 

Rate 
TP 

Rate 

Obsessive 

Compulsive 

Disorder 

0.766 0.692 0.857 0.002 0.692 

Obesity 0.924 0.979 0.875 0.185 0.979 

Inflammatory 

Bowel 

Diseases 

0.353 0.25 0.603 0.022 0.25 

Crohn 

Disease 
0.809 0.817 0.801 0.084 0.817 
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No 

The SNPID “1926065” is associated with both diseases Crohn and Inflammatory Bowel but is correlated with Crohn Disease are 

shown in figure 12. 

 
Fig 12: Decision Tree for SNPID= 2165047 and associated diseases 

The SNPID “10618418” is associated with both diseases Crohn and Obesity but is correlated with Obesity shown in figure 13. 

 

Fig13: Decision Tree for SNPID= 8192678 and associated diseases 

The SNPID “4988235” is associated with both diseases Crohn and Obesity but is correlated with Crohn are Shown in figure 14. 

 

Fig 14: Decision Tree for SNPID= 4911259 and associated diseases 

SNPID= 

2165047 

Crohn Disease 

SNPID= 

1926065 

Crohn Disease Inflammatory Bowel Diseases 

SNPID = 

819267 

Crohn Disease 

Obesity 
SNPID = 

10618418 

Obesity 

SNPID = 

4911259 

 

Crohn Disease 

SNPID = 

4988235 

 

Obesity Crohn Disease 
 

No Yes 

Yes 

Yes 

Yes 

No 

No 

Yes 

Yes 

No 

No 
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4.2.2 Naive Bayes based classifier 

The Bayesian is Classification speaks to a managed learning 

technique and additionally a factual strategy for arrangement. It 

Accept a fundamental probabilistic model and it enables us to 

catch instability about the model principled by deciding 

probabilities of the results.  It can solve diagnostic and predictive 

problems [57]. 

Table 4. Accuracy measure 

Class 
F-

Measure 
Recall Precision 

FP 

Rate 

TP 

Rate 

Obsessive 

Compulsive 
Disorder 

0.109 0.058 1 0 0.058 

Obesity 0.9 0.923 0.879 0.169 0.923 

Inflammato
ry Bowel 

Diseases 

0.185 0.106 0.735 0.005 0.106 

Crohn 
Disease 

0.764 0.882 0.674 0.176 0.882 

The table 4. Shows Accuracy measure. Main trend of accuracy is 

Precision in Obsessive Compulsive Disorder, and low tendency 

is recall in Obsessive Compulsive Disorder. Obsessive declines 

sharply as in Precision 1 and in recall 0.058 and Obesity is trend 

increases gradually as in Precision 0.879 and recall 0.923. 

Inflammatory Bowel Diseases decreases sharply as 0.735 in 

Precision, 0.106 in recall, and Crohn Disease increases as 0.674   

in Precision, 0.882 in recall. 

The margin curve of the NB tree classifer with the increase of X, 

Y stcady linearly increases, until X reach the value -1. 2858 

quadratically increase are Shown in figure 15. 

 

Fig 15: Margin curve of the Naive Bayes classifier 

Table 5. Comparison between methods 

Methods TP rate 

SVM[50] 63.6% 

LP 69.5% 

RF 66.1% 

CGSP 67.3% 

CSP 76.1% 

Proposed 1(C4.5-based) 81.7 % 

Proposed 2(Naive Bayes-based) 67.4 % 

The table 5. Shows Comparison of performance between 

methods Naïve Bayes, Decision Tree, SVM, LP, RF, CGSP and 

CSP for Crohn disease where it turns out that the result of the two 

methods the proposal is better than the previous work. 

5. CONCLUSION AND FUTURE WORK 

As shown, the system is able to answer the core genes affecting 

certain diseases. What are the genes associated to Alzheimer 

Disease? What are the genes that support the association? Future 

direction may consider proteins networks. Proposed methods 

such as applying C4.5 & naïve Bayes give better accuracy then 

previous works  

One future direction may be scrutinizing specific disorders such 

as Copper Related Disorders [58, 59] and DNA-Based Nano 

biosensors as an Emerging Platform for Detection of Disease 

[60]. Another future work direction is trying different techniques 

such as protein network analysis. 

Table 6. The ratio between Major, Minor, Confidence for 

diseases name 

Diseases Name Major Minor Confidence 

Alzheimer’s-disease 0.7 0.1 0.8 

Grave’s Disease 0.59 0.01 0.6 

Behcet’s disease 0.44 0.35 0.79 

brain cancer 0.68 0.22 0.9 

breast cancer 0.58 0.12 0.7 

celiac disease 0.39 0.01 0.4 

Chronic kidney failure 0.39 0.37 0.76 

Fig 16. Shows stacked area. It shows major &minor denes 

contributed to each disease  

 

Fig 16: Stacked area of the ratio between major, minor for 

diseases name. 

Fig 17. Shows Clustered bar chart. It shows major &minor denes 

contributed to each disease  

 

Fig 17: Clustered bar chart of the ratio confidence for 

diseases name 
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