Effect of Spraying Salicylic Acid on Fruiting of Valencia Orange Trees

Randa El- Sayed Youness Habasy Citriculture Dept. Hort. Res. Inst. ARC, Giza, Egypt E. mail: Faissalfadel@yahoo.com

Received on: 8/7/2015

Accepted: 6/9/2015

ABSTRACT

Growth characters, tree nutritional status, fruit set %, June drop %, yield and fruit quality of Valencia orange trees in response to spraying salicylic acid at 0.0 to 400 ppm either applied once at growth start or twice at growth start and again just after fruit setting were investigated during 2012 /2013 and 2013/ 2014 seasons.

Spraying salicylic acid at 100 to 400 ppm once or twice considerably improved all growth characters, leaf pigments, N, P, K, Mg and Ca percentages, initial fruit set %, fruit retention %, yield and fruit quality over the check treatment. All salicylic acid treatments effectively reduced June drop. Using salicylic acid at 400 ppm once or twice caused a significant reduction on all the aforementioned parameters comparing with using salicylic acid at 100 to 200 ppm. Two sprays of salicylic acid were preferable than using it once in this connection.

Treating Valencia orange trees twice at growth start and just after fruit set with salicylic acid at 200 ppm was responsible for promoting yield and fruit quality.

Key words: Salicylic acid, growth, fruiting, Valencia orange trees.

INTRODUCTION

Recently, many trials were accomplished for promoting yield and fruit quality of Valencia orange trees grown successfully under Middle Egypt conditions by using non- traditional horticultural practices such as application of salicylic acid. Ding et al., (2001); Ding and Wang (2003) and Hayat and Ahmed (2007) found that salicylic acid was responsible for protecting the plants from all stresses and retarding reactive oxygen forms that destroyed the plant cells. They found that treating the trees with salicylic acid was very effective in enhancing metabolism of plants and the biosynthesis of all organic food. Using salicylic acid at 50 to 400 ppm once, twice, or three times was very effective in improving growth, yield and fruit quality in most evergreen fruit crops (Ahmed, 2011; Abd El-Rahman and El- Masry, 2012; Ahmed et al., 2014 and 2015a & b, Omar, 2015 and Abd El- Mageed, 2015).

The target of this study was examining the impact of spraying different concentrations and frequencies of salicylic acid on growth, tree nutritional status, fruit set %, June fruit drop %, yield and fruit quality of Valencia orange trees.

Recently, many trials were accomplished for promoting yield and fruit quality of Valencia orange trees grown successfully under Middle Egypt conditions by using non- traditional horticultural practices such as application of salicylic acid. Ding *et al.*, (2001); Ding and Wang (2003) and Hayat and Ahmed (2007) found that salicylic acid was responsible for protecting the plants from all stresses and retarding reactive oxygen forms that destroyed the plant cells. They found that treating the trees with salicylic acid was very effective in enhancing metabolism of plants and the biosynthesis of all organic food. Using salicylic acid at 50 to 400 ppm once, twice, or three times was very effective in improving growth, yield and fruit quality in most evergreen fruit crops (Ahmed, 2011; Abd El-Rahman and El-Masry, 2012; Ahmed *et al.*, 2014 and 2015a & b, Omar, 2015 and Abd El-Mageed, 2015).

The target of this study was examining the impact of spraying different concentrations and frequencies of salicylic acid on growth, tree nutritional status, fruit set %, June fruit drop %, yield and fruit quality of Valencia orange trees.

MATERIALS AND METHODS

This study was carried out during 2012/ 2013 and 2013/ 2014 seasons on twenty one uniform and similar in vigour 15- years old Valencia orange trees onto sour orange rootstock. The selected trees were grown in a private citrus orchard located at Abo Saleh Island near Bany Suef city, Bany Suef governorate. The trees were planted at 6x6 meters apart. The texture of the soil was silty clay with a water table not less than two meters deep. Surface irrigation system was carried out using Nile water. The selected trees were subjected to the normal horticultural practices that already applied in the orchard.

This experiment included the following seven treatments:

1-Control (untreated trees).

- 2-Spraying salicylic acid at 100 ppm once at growth start (1st week of Mar.)
- 3-Spraying salicylic acid at 200 ppm once at growth start (1st week of Mar.)
- 4-Spraying salicylic acid at 400 ppm once at growth start (1st week of Mar.)
- 5-Spraying salicylic acid at 100 ppm twice at growth start (1st week of Mar.) and again just after fruit set (1st week of May).
- 6-Spraying salicylic acid at 200 ppm twice as mentioned in treatment 5.
- 7-Spraying salicylic acid at 400 ppm twice as mentioned in treatment 5.

Each treatment was replicated three times, one tree per each. The assigned amounts of salicylic acid were solubilized in ethyl alcohol and pH of the solution was adjusted to 6.0 by using 1.0 N sodium hydroxide. Triton B as a wetting agent at 0.05 % was added to all salicylic acid solutions. Randomized complete block design was followed.

During both seasons, the following measurements were carried out.

- 1-Some vegetative growth characters namely shoot length(cm), shoot thickness (cm) and leaf area (cm)² (Ahmed and Morsy, 1999) in the Spring growth cycle.
- 2-Leaf pigments namely chlorophylls a & b, total chlorophylls and total carotenoids (as mg/ 100 g F.W.) (Hiscox and Isralstam, 1979).
- 3-Percentages of N, P, K, Mg and Ca in the leaves of non fruiting shoots in the spring growth cycle (Summer, 1985 and Wilde *et al.*, 1985).
- 4-Percentages of initial fruit setting, June fruit dropping and fruit retention
- 5-Yield expressed in weight / tree (kg.) and number of fruits / tree.
- 6-Physical characters of the fruits namely weight (g.), volume (cm³), height and diameter (cm) of fruit, percentages of fruit peel weight and pulp and fruit peel thickness(cm).
- 7-Chemical characteristics of the fruits namely T.S.S. %, total acidity % (as g citric acid/ 100 ml juice., total and reducing sugars % and vitamin C (as mg / 100 ml juice, (Lane and Eynon 1965 and A.O.A.C., 2000).

Statistical analysis was done using new L.S.D. at 5% for making all comparisons among the seven treatments means (Mead *et al.*, 1993).

RESULTS AND DISCUSSION.

1- Growth characters:

Data in Table(1) revealed that spraying salicylic acid at 100 to 400 ppm once at growth start or twice at growth start and just after fruit set significantly stimulated shoot length and thickness and leaf area relative to the control treatment. The promotion was significantly associated with increasing concentrations from 0.0 to 200 ppm. A significant reduction on such three growth characters was observed with increasing concentration from 200 to 400 ppm. Carrying out two sprays of salicylic acid at 100 to 400 ppm was significantly superior than using it once in stimulating all growth characters. The maximum values were recorded on the trees that received two sprays of salicylic acid at 200 ppm. The vice versa was obtained on untreated trees. These results were true during both seasons.

2- Pigments and nutrients in the leaves:

It is clear form the obtained data in Tables (1& 2) that chlorophylls a & b, total chlorophylls, total carotenoids as well as percentages of N, P, K, Mg and Ca in the leaves were significantly enhanced in response to foliar application of salicylic acid at 100 to 400 ppm once or twice rather than the check treatment. There was a gradual and significant promotion on these plant pigments and nutrients with increasing concentrations from 0.0 to 200 ppm. Increasing concentration from 200 to 400 ppm caused a significant reduction in these values. Two applications of salicylic acid at the named concentrations significantly enhanced these plant pigments and nutrients rather than using one spray. Treating Valencia orange trees twice with salicylic acid at 200 ppm gave the greatest values. The lowest values were recorded on untreated trees. These results were true during both seasons.

3- Percentages of initial fruit setting, fruit retention and June drop.

It is noticed from the data in Table (3) that carrying out one or two sprays of salicylic acid at 100 to 400 ppm significantly was accompanied with improving the percentages of initial fruit set and fruit retention and reducing the percentage of June drop over the check treatment. The effect was significantly depended on increasing concentrations from 0.0 to 200 ppm. Using salicylic acid at 400 ppm was significantly associated with reducing percentages of initial fruit set and fruit retention and increasing the percentages of June drop over the application of salicylic acid at 100 to 200 ppm. Application of salicylic acid twice at the prementioned concentrations significantly was preferable than using it once in improving initial fruit set and fruit retention and reducing June drop. A significant reduction on initial fruit set and fruit retention and promotion in June drop were observed with increasing salicylic acid concentration from 200 to 400 ppm regardless the frequencies of application. The maximum values of initial fruit set (6.3 & 6.9 %), and fruit retention (1.38 & 1.39%) were recorded on the trees that received two sprays of salicylic acid at 200 ppm. Under such promised treatment, the lowest June drop values (0.5 and 1.0 %) were recorded. The untreated trees produced the lowest values of initial fruit set (2.7 & 3.8 %) and fruit retention

and a second second second second second second to receive and second second second second second second second											L
Salicylic acid (SA)	Shoot length (cm.)	gth (cm,)	Shoot thickness (cm.)	kness (cm.)	Leaf ar	Leaf area (cm) ²	Chloro (mg/ 10)	Chlorophylls a (mg/ 100 g F.W.)	Chlorophylls b (mg/ 100 g F.W.)	phy 0 g	lls b F.W.)
treatment	2012/2013	2013/2014	2012/2013	2013/2014	2012/2013	2013/2014	2012/2013	2013/2014	2012/2013 2013/2014	201	3/2014
Control (SA at 0.0	5.8	5.7	0,12	0.12	26,1	27.9	6.9	7.0	2.1	N	2.0
, ppm)											
SA at 100	6.5	6.1	0.16	0.17	26.8	28.3	7.5	7.5	2.5	2.6	.6
ppm once											
SA at 200	7.2	6.7	0.21	0.23	27.9	29.3	8.2	8.3	2.9	3.0	Ģ
ppm once											
SA at 400	6.4	6.1	0.17	0.16	26.6	28.7	7.7	7.8	2.6	2.4	-
ppm once											
SA at 100	7.2	6.8	0.21	0.23	28.0	30.0	8.4	8.5	3.0	3.1	
ppm twice											
SA at 200	7.5	7.4	0.27	0.28	29.2	31.0	9.0	9.1	3.3	3.5	
ppm twice											
SA at 400	6.8	6.4	0.21	0.19	27.7	29.9	8.4	8.4	3.0	2.7	
ppm twice											
New	0.3	0.3	0.05	0.04	0.3	0.3	0.3	0.3	0.2	0.2	2
L.S.D.											
at 5%											

	chlorophylls in the leaves of Valencia orange trees during 2012/2013, 2013/ 2014 seaso	rations and frequencies of salicylic acid spray
	ıs.)n so
		ome
-		ing on some vegetative
		getative growth characters and ch
		harao
		ters
		and
		lorophylls a,
		b and total

Valencia orange trees during 2012/2013, 2013/ 2014 seasons	we during 201	10/2013 201	1/ 2014 seaso								
Salicylic Total c	Total carotenoids	and the second se	9		Q,	5	ą,	A.	<i>q</i> ,		9,
	(mg/ 100 g F.W.)		N %		F %		N %0	trar	W. BIA	La %	10
201	2013/2014	2012/2013	2013/2014	2012/2013	2013/2014	2012/2013	2013/2014	2012/2013	2013/2014	2012/2013	2013/2014
Control 1.22	1.25	1.60	1.61	0.15	0.16	1.16	1.14	0.51	0.49	2.14	2.11
(SA at 0.0											
ppm)											
SA at 100 1.31	1.34	1.70	1.71	0.18	0.19	1.23	1.23	0.55	0.56	2.27	2.30
ppm once											
SA at 200 1.45	1.48	1.81	1.81	0.21	0.22	1.34	1.35	0.60	0.61	2.40	3.43
ppm once											
SA at 400 1.28	1.31	1.75	1.76	0.18	0.19	1.28	1.29	0.54	0.55	2.30	2.33
ppm once											
SA at 100 1.50	1.53	1.93	1.94	0.23	0.24	1.34	1.40	0.70	0.71	2.50	2.52
ppm twice											
SA at 200 1.62	1.66	1.99	2.00	0.26	0.27	1.37	1.45	0.76	0.75	2.61	2.64
ppm twice											
SA at 400 1.35	1.37	1.93	1.94	0.24	0.24	1.31	1.39	0.73	0.74	2.54	2.53
ppm twice											
New 0.06	0.06	0.06	0.05	0.02	0.02	0.05	0.05	0.03	0.03	0.07	0.06
L.S.D. at											
5%											
Table 3: Effect of different concentrations and frequencies of salicylic acid spraying on the percentages of initial fruit setting, June droppi	ent concentra	ations and fr	equencies of	salicylic acid	spraying on	the percents	ages of initial	fruit setting	June droppi	ing and fruit retention of	retention of
Valencia orange trees during 2012/2013, 2013/ 2014 seasons.	es during 20	12/2013, 201	3/ 2014 seaso	ns.							
Callevie and (CA) to	antment	Initial fruit set%	it set%	June drop %	rop %	Fruit retention %	ention %	Number of fruits / tree	ruits / tree	Yield/ tree (kg.)	ee (kg.)
		2012/2013	2013/2014	2012/2013	2013/2014	2012/2013	2013/2014	2012/2013	2013/2014	2012/2013	2013/2014
Control (SA at 0.0 ppm)		2.7	3.8	1.1	1.4	1.18	1.15	301.6	301.6	38.6	38.0
SA at 100 ppm once		4.8	4.9	0.9	1.1	1.25	1.21	358.8	353.4	47.0	47.0
SA at 200 mmm once		50	57	07	10	133	1 77	7447	245 J	48.6	49 0

Table 2: Effect of different concentrations and frequencies of salicylic acid spraying on the total carotenoids as well as N, P, K, Mg and Ca in the leaves o Valencia orange trees during 2012/2013, 2013/ 2014 seasons.

Table 3: Parter of anticipation and inclusive or samelue and algorithm of the formation of the angle of the angle	THE REALS HILL	Il equencies o	or same your ar	in shraying o	m me bercenn	ages or initia	TTUT Setting	addo m amo 6	•	and mut retention of
Valencia orange trees during 2012/2013, 2013/ 2014 seasons.	2012/2013, 20	013/ 2014 sea:	sons.							
Collection and (CA) transforment	Initial fr	Initial fruit set%		June drop %	Fruit ret	Fruit retention %	Number of fruits / tree	fruits / tree	Yield/ to	d/ tree (kg.)
Sancyne acid (SA) ii eatment	2012/2013	2013/2014	2012/2013	2013/2014	2012/2013	2013/2014	2012/2013	2013/2014	2012/2013	2013/2014
Control (SA at 0.0 ppm)	2.7	3.8	1.1	1.4	1.18	1.15	301.6	301.6	38.6	38.0
SA at 100 ppm once	4.8	4.9	0.9	1.1	1.25	1.21	358.8	353.4	47.0	47.0
SA at 200 ppm once	5.9	5.7	0.7	1.0	1.33	1.27	344.7	345.3	48.6	49.0
SA at 400 ppm once	4.3	4.1	0.9	1.2	1.21	1.22	328.2	309.7	43.0	41.5
SA at 100 ppm twice	5.7	5.4	0.7	1.1	1.33	1.31	347.2	346.2	50.0	49.5
SA at 200 ppm twice	6.3	6.9	0.5	1.0	1.38	1.39	342.1	368.8	52.0	52.5

SA at 400 ppm twice New L.S.D. at 5%

0.4

4.5 0.4

0.90

1.4 0.2

1.26

1.27

318.4 6.1

325.4 4.9

44.9 1.0

43.6 1.1

Salicylic	alicylic Fruit weight (g.)	sight (g.)	Fruit si	Fruit size (cm ³)	Fruit hei	Fruit height (cm)	Fruit dian	Fruit diameter (cm.)	Fruit peel weight %	weight %	Fruit pulp %	ulp %
acid (SA)	2012/2013	2012/2013 2013/2014	2012/2013	2012/2013 2013/2014	2012/2013	2012/2013 2013/2014 2012/2013 2013/2014	2012/2013	2013/2014	2012/2013 2013/2014		2012/2013 2013/2014	2013/2014
treatment												
Control	128.0	126.0	122.9	127.0	5.97	5.96	6.00	6.01	33.9	34.0	66.1	66.0
(SA at 0.0												
ppm)												
SA at 100	131.0	133.0	131.8	133.7	6.15	6.18	6.17	6.21	32.1	32.0	67.9	68.0
ppm once												
SA at 200	141.0	141.9	142.0	143.0	6.30	6.32	6.35	6.34	31.0	30.9	69.0	69.1
ppm once												
SA at 400	131.0	134.0	131.6	134.7	6.10	6.12	6.13	6.14	32.3	31.9	67.7	68.1
ppm once												
SA at 100	144.0	143.0	144.7	143.8	6.33	6.35	6.36	6.38	30.1	29.9	69.9	70.1
ppm twice												
SA at 200	152.0	141.9	152.9	143.0	6.44	6,46	6.47	6.38	29.0	28.1	71.0	71.9
ppm twice												
SA at 400	141.0	138.0	141.9	138.8	6.30	6.31	6.34	6.34	30.3	29.3	69.7	70.7
ppm twice												
New	8.1	8.0	6.9	7.0	0.05	0.06	0.04	0.05	0.9	0.9	1.0	0.9
L.S.D. at												
501												

2		Tab	
:	201	ole 4	
	3/ 20	E	
:	014 s	ect o	
	easo	fdif	
2	ns.	ferei	
		nt co	
,		ncen	
		trat	
		OIIS	
		and	
•		freq	
•		ueno	
÷		ies (
		of sal	
		licyli	
		cac	
		id sp	
		orayi	
		o Bu	
		n ph	
		ysic	
		al ch	
		arac	
		ters	
		of th	
		le fri	
		nits o	
		of Va	
		'alencia	
		ia or	
		ang	
		e tre	
1		es di	
		uring	
		lg 2012/2013	
1		12/20	
		13	

Salicylic acid (SA)	Fruit peel thickness (cm.)	thickness n.)	T.S.	T.S.S. %	Total ac	Total acidity %	Total su	Total sugars %	Reducing sugars %	sugars %	Vitamin C content (mg / 100 ml juice)	Vitamin C content (mg / 100 ml juice)
treatment	2012/2013	2012/2013 2013/2014	2012/2013	2013/2014	2012/2013	2013/2014	2012/2013	2013/2014	2012/2013	2013/2014	2012/2013 2013/2014	2013/201
Control	0.36	0.37	12.1	11.9	1.513	1.488	9.1	9.4	3.66	3.70	45.0	44.9
(SA at 0.0												
SA at 100	0.33	0.33	12.9	12.8	1.485	1.460	9.6	10.1	3.76	3.80	47.9	48.0
ppm once												
SA at 200	0.30	0.31	13.3	13.4	1.460	1.430	10.0	10.5	3.86	3.90	50.3	50.5
ppm once	2	000	20	5	1 100		2	200	2 3 2	2	5	5
ppm once	0.00	0.32	13.0	1.7.1	1.400	1.400		10.2	3.17	0.80	40.0	10.0
SA at 100	0.27	0.28	13.9	14.1	1,420	1.395	10.5	11.1	4.00	4.05	52.9	53.0
SA at 200	0.24	0.24	14.3	14.5	1.385	1.360	11.1	11.5	4.19	4.24	55.0	55.1
ppm twice												
SA at 400	0.27	0.28	14.0	14.2	1.410	1.385	10.7	11.2	4.11	4.16	53.0	53.1
ppm twice												
New	0.03	0.03	0.2	0.2	0.022	0.024	0.3	0.3	0.04	0.04	1.3	1.4
L.S.D. at												
En												

	during	Table 5: Eff
	2012/2013, 2013/ 2014 seasons.	ect of different co
	014 seasons.	ncentrations and i
	3	frequencies o
)	f salicylic :
	-	acid sprayi
		spraying on physical and c
		ysical and chemical cha
		hemical cl
		Ξ.
		racteristics in the fruits of V.
		fruits of V
		Valencia orange trees
ļ		8

(1.18 and 1.15 %) and the highest June drop (1.1 & 1.4 %) during 2013 % 2014 seasons, respectively. These results were true during both seasons.

4- Yield/ tree:

Yield expressed in weight (kg.) and number of fruits / tree as shown in Table (3) was significantly improved owing to using salicylic acid once or twice at 100 to 400 ppm comparing to the check treatment. The promotion on the vield expressed in weight was significantly related to increasing concentrations of salicylic acid from 0.0 to 200 ppm. A significant reduction in the yield expressed in weight and number of fruits/ tree was observed with increasing concentration of salicylic acid form 200 to 400 ppm regardless the number of sprays. Using salicylic acid twice significantly was preferable in improving the yield than using it once. The maximum values of yield (52.0 & 52.5 kg) during both seasons, respectively, were recorded on the trees that received two sprays of salicylic acid at 200 ppm. The untreated trees produced the minimum values (36.6 & 38.0 kg) during both seasons, respectively. The percentages of increase in the yield due to using the promised treatment over the check treatment reached 34.7 and 38.2 % during 2012/2013 and 2013/2014 seasons, respectively. These results were true during both seasons.

5- Fruit quality:

It is clear from the data in Tables (4 & 5) that treating Valencia orange trees once or twice with salicylic acid at 100 to 400 significantly was very effective in improving fruit quality in terms of increasing weight, size, height and diameter of fruit , pulp %, T.S.S.%, total and reducing sugars % and vitamin C content and reducing fruit peel weight %, fruit peel thickness and total acidity % over the control treatment. Increasing concentrations form 200 to 400 ppm regardless the frequencies of application had undesirable effects on fruit quality. The best results were obtained due to carrying out two sprays of salicylic acid when compared with using one spray. Significant differences for all quality parameters were observed among all salicylic acid concentrations. The best results were obtained due to treating the trees twice with salicylic acid at 200 ppm. Untreating the trees with salicylic acid gave worst effects on the fruit quality. These results were true during both seasons.

The beneficial effects of salicylic acid on stimulating growth characters might be attributed to its essential roles in enhancing cell division and the biosynthesis of organic foods and plant pigments (Hayat and Ahmed, 2007). The beneficial effects of salicylic acid on plant metabolism and uptake and translocation of nutrients (Ding *et al.*, 2001) could result in enhancing plant pigments and different nutrients. The outstanding positive action of salicylic acid on enhancing C/N in favour of enhancing flowering as well as the tolerance of plants to all stresses as well as its effects on reducing June drop could explain its effects on enhancing initial fruit set and fruit retention (Ding and Wang, 2003). The promoting effect of salicylic acid on improving initial fruit set and fruit retention as well as reducing June drop could interprete its positive action on the yield. The promoting effect of salicylic acid on the biosynthesis and translocation of plant pigments and Mg could explain the positive action of it on fruit quality.

These results are in agreement with those obtained by Ahmed (2011); Abd El- Rahman and El- Masry (2012); Ahmed *et al.*, (2014), (2015a & b); Omar (2015) and Abd El-Mageed (2015) on different evergreen fruit crops.

CONCLUSION

The best results with regard to yield and fruit quality of Valencia orange trees were obtained due to treating the trees twice at growth start and again just after fruit set with salicylic acid 200 ppm.

REFERENCES

- Abd El- Mageed, M.M.H. (2015). Response of Sakkoti date palms to spraying salicylic acid under Aswan region conditions. M. Sc. Thesis, Fac. of Agric., Minia Univ.. Egypt.
- Abd El- Rahman, M.M.A. and El- Masry, S.M.A (2012). Response of Valencia trees to foliar application of some vitamins, salicylic acid and turmeric extract. Minia J. of Agric. Res. Dev. 32 (5): 851-867.
- Ahmed, E.F.S (2011). Response of Sakkoti date palms to foliar application of salicylic acid. Minia J. of Res. Dev. 21 (2): 305-316.
- Ahmed, F. F and Morsy, M. H. (1999). A new method for measuring leaf area in different fruit species. Minia. J. of Agric .Res. & Dev.19: 97 105.
- Ahmed, F.F.; Kamel, M. Kh. and Ibrahim, H.I.M. (2014). The synergistic effect of using plant extracts and salicylic acid on yield and fruit quality of Keitte mango trees. Stem Cell,. 5 (2): 30-39.
- Ahmed, F.F.; Ibrahim, I.M. and Abd El- Megeed, M.M.H. (2015a). Response of Sakkoti date palms to spraying salicylic acid. Word Rural Observations. 1(1): 10-20.
- Ahmed, F.F.; Mohamed, M.A.; Mohamed, A.Y. and Omar, M.G.G. (2015b). Response of Saidy date palms to some inorganic, organic and biofertilization as well as some antioxidant treatments World Rural Observations 7(2): 126-139.
- Association of Official Agricultural Chemists (A.O.A.C.) (2000). Official Methods of Analysis (A.O.A.C), 12th ed., Benjamin Franklin Station, Washington D.C., U.S.A. pp. 490-510.

- Ding, C.K. and Wang, C.Y. (2003). The dual effects of methyl salicylate on ripening and expression of ethylene biosynthetic genes in tomato fruit. Plant Science, 164: 589-596.
- Ding, C.K.; Wang, C.Y.; Gross, K.C. & Smith, D.L. (2001). Reduction of chilling injury and transcript accumulation of heat shock protein genes in tomatoes by methyl jasmonate and methyle salicylate. Plant Science. 161, 1153-1159.
- Hayat, S. and Ahmad, A. (**2007**). Salicylic Acid, A Plant Hormone Chapter 9. Date, J.F., Capelli, N and Dan- Breusegem. The interplay between salicylic acid and reactive oxygen species during cell death in plants. Springer p. 247-276.
- Hiscox, A. and Isralstam B. (**1979**). Method for the extraction of chlorophylls from leaf tissue without maceration. Can. J. Bot. **57**: 1332-1334.

- Lane, J. H. and Eynon, L. (1965). Determination of reducing sugars by means of Fehlings solution with methylene blue as indicator A.O.AC. Washington D.C.U.S.A. pp. 490-510.
- Mead, R.; Currnow, R. N. and Harted, A. M. (**1993**). Statistical. Methods in Agricultural and Experimental Biology. 2nd ed Hall, London pp. 10-20.
- Omar, M. G.G. (2015). Response of Saidy date palms growing under new Valley conditions to some inorganic, organic and biofertilization as well as some antioxidant treatments. Ph. D. Thesis, Fac. of Agric. Minia Univ., Egypt.
- Summer, M.E. (1985). Diagnosis and Recommendation Integrated system (DRIS) as a guide to orchard fertilization. Hort. Abst. 55(8): 7502.
- Wilde, S. A.; Corey, R. B.; Lyer, I. G. and Voigt, G. K. (1985). Soil and Plant Analysis for Tree Culture. 3rd Oxford & IBH publishing Co., New Delhi, pp. 1 – 218.

الملخص العربى

تأثير رش حامض السلسليك على الاثمار فى اشجار البرتقال الفالنشيا رندا السيد يونس هباس قسم بحوث الموالح- معهد بحوث البساتين- مركز البحوث الزر اعبة- الجبزة- مصر

تم دراسة درجة استجابة صفات النمو الخضرى والحالة الغذائية للشجرة والنسبة المئوية لعقد الثمار المبدئى والنهائى وتساقط يونيو وكمية المحصول وخصائص الجودة للثمار فى اشجار البرتقال الفالنشيا لرش حامض السلسيليك بتركيز ما بين صفر الى ٤٠٠ جزء فى المليون مرة واحدة فى بداية النمو الخضرى ومرتان فى بداية النمو الخضرى وبعد عقد الثمار مباشرة وذلك خلال موسمى ٢٠١٢/ ٢٠١٣، ٢٠١٤/ ٢٠١٤.

كان هناك تحسن واضح فى جميع صفات النمو الخضرى وصبغات الورقة وعناصر النتروجين والفوسفور والبوتاسيوم والماغنسيوم والكالسيوم فى الورقة والنسبة المئوية للعقد المبدئى والنهائى وكمية المحصول وخصائص الجودة للثمار عند رش حامض السلسليك بتركيز من ١٠٠ الى ٢٠٠ جزء فى المليون مرة او مرتان وذلك بالمقارنة بمعاملة الكونترول. وكان هناك انخفاض واضح فى جميع المقاييس عند استخدام حامض السلسليك بتركيز ٤٠٠ جزء فى المليون وذلك بالمقارنة باستخدام حامض السلسليك بتركيز من ١٠٠ الى ٢٠٠ وحد الى ٢٠٠ وميت والنهائى وكمية المحصول و رشتين من حامض السلسليك المقارنة واحدة و هذا السلسليك بتركيز من ٢٠٠ الى ٢٠٠ الى ٢٠٠ والنه بالمقارنة

إن رش اشجار البرتقال الفالنشيا مرتان في بداية النمو وبعد عقد الثمار مباشرة بحـــامض السلــسليك بتركيــز ٢٠٠جزء في المليون يكون فعالا لتحسين كمية المحصول وخصائص الجودة للثمار.

الكلمات الدالة: حامض السلسليك- النمو- الأثمار - اشجار البرتقال الفالنشيا.