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Nonlinear time-fractional partial differential equations, especially nonlinear time-
fractional Gas dynamic equations, can be resolved by applying the Optimal Homotopy 
Asymptotic Method (OHAM) and the Least Square Residual Power Series Method 
(LSRPSM). A Fractional-order derivative that has numerical values in the closed 
interval [0, 1] is being employed in the Caputo meaning. These approaches are 
compared based on their computing complexity, convergence rate, and approximation 
error. The present study demonstrates that when these techniques are assigned to 
nonlinear differential equations of fractional order, they exhibit differing convergence 
rates and approximation errors. Using the Matlab software, perform numerical 
computations and graphics for fractional gas differential equations. The results of this 
comparison are compared to the exact solution to demonstrate how much more efficient 
and precise our methods are at solving nonlinear differential equations. In comparison 
to (OHAM), the results demonstrate the validity and efficiency of the series solution 
utilizing (LSRPSM), showing the importance of these methods in the study of fractional 
differential equations. 

 

1. Introduction  

Partial differential equations with nonlinear solutions 
are commonly used to describe a wide range of 
phenomena in a wide range of disciplines [1]. Fractional 
calculus utilized the use of the mathematical concept of 
non-integral ordered differentiation and integration. The 
development of fractional calculus begins with classical 
calculus. However, fractional calculus is receiving greater 
attention nowadays because of its extensive applications in 
several technical areas [2]. Nonlinear fractional partial 
differential equations have recently become prevalent in 
several branches of applied mathematics, physics, and 
engineering, including mathematical biology, fluid 
mechanics, viscoelasticity, aerodynamics, and 
electrodynamics  [11], [12], [13], [14], [15], and [16].  
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Therefore, solving nonlinear fractional partial 
differential equations is crucial. For the reason numerically 
solving fractional PDEs (FPDEs) is important in various 
fields, many important researchers have made 
contributions to this topic, and various influential numerical 
techniques have been proposed [3]. 

Gas dynamics is a subfield of fluid dynamics that 
studies the motion of gases and how it impacts physical 
systems. It is based on the principles of fluid mechanics 
and thermodynamics. Numerous numerical and analytical 
techniques were employed in literature to resolve fractional 
gas dynamic equations. The Homotopy analysis technique, 
NIM, DTM, FNDM, reduced differential transform, and 
Elzaki transform method were applied to determine the 
optimal solution for the gas dynamics equations [4–10]. 
Regardless matter how big or tiny a physical element is, 
the Optimal Homotopy Asymptotic Method (OHAM) offers a 
simple method to ensure solution series convergence. 
Marinca et al. developed the approach initially [17-19]. This 
study also uses the terms least-squares methodology and 
residual power series technique to refer to the least-
squares residual power series method (LSRPSM). 
Compared to the classical residual power series method, 
the new methodology can generate an estimate that is 
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more accurate while using fewer expansion terms [20]. In 
this work, a nonlinear partial fractional differential is solved 
using the techniques outlined above, and their results are 
compared using a nonlinear fractional Gas-Dynamic 
equation. 

Following is the structure of the current paper: For the 
fractional calculus and Wronskian theory, several 
fundamental concepts and mathematical fundamentals are 
discussed in section 2. Both the Optimal Homotopy 
Asymptotic and the least square residual power series 

technique's fundamentals are covered in Section 3 of this 
article. The suggested approaches are demonstrated using 
the same example (Gas-Dynamic Equation) in Section 4. 
Section 5 ends with a conclusion. 

2. Definitions and properties 

The concept of partial fractional Wronskian and some 
definitions of fractional calculus theory are introduced, and 
will be used extensively throughout this article. 

 

Definition 2.1. The Riemann-Liouville fractional integral operator of order  is defined as 

 

(1) 

Where, 

 

(2) 

The Riemann-Liouville fractional integral operator  has the following properties: 

 (3) 

 (4) 

 

(5) 

Definition 2.2. A continuous function  has the following The Riemann-Liouville fractional integral operator fractional 

derivatives: 

 

Where  

 

 

Definition 2.3. The Caputo fractional derivative: 
 

(6) 

For a function , the Caputo fractional integral  is defined as follows: 

, (7) 

Where  The Caputo fractional derivative has the following properties: 

1) If it holds 

 

2)  

3)  

 
Where , , and k are real constants. 

Definition 2.4. The fractional partial Wronskian (see [21]). 

Let represent how many functions of the variables x and t are defined on the domain  

The fractional partial Wronskian of follows : 
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       (8) 

Where   

 ,  if all n functions have a fractional partial Wronskian, then 

all n functions are regarded as linearly independent. In the domain = ,    is 

nonzero, at least at one point. 

3. Overview of two numerical approaches 

With the least square residual power series method (LSRPSM) and the optimal homotopy asymptotic approach 
(OHAM), we discuss two effective strategies for solving nonlinear Caputo time-fractional partial differential equations in 
this part. 

3.1. The OHAM Methodology (Optimal Homotopy Asymptotic Method) 

The subsequent steps provided the OHAM approach for nonlinear partial fractional differential equations: 

Assume the subsequent partial differential equation: 

                                                          (9) 

                                          (10)                                                                    

Where  indicates the differential operator, which could be an integer or a fractional order.   Denote a variable 

that is independent, Unknown function , boundary operator B,  is the boundary of the domain , and known 

expression  are all present in Equation (9) 

 The differential operator D can now be divided into the terms of  and  differential operators, providing:  

                                                                 (11) 

Below, L refers to the simpler linear differential operator, which could represent the linear and uncomplicated portion of 
the Eq. (9) that can be solved using any auxiliary analytical method, whereas N the operator denotes the differential 
operator, that's is a non-linear and complicated portion of the Eq. (9). 

We begin by creating the homotopy as: 

                                        (12) 

                             
                                               (13)                                              

An unidentified function is represented , where  forms an embedding parameter, H(q) defines a 

nonzero function for  and H(0)=0,  

Obviously, it holds when  and  

 

As a result, once  increases from , the solution changes from  to , which ensures a quick 

convergence to the exact solutions. 

The auxiliary function   gives us a simple way for controlling and governing the convergence while increasing the 

precision of the results and effectiveness of the procedure. 

The auxiliary function  is selected in the following approach: 

                                                         (14) 

Since the auxiliary convergence control parameters are present. 

In Taylor's series relating to , expand to get approximations of the following solutions: 

                                                          (15) 

One of the main contributors to the convergence of series (15) has been determined to be the auxiliary convergence-
control parameters.  
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When we replace , and  with identical coefficients of the same powers of q in equations (11), we 

produce series problems and zeroth-order problems, as follows: 

                   (16) 

                  (17) 

 

                                                 

The analytical solution's general controlling - order problem is written as , and it has the following form 

 

                                                                                                                                     (19) 

                                                                                        (20) 

The coefficient of in the nonlinear operator is  . 

                                (21) 

Series (15) is said to converge at q = 1 if it satisfies: 

                                                  (22) 

When Eq. (15) is substituted into Eq. (11), the residual is as described as: 

                                              (23) 

As  then  just so seems to be the same solution. 

There are numerous techniques that can be employed to determine the auxiliary convergence-control 
parameters , , , . . . ( Ritz, Least Square, Collocation, and Galerkin's Method).  In the brief overview that follows, 

the least square method is used to obtain the optimal values for the auxiliary convergence-control parameters. 

                                                                                                                                       (24) 

R  refers for the residual. The following conditions provide an optimal opportunity to identify the unknown 

constants ): 

                                                            (25)  

The nonlinear algebraic system certainly can be solved rapidly while m is small, but as m increases. The solution 
becomes more complex. 

3.2. The Least Square Residual Power Series (LSRPS) Methodology 

An approach based on the least-squares method and the classical (RPS) method has been proposed for time-
fractional differential equations. 

3.2.1. Residual Power Series (RPS) Method. 

 The general fractional differential equation: 

 

(26) 

Where N is the nonlinear operator and   is the linear operator. 

Applying the classical (RPS) approach [23], an algorithm could have been described as follows: 

  (27) 

To provide an accurate approximation for (26), we present The kth series of : 

                            (28) 

The 0-th RPS approximate solution of is: 
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(29) 

Equation (26) can be written by: 

 

           

(30) 

For Equation (26) we express the residual function as follows: 

 

(31) 

The kth residual function   define as follow: 

 

(32) 

We investigate the solution of the following to obtain  : 

 

(33) 

Where  

The standard residual power series strategy will result in k-th-order approximation solutions in the present case. 

 

(34) 

where, 

 , 

 

 

 

  

(35) 

 

3.2.2. Least-Squares Residual Power Series Method (LSRPS) 

The (LSRPS) method's methodology is covered in this section, along with some expressions that we think are 
important. 

The remainder  for Equation (26) is: 

u ̃  
 

(36) 

regarding  and  representing the approximate solution of the equation.  

Remark: 

 

(37) 

In this case, converge to the solution of equation (26). 

The  is the approximate (RPS) method solution of equation (26) on domain  if: 

 

(38) 

and . 

Assuming  is the weak approximation (RPS) method solution of equation (26), then we refer to it as: 
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(39) 

where . 

For the least-squares (RPS) approach, we suggest the procedures below. 

1st step: 

We implement the classical residual power series approach. The form of could be represented as: 

  (40) 

and the kth residual function  as follows: 

                      (41) 

 After that, we explore for  solutions by: 

                      (42) 

Where   

In this case, the classical (RPS) technique yields kth-order approximation solutions with: 

                      (43) 

Where can be computed by equation (35) 

2nd Step: 

The linearly independent functions can be validated using: 

                       (44) 

Where  

Let  be a set defined on R, where is any integer between  and  

 Remark: 

If we are unable to identify the point where  is not equal to 0, the set  is linearly dependent. 

As a result, we should use the classic residual power series strategy in this case. 

3rd Step: 

We assume the analytical solution for Equation (26) 

                       (45) 

 then we get: 

 

(46) 

Here, we calculate some constants . 

4th Step: 

We associate with the following functional: 

 

(47) 

4. Numerical applications 
We will examine the numerical example below that applies both techniques to the same equation in order to 
evaluate the positive features and precision of the LSRPSM and OHAM for the resolution of nonlinear Caputo 
time-fractional Gas Dynamic equations. 
Example 4.1. Nonlinear Gas Dynamical Equation Solved by OHAM Using Caputo Time Fractional Derivative: 



                                A. Hassan /Frontiers in Scientific Research and Technology 7 (2023) 108 - 119                                              114 

 

                                                              0 < 𝛼 ≤ 1, t  

From the initial condition 

                                                                                                 

The equation (48) becomes the standard gas dynamics equation of order one if we choose 𝛼 =1, which has 

                                                                                                                                                  

The OHAM concept described in Section 3 will be followed by following steps: 

                                                                   

                                                                  

Using the initial condition: 

(51)                                                                                                    

Collecting identical powers of  by setting each coefficient of  to zero creates the zeroth order problem-solving. 

(52) 

Starting with an initial estimate of  =  ,  we obtain the first order problem as follows: 

                                                                   

When we apply the operator, referred to as the inverse operator of the  operator in (53) we get:  

                                                                                                                                 (54) 

We compare the coefficient of  and apply the operator to the two sides of to find the value of the second-order 

problem:  

                          (55)                                                                            

The third order problem is: 

   (56) 

By using the initial condition (49), Eq. (54), and Eq. (55), (56) we find out third-order approximate solution of Eq. (48) 

   

We find the values of constants ,  for different values  of using the least squares approach described above.  

Subsequently when  =1, we determine the following unknown coefficients: 

              (58) 

Table 1.The results of the OHAM method's third order solution (56) at multiple points of x, t and Alpha=1 

x t 
OHAM  at 

Alpha=1 
Exact at Alpha=1 

Absolute Error(OHAM) at 

Alpha=1 

0.1 0.1 0.9999792 1 2.07553118E-5 

0.2 0.1 0.90481863 0.90483741 1.87801827E-5 

0.3 0.1 0.81871376 0.81873075 1.69930120E-5 

0.4 0.1 0.74080284 0.74081822 1. 5375913E-5 

0.5 0.1 0.67030613 0.67032004 1.3912701E-5 
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Figure 1. The approximate solution obtained using OHAM for  equation(48) is compared to the exact solution for  
equation(50)  when Alpha = 1 and t = 0. 

 

 

 

 

 

Figure 2. When Alpha = 1 and t = 0.1, the approximate solution via OHAM for  equation(48) is compared to the exact 
solution for  equation(50) . 
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Figure 3. The behavior of the exact and approximate solutions provided by OHAM for  equation(48)  at alpha = 
0.5,0.8,0.9,1 when t = 0.1. 

Second: we will use the LSRPSM for solving the same equations for the nonlinear gas dynamic problem which take   
the form: 

    0 < 𝛼 ≤ 1, t                                                                                  (59) 

                 is the initial condition. 

                With exact solution                                                                                                             (60)     

To introduce the Gas-Dynamic equation, we can employ the well-known (RPS) method. This method offers a solution 
for the equation, as indicated by reference [22]. 

 

(61) 

Where 

. 

(62) 
 

 

 

The linearly independent functions could be validated by using: 

                                                                                                                                                   

(63) 

Hence, the functions  are linearly independent define as: 
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Consequently, we can obtain an approximation that can be formulated as follows: 

 

(64) 

The residual function can be obtained by: 

 

(65) 

With the initial condition: 

                                                           (66) 

By using  put then can be written by: 

                                                           
(67) 

By substituting ( ) into ( )., we can obtain  As a result, the functional J can be expressed as: 

                      (68) 

We determine the functional J. As a result, we have two algebraic equations: 

.                                                                  (69) 

And following that, we calculate the unknown coefficients of (67) when : 

 , =1.01514550095504 (70) 

The following formula can be used to demonstrate the absolute error between the exact and approximate solutions 
using the proposed approach: 

Error=  (71) 

 

Figure 4. demonstrates the contrast between the Exact Solutions for the Gas-Dynamic Equation (60) at t= 0.1 and the 
Method (LSRPSM).  
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Table 2. presents the absolute errors between the approximate and exact solutions obtained using the (LSRPS) 
approach. 

x t 
LSRPSM  at 

Alpha=1 
Exact at Alpha=1 

Absolute Error(LSRPSM) at 

Alpha=1 

0.1 0.1 0.999999999999948 1 5.19689956877948e-14 

0.2 0.1 0.904837418035913 0.90483741803596 4.70234918760661e-14 

0.3 0.1 0.818730753077939 0.818730753077982 4.25486149761746e-14 

0.4 0.1 0.740818220681679 0.740818220681718 3.8499578916048e-14 

0.5 0.1 0.670320046035604 0.670320046035639 3.48358595818685e-14 

 

 
Figure 5. compares three techniques The Exact Solutions for the Gas-Dynamic Equation(60), the Method (RPSM), 
and the Method (LSRPSM) at t= 0.1 

 

 

Figure 6. A description of the exact and approximate solutions provided through LSRPSM for various alpha values= 
0.5, 0.8, 0.9,1 when x = 0. 
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Conclusion 

Time-fractional Gas-Dynamic equations based on Caputo 
fractional derivation were approximated using the least 
Square Residual Power Series approach and the Optimal 
Homotopy Asymptotic method. At the same value of t and 
with the same number of term approximations, the 
acquired solutions in the Least Square Residual Power 
Series Method (LSRPSM) see (Table 2) and fig(4to6) 
converge to the exact solutions more rapidly than the 
Optimal Homotopy Asymptotic Method (OHAM) in 
table(1)and fig from 1to 3. This implies that the 
approximate solutions in (LSRPSM) technique are 
significantly closer to the exact solutions than the solutions 
in (OHAM) approach. According to the numerical results, 
the current approaches are simple, efficient, and provide 
extremely high precision for getting approximate solutions 
to various nonlinear fractional physical differential 
equations.     
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