Influence of Spirulina platensis Supplementation Alone or Mixed with Live Yeast on Blood Constituents and Oxidative Status of Damascus Goats and their New Born | ||||
Journal of Applied Veterinary Sciences | ||||
Article 1, Volume 9, Issue 1, January 2024, Page 1-12 PDF (667.13 K) | ||||
Document Type: Original Article | ||||
DOI: 10.21608/javs.2023.231998.1266 | ||||
View on SCiNiTO | ||||
Author | ||||
Ibrahim Samir Abd El-Hamid | ||||
Department of Animal and Poultry Physiology, Desert Research Center, Ministry of Agriculture and Land Reclamation, Cairo, Egypt | ||||
Abstract | ||||
The goal of this study was to investigate the effect of supplementing Spirulina, either alone or in a mix with live yeast, on blood biochemical constituents and oxidative status in goats and their kids. Eighteen pregnant multiparous goats were equally distributed into three groups. The first group (control) received normal feeding without any additions. The second group (SP) received the normal diet plus 5 grams per head per day of Spirulina platensis, while the third group (SPSC) received the same amount of SP mixed with 3 grams per head per day of Saccharomyces cerevisiae for 30 days before parturition and continued for 45 days of lactation period. Results revealed that applying both additives caused (P≤0.01) decrease in serum cholesterol, urea, alanine aminotransferase, lipid peroxidase, and glutathione peroxidase. Serum insulin and triiodothyronine levels increased (P≤0.05) in goats fed diets supplemented with SP alone or mixed with SC compared to the control group. Concentrations of calcium and phosphorous were higher (P≤0.05) in both treated groups than in the control group. Birth weights for kids born from goats supplemented with SP alone or mixed with SC were higher (P≤0.05) compared to kids in the control group. Serum cholesterol concentration decreased (P≤0.05) in the SPSC kids group, while serum phosphorus level increased (P≤0.05) in SP kids group. It could be concluded that supplementation with SP alone or mixed with SC improved health and antioxidant status in both Damascus female goats and their newborns. | ||||
Keywords | ||||
Blood constituents; Damascus goats; live yeast; Oxidative status; Spirulina Platensis | ||||
References | ||||
ABBAS, T.M., ORMA, A., MOHAMED, T.I., and ABD EL-WAHAB, A., 2021. Effects of dietary probiotic supplementation on growth, rumen development and selected blood metabolites of growing calves. Mansoura Veterinary Medical Journal. 22 (4): 166-171. https://doi.org/ 10.21608/MVMJ.2021.47831.1012
ABD ELDAIM, M., RAMADAN, S., and ELSABAGH, M., MAHBOUB, H., 2018. Impact of spirulina platensis algae and vitamin a supplementation to late pregnant ewes on their lamb’s survivability and performance. Assiut Veterinary Medicine Journal. 64 (159): 144-153.
ABD EL-HAMID, I.S., FOUDA, W.A., SHEDEED, H.A., MOUSTAFA, S.A., ELBAZ, A.M., BAKR, S.A., MOSA, B.H., MORSY, A.S., HASAN, A.M., and EMAM, K.R., 2022. Influence of microalgae Nannochloropsis oculata on Blood constituents, reproductive performance and productivity in Hi-Plus doe rabbits under North Sinai conditions in Egypt. Journal of Animal Health and Production. 10 (2): 135-145. http://dx.doi.org/10.17582/journal.jahp/2022/10.2.135.145
ABD EL-HAMID, I.S., YOUNIS, F.E., FARRAG, B., EL-RAYES, M. A-H., and SHEDEED, H.A., 2019. Influence of organic or inorganic forms of salts rich in phosphorus, copper and zinc on reproduction, productivity and blood constituents in sheep. Australian Journal of Basic and Applied Sciences. 13(6): 14-22. https://doi.org/10.22587/ajbas.2019.13.6.2
ALLA, M., BADAWI, A., HASSAN, N.M., EL-BASTAWISY, Z.M., and BADRAN, E.G., 2007. Induction of Glutathione and glutathione-associated enzymes in butachlor-tolerant plant species. American Journal of Plant Physiology. (2): 183–91. https://doi.org/10.3923/ajpp.2007.195.205
AL-SOBAIYL, K.A. 2010. Effect of breeding season and pregnancy status on serum progesterone, sodium, potassium, copper and iron of estrous synchronized Aradi goat does. Saudi Journal of Biological Sciences. (17): 259-263. https://doi.org/10.1016/j.sjbs.2010.04.012
ALTOMONTE, I., SALARI, F., LICITRA, R., and MARTINI, M., 2018. Use of microalgae in ruminant nutrition and implications on milk quality-A review. Livestock Science. (214): 25-35. https://doi.org/10.1016/j.livsci.2018.05.006
ALY, M.S., and OMAR, M.A., 2003. Spirulina Platensis as nutritional promoter for sexual puberty in Rahmany sheep. Journal of Agricultural Chemistry and Biotechnology. 28 (5): 4001-4012. https://doi.org/10.21608/jacb.2003.244630
ASHOUR, G. A., NEAMA, ASHMAWY. M., DESSOUK, S.H., and SHIHAB, O.H., 2015. Blood hematology, metabolites and hormones in newborn sheep and goat from birth to weaning. International Journal of Advanced Research. 3 (7): 1377-1386. (ISSN 2320-5407). www.journalijar.com
ATALLA, S., YOUSSEF, M.A., EBRAHEEM, E.M., EL-DIASTY, M., and RIZK, M.A., 2023. Effect of prebiotic and Spirulina on blood gas parameters and acute phase proteins in dairy cattle with sub-acute ruminal acidosis. International Journal of Veterinary Science. 12(1): 24-30. https://doi.org/10.47278/journal.ijvs/2022.149
AZAB, S., ABDEL-DAIM, M., and ELDAHSHAN O., 2013. Phytochemical, cytotoxic, hepatoprotective and antioxidant properties of Delonix regia leaves extract. Medicinal Chemistry Research. (22): 4269-4277. https://doi.org/10.1007/s00044-012-0420-4
BAGNICKA, E., JARCZAK, J., KOSCIUCZUK, E., KABA, J., JÓZWIK, A., CZOPOWICZ, M., STRZALKOWSKA, N., and KRZYZEWSKI, J., 2014. Active dry yeast culture supplementation effect on the blood biochemical indicators of dairy goats. Advances in dairy Research. 2 (2): 2-7. http://doi.org/10.4172/2329-888X.1000123
BASHANDY, S.A.E., SALLY, A., EL AWDAN, EBAID. H., and ALHAZZA, I.M., 2016. Antioxidant Potential of Spirulina platensis mitigates oxidative Stress and reprotoxicity induced by sodium arsenite in male rats. Oxidative Medicine and Cellular Longevity. (16): pp. 8. http://dx.doi.org/10.1155/2016/7174351
BASHIR, S., SHARIF, M.K., BUTT, M.S., and SHAHID, M., 2016. Functional Properties and Amino Acid Profile of Spirulina Platensis Protein Isolates. Pakistan Journal of Scientific and Industrial Research Series. 59 (1): 12-19.
BELAY, S., GEBRU, G., GODIFEY, G., BRHANE, M., ZENEBE, M., HAGOS, H., and TEAME, T., 2014. Reproductive performance of Abergelle goats and growth rate of their crosses with Boer goats. Livestock Research for Rural Development. 26(5).
CHO, Y.A., and KIM, J., 2015. Effect of probiotics on blood lipid concentrations: A Meta-Analysis of Randomized Controlled Trials. Medicine (Baltimore). 94(43): e1714. https://doi.org/10.1097/MD.0000000000001714
DENG, R., and CHOW, T.J., 2010. Hypolipidemic, antioxidant, and antiinflammatory activities of microalgae Spirulina. Cardiovascular Therapeutics. (28): e33–e45
DESNOYERS, M., GIGER-REVERDIN, S., BERTIN, G., DUVAUX-PONTER, C., and SAUVANT, D., 2009. Meta-analysis of the influence of Saccharomyces cerevisiae supplementation on ruminal parameters and milk production of ruminants. Journal of Dairy Science. 92 (4): 1620-1632. https://doi.org/10.3168/jds.2008-1414
DU, D., FENG, L., CHEN, P., JIANG, W., ZHANG, Y., LIU, W., ZHAI, R., and HU, Z., 2022. Effects of Saccharomyces Cerevisiae cultures on performance and immune performance of dairy cows during heat stress. Frontiers in Veterinary Science. (9):851184. https://doi.org/ 10.3389/fvets.2022.851184
EL-ASHRY, M.A., KHOLIF, A.M., EL-ALAMY, H.A., EL-SAYED, H.M and EL-HAMAMSY, T.A., 2001. Effect of different yeast cultures supplementation to diet on the productive performance of lactation buffaloes. Egyptian Journal of Nutrition and Feeds. (4): 21-33.
EL-DEEB, M.M., ABDEL-GAWAD, M., ABDEL-HAFEZ, M.A.M., SABA, FATMA, E., and IBRAHIM, E.M., 2022. Effect of adding Spirulina platensis algae to small ruminant rations on productive, reproductive traits and some blood components. Acta Scientiarum Animal Sciences. (45): e57546. https://doi.org/10.4025/actascianimsci.v44i1.57546
EL-RAGHI, A. A., and HASHEM, N. M., 2022. Maternal, postnatal, and management-related factors involved in daily weight gain and survivability of suckling Zaraibi goat kids in Egypt. Animals. 12(20): 2785. https://doi.org/10.3390/ani12202785.
EL-SABAGH, M.R., ELDAIM, M.A.A., MAHBOUB, D.H and ABDEL-DAIM, M., 2014. Effects of Spirulina Platensis algae on growth performance, antioxidative status and blood metabolites in fattening Lambs. Journal of Agricultural Science. 6 (3): 92-98. https://doi.org/10.5539/jas.v6n3p92
ERTHINGHASAUSEN, G. 1972. Clinical Chemistry. (18): 263.
ESTRADA, J.P., BESCOS, P.B., and DEL FRESNO, A.V., 2001. Antioxidant activity of different fractions of Spirulina platensis protean extract. Il Farmaco. 56(5-7):497-500.
https://doi: 10.1016/s0014-827x(01)01084-9
GARCIA-MARTINEZ, D., RUPEREZ, F.J., UGARTE, P., and BARBAS, C., 2007. Tocopherol fate in plasma and liver of streptozotocin-treated rats that orally received antioxidants and Spirulina extracts. International Journal for Vitamin and Nutrition Research. 77(4):263-71. https://doi:10.1024/0300-9831.77.4.263
GARGOURI, M., SOUSSI, A., AKROUTI, A., CHRISTIAN, MAGNÉ and EL FEKI, A., 2018. Ameliorative effects of Spirulina platensis against lead-induced nephrotoxicity in newborn rats: modulation of oxidative stress and histopathological changes. EXCLI Journal. 2 (17): 215-232. https://doi: 10.17179/excli2017-1016.
GUPTA, R., BHADAURIYA, P., CHAUHAN, V.S., and BISEN, P.S., 2008. Impact of UV-B radiation on thylakoid membrane and fatty acid profile of Spirulina platensis. Current Microbiology. 56(2):156-61. https://doi: 10.1007/s00284-007-9049-9
GUYOT, S., FERRET, E., and GERVAIS, P., 2005. Responses of Saccharomyces cerevisiae to thermal stress. Biotechnol Bioeng 4, 403-409. https://doi:10.1002/bit.20600
HANNAN, J.M., MARENAH, L., and ALI, L., 2006. Ocimum sanctum leaf extracts stimulate insulin secretion from perfused pancreas, isolated islets and clonal pancreatic beta-cells. Journal of Endocrinology. 189(1):127-36. https://doi: 10.1677/joe.1.06615.
HANNAN, J.M.A., ANSARI, P., AZAM, S., FLATT, P.R., and ABDEL WAHAB, Y.H.A., 2020. Effects of Spirulina platensis on insulin secretion, dipeptidyl peptidase IV activity and both carbohydrate digestion and absorption indicate potential as an adjunctive therapy for diabetes. British Journal of Nutrition. 124(10):1021-1034. https://doi.org/10.1017/S0007114520002111
HENRY, R.F ., 1974. Clinical Chemistry Principles and Technics. 2nd Ed, Harper and Row, Harper and 3- Row, Hargersein, M.D. https://www.amazon.com/Clinical-chemistry-principles-technics-Richard/dp/0061411817
HENRY, R.J., 1964. Clinical Chemistry, Principles and Technics. Harper and Row Publishers, New York, USA.
HUERT, M., KINCAID, R.L., CRONRATH, J.D., BUSBOOM, J., JOHNSON, A.B., and SWENSON, C.K., 2002. Interaction of dietary zinc and growth implants on weight gain, carcass traits and zinc in tissues of growing beef steers and heifers. Animal Feed Science and Technology. 2(14): 15–32. https://doi.org/10.1016/S0377-8401(01)00334-0
IBRAHIM, A., and ABDEL-DAIM, M., 2015. Modulating effects of Spirulina platensis against tilmicosin-induced cardiotoxicity in mice. Cell Journal (Yakhteh). 17(1): 137–144. https://doi: 10.22074/cellj.2015.520
KALIO, G.A., OKAFOR, B.B., and INGWEYE, J.N., 2014. Haematology and biochemistry of West African Dwarf (WAD) bucks fed crop by-products in Humid Tropical Nigeria. The Experiment. 18(2):1227-1234.
KATA, F.S., ATHBI, A.M., MANWAR, E.Q., AL-ASHOOR, A., ABDEL-DAIM, M.M., and ALEYA, L., 2018. The rapeutic effect of the alkaloid extract of the cyanobacterium Spirulina platensis on the lipid profile of hypercholesterolemic male rabbits. Environmental Science and Pollution Research. 25 (20): 19635-19642. . https://doi:10.1007/s11356-018-2170-4
KHALIFA, E.L., HASSANIEN, H.A.M., MOHAMED, A.H., HUSSEIN, A.M., and AZZA, A.M., 2016. Influence of addition Spirulina Platensis algae powder on reproductive and productive performance of dairy Zaraibi goats. Egyptian Journal of Nutrition and Feeds. (19): 211–225. https://doi:10.21608/ejnf.2016.74901
LEEMA, J.M., KIRUBAGARAN, R., VINITHKUMAR, N., DHEENAN, P., and KARTHIKAYULU, S., 2010. High value pigment production from Arthrospira (Spirulina) platensis cultured in seawater. Bioresour Technology. 101 (13):9221. https://doi.org/10.1016/j.biortech.2010.06.120
LISSI, E.A., PIZARRO, M., ASPEE, A., and ROMAY C., 2000. Kinetics of phycocyanine bilin groups destruction by peroxyl radicals. Free Radical Biology and Medicine. 28 (7): 1051–1055. https://doi.org/10.1016/S0891-5849(00)00193-3
LIANG, Y., BAO, Y., GAO, X., DENG, K., AN, S., WANG, Z., HUANG, X., LIU, D., LIU, Z., WANG, F and FAN Y., 2020. Effects of Spirulina supplementation on lipid metabolism disorder, oxidative stress caused by high-energy dietary in Hu sheep. Meat Science. (164): 108094. https://doi 10.1016/j.meatsci.2020.108094
LOKMAN-SHAMSUDIN, SYARIFAH. A.R., AZMAN, N.A., WAN, ZAHARI. M., and HAFIS, H.L., 2018. The milk index, blood chemistry status and growth performance of local Malaysian cow (Bos Sundoicus) fed Arthrospira platensis supplement. Malaysian Applied Biology. 47(4): 35-43.
LUGARÀ, R, GRZE ́SKOWIAK, Ł., ZENTEK, J., MEESE, S., KREUZER, M., GILLER, K.A., 2022. High-energy diet and Spirulina supplementation during pre-gestation, gestation, and lactation do not affect the reproductive and lactational performance of primiparous sows. Animals. (12): 1171. https:// doi.org/10.3390/ani12091171
MANTOVANI, A., AQUILINA, G., CUBADDA, F., MARCON, F., 2022. Risk-Benefit assessment of feed additives in the one health perspective. Frontiers in Nutrition. 10 (9): 843124. https://doi.org/10.3389/fnut.2022.843124
MARUNA, R.F.L., 1958. Clinica Chimica Acta 2, pp 581.
MATLOUP, O.H., 2020. Feed additives and lactating animals: research and applications Egyptian Journal of Animal Production. (57): 93-98.
MEALE, S.J., CHAVES, A.V., HE, M.L., and MCALLISTER, T.A., 2014. Dose-response of supplementing marine algae (Schizochytrium spp.) on production performance, fatty acid profiles, and wool parameters of growing lambs. Journal of Animal Science . 92 (5): 2202-13. https://doi.10.2527/jas.2013-7024
MIRZAIE, S., ZIRAK-KHATTAB, F., HOSSEINI, S.A., and DONYAEI-DARIAN, H., 2018. Effects of dietary Spirulina on antioxidant status, lipid profile, immune response and performance characteristics of broiler chickens reared under high ambient temperature. Asian-Australasian J. of Anim. Sci. 31(4): 556-563. https://doi.10.5713/ajas.17.0483
MIYADA, D.S et al., 1972. Clinical Chemistry 18, pp:52
MONTGOMERY, H.A.C., and DYMOCK, J.F., 1961. The determination of nitrite in water. Analyst. (86): 414-416.
MOOREHEAD, W.R and BRIGGS A.R., 1977. Clinical Chemistry. (20): pp 1458.
NRC., 1985. Nutrition Requirements of Sheep, 6th rev. ed. National Academy Press, Washington, D.C., USA.
OMAR, A.E., AL-KHALAIFAH, H.S., OSMAN, A., GOUDA, A., SHALABY, S.I., ROUSHDY, E.M., ABDO, S.A., ALI, S.A., HASSAN, A.M and AMER, S.A., 2022. Modulating the growth, antioxidant activity, and immunoexpression of proinflammatory cytokines and apoptotic proteins in broiler chickens by adding dietary Spirulina platensis Phycocyanin. Antioxidants (Basel). 5 (11): 991. https://doi.org/10.3390/antiox11050991
OU, Y., LIN, L., YANG, X., PAN, Q., and CHENG, X., 2013. Antidiabetic potential of phycocyanin: effects on KKAy mice. Pharmaceutical Biology. 51 (5): 539-544. https://doi.org/10.3109/13880209.2012.747545
ORAMARI, R., ALKASS, J., HERMIZ, H., HUSSEIN, Y., 2011. Some placental factors and their relevance to variation in birth weight of Karadi lambs. Research Opinions in Animal and Veterinary Sciences. (1): 165–168.
PAGLIA, D.E and VALENTINE, W.N., 1967. Journal of Laboratory and Clinical Medicine. (70): 158-169.
PARIMI, N.S., SINGH, M., KASTNER, J. R., DAS, K. C., FORSBERG, L.S., and AZADI, P., 2015. Optimization of protein extraction from Spirulina platensis to generate a potential Co-Product and a biofuel Feedstock with reduced nitrogen content. Frontiers in Energy Research. 3 (30): https://doi.org/10.3389/fenrg.2015.00030
PANJAITAN, T., QUIGLEY, S.P., MCLENNAN, S.R., SWAIN, A.J., POPPI, D.P., 2015. Spirulina (Spirulina platensis) algae supplementation increases microbial protein production and feed intake and decreases retention time of digesta in the rumen of cattle. Animal Production Science. (55): 535–543. https://doi: 10.1071/AN13146
PIRINCCIOGLU, A.G., GÖKALP, D., PIRINCCIOGLU, M., KIZIL, G., and KIZIL, M., 2010. Malondialdehyde (MDA) and protein carbonyl (PCO) levels as biomarkers of oxidative stress in subjects with familial hypercholesterolemia. Clinical Biochemistry. (43): 1220. https://doi.org/10.1016/j.clinbiochem.2010.07.022
RABEE, A.E., YOUNAN, B.R., and KEWAN, K.Z., 2022. Modulation of rumen bacterial community and feed utilization in camel and sheep using combined supplementation of live yeast and microalgae. Scientific reports. (12): 12990. https://doi.org/10.1038/s41598-022-16988-5
RISS, J., DÉCORDÉ, K., SUTRA, T., DELAGE, M., BACCOU, J.C., JOUY, N., BRUNE, J.P., ORÉAL, H., CRISTOL, J.P and ROUANET, J.M., 2007. Phycobiliprotein C-phycocyanin from Spirulina platensis is powerfully responsible for reducing oxidative stress and NAD PHoxidase expression induced by an atherogenic diet in hamsters. Journal of Agricultural and Food Chemistry. 55 (19): 7962–7967. https://doi.10.1021/jf070529g
ROJITA, Y., PUTAN, S., NIRMALA, M., KANTI, R., BORNALEE, H., and VENKATESWARAN, K., 2019. Supplementation of brown Seaweed (Turbinaria conoids) powder and its effect on blood metabolites and mineral profile in adult goats. Indian Journal of Animal Nutrition. (1): 103-106. http://doi.org/10.5958/2231-6744.2019.00019.7
SATOH, K.., 1978. Serum lipid peroxide in cerebrovascular disorders determined by a new colorimetric method. Clinica Chimica Acta. (90): 37-43. http://doi.org/10.1016/0009-8981 (78) 90081-5
SAS, Institute. 2004. SAS User’s Guide: Statistics. Release 9.1. SAS Institute Incorporated, Cary, North Carolina.
SCHOLZ-AHRENS, K.E., SCHOLZ-AHRENS, P., ADE, B., MARTEN, P., WEBER, W., TIMM, Y., ASIL, C.C., and GLUER, J.S., 2007. Prebiotics, probiotics, and synbiotics affect mineral absorption, bone mineral content, and bone structure. The Journal of Nutrition. (137): 838-846. http://10.1093/jn/137.3.838S
SHAMSUDIN, L., RASHID, S.A.B., ABDULLAH, A.N., MOHAMED, W.Z., and LOKMAN, H.H., 2018. The Milk index, blood biochemistry status and growth performance of local Malaysian cow (Bos sundoicus) fed Arthrospira platensis supplement. Malaysian Applied biology Journal. 47 (4): 35-43.
SHEPHARD, M.D., MEZZACHI, R.D., 1983. The Clinical Biochemist Reviews. (4): 61-67.
SUCU, E., UDUM, D., GÜNEŞ, N., CANBOLAT, Ö., and FILYA, I., 2017. Influence of supplementing diet with microalgae (Schizochytrium limacinum) on growth and metabolism in lambs during the summer. Turkish Journal of Veterinary & Animal Sciences. 41(2): 4. https://doi.org/10.3906/vet-1606-65.
TIETZ, N.W. 1976. Fundamentals of Clinical Chemistry. W.B. Saunders Co., Philadelphia. https://doi.org/10.1093/clinchem/32.4.717.
TIETZ, N.W., 1994. Fundamentals of Clinical Chemistry:2 nd ed.NW Tietz, editor, pp 692.
TRINDER, P., 1969. Determination of glucose in blood using glucose oxidase with an alternative oxygen acceptor. Annals of Clinical Biochemistry. (6): 24-27. https://doi.org/10.1177/000456326900600108.
TURRENS, J.F., 2003. Mitochondrial formation of reactive oxygen species. The Journal of Physiology. 15 (552): 335-344. http://dx.doi.org/10.1113/jphysiol.2003.049478
VEDI, M., KALAISELVAN, S., RASOOL, M and PRINCE SABINA, E., 2013. Protective effects of blue green algae spirulina fusiformis against galactosamine-induced hepatotoxicity in mice. Asian Journal Pharmceutical Clinical Research. 6 (3): 150 - 154. ISSN: 2455-3891
WANG, Y., WANG, S., and HARVAT, T., 2015. Diazoxide, a K (ATP) channel opener, prevents ischemia-reperfusion injury in rodent pancreatic islets. Cell Transplant. 24 (1): 25–36. http:// dx.doi.org/10.3727/096368913X673441
| ||||
Statistics Article View: 653 PDF Download: 484 |
||||