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THE IMPACT OF HANDLING MISSED DATA ON THE 

GAMMA REGRESSION RESPONSE 

Dr. Amira Ibrahim. El-Desokey 

Abstract 

This paper presents a comprehensive comparison of various missing data 

approaches in gamma regression analysis. The study evaluates the performance 

of linear trend at point method, mean imputation method, and three multiple 

imputation methods (KNN, PMM, and EM) in handling missing data at different 

positions (top, center, and bottom) of the data range. The maximum likelihood 

estimation technique is employed to estimate the parameters of the gamma 

regression model. An empirical example is presented to demonstrate the 

application of these methods in analyzing factors affecting carbon dioxide 

emission in Egypt. The findings reveal that multiple imputation methods 

outperform other approaches in terms of accuracy and precision. This study 

provides valuable insights into how different missing data techniques can be 

utilized to enhance the accuracy and precision of gamma regression models. The 

results have important implications for researchers and practitioners who use 

gamma regression analysis to investigate various phenomena with missed data. 

Key Words: Gama Regression, Maximum Likelihood, missing data, linear 

trend at point method, mean imputation method, K- Nearest Neighbor Method 

(KNN), Predictive Mean Matching (PMM), Expectation Maximization 

Imputation (EM). 

1. Introduction 

The Gamma regression model is a general linear model that is commonly used 

to model continuous response variables that are non-negative and have a skewed 

distribution Kleinbaum et al. (2002). Unlike linear regression, which presumes 

the response variable follows a normal distribution, it allows for the modeling of 

non-normal distributions where the variance exceeds the average). It is 

particularly useful when modeling count data, as it can handle the inherent 

skewness and heterogeneity in the data. Gamma regression is also often used in 

survival analysis, Van Buuren (2012) use it to model the critical care unit 
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duration of stay as a function of patients' characteristics, using function specific 

factors, Robins et al. (2000) simulate the intervals between Kawasaki disease 

hospitalizations. Over the past years, attempts have been made to extend 

generalized linear models, and in particular Gamma regression, to a right-

censored outcome. For example, Sigrist and Stahel (2011) investigate estimation 

in a censored Gamma regression model with application to loss given default. 

Rein et al. (2011) used gamma regression modeling to estimate healthcare costs 

associated with hepatitis C treatment, concluding that it was a suitable method 

for cost analysis in healthcare. 

Cepeda, (2001) explored the use of residuals in gamma regression models, 

which are often used to model data that exhibit positive skewness and 

heteroscedasticity. He compared the performance of different types of residuals 

in gamma regression models and found that the Pearson and deviance residuals 

provided the best fit for the model. Additionally, they suggested that researchers 

should consider the use of residual plots to assess the fit of their gamma 

regression models. 

The gamma distribution is an essential distribution in probability theory and 

statistics. It has several important special cases, including the Chi-squared 

distribution, and the exponential distribution, the gamma distribution has gained 

popularity as a tool for data imputation in recent years.  In (2021), Zhipeng et al. 

introduced a gamma-distributed data imputation approach, which estimates 

missing values using the maximum likelihood approach. The lifetime distribution 

of aircraft components was also described using a mixture-Gamma distribution 

model established by Meng & Rubin (1993) in the context of incomplete data. 

The study forecasted the failure time of such components using the proposed 

model. These studies highlight the importance of gamma regression in handling 

missing data in statistical analysis. Dupuy (2020) proposed different methods for 

addressing the issue of missing censoring indicators in censored Gamma 

regression models. Specifically, he suggested using regression calibration, 

multiple imputations, and augmented inverse probability weighted estimates. 

Simulation analyses confirmed the effectiveness of the proposed strategies with 

respect to bias and mean squared error. Overall, the study provides valuable 

insights into how to handle missing data in censored Gamma regression models. 
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The paper aims to compare the efficiency of various missing methods in 

gamma regression. The paper compares the linear trend at point method, The 

structure of the article is as follows: Section 1: Introduction; Section 2, 

introduced Gamma Regression Model; Maximum Likelihood Estimation is 

discussed in Section 3, Section 4, Investigated the Methods for Handling Missing 

Data in Gamma Regression; and Section 5, analyzed our Case Study Using R 

programming language. 

2. Gamma Regression Model  

Suppose the random variable 𝑦𝑖, 𝑖 = 1,2, … , 𝑛 the Gamma distribution's 

positively skew response variable, when both the shape parameter 𝜆 and the scale 

parameter α are positive numbers. This leads us to the formula for the pdf of 

the response variable:  

𝑓(𝑦𝑖) =
𝜆𝛼𝑦𝑖

𝛼−1𝑒−𝜆𝑦𝑖

Γ(𝛼)
𝑰(0,∞)(𝑦𝑖), 𝑦 > 0                                               (1) 

When the gamma function is denoted by, 𝛼, 𝜆 > 0, and the indicator function 

is denoted by 𝐼(.) For this set of parameters, we get the following expressions 

for the mean and standard deviation of, 𝐸(Y) = 𝜇/𝛼  and   V (𝑌) =
𝜇𝑖

2

𝛼
, Re-

parameterizing the gamma distribution function (1) as a function of the mean 

(𝜇), and shape (𝛼) parameters as yields the following form for the distribution 

function: 

𝑓(𝑦𝑖) =
1

𝑦Γ(𝛼)
(

𝛼𝑦

𝜇
)

𝛼

𝑒−𝛼𝑦𝑖/𝜇𝑰(0,∞)(𝑦𝑖)                                              (2) 

Where, 𝜇, 𝛼 > 0, The gamma function is represented byΓ(.), while the 

indicator function is denoted by 𝐼(.). Bossio and Cuervo (2015) propose the 

notation 𝑦𝑖 ∼ 𝐺(𝜇, 𝛼)  to indicate that 𝑦 follows a gamma distribution with 

E(𝑦𝑖) = 𝜇 and 𝛼 as a shape parameter. 

Take an n-size random sample, denoted 𝑦𝑖 ∼ 𝐺(𝜇𝑖, 𝛼), where i ranges from 1 

to n. Gamma regression models with a fixed shape parameters use a model 

with a regression structure to model data where the mean and shape parameter 

vary between observations. The parameters for the form and mean of the 

regressions are defined by: 
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𝑔(𝜇𝑖) = 𝜂1𝑖 = 𝑥𝑖
′𝛽                                                            (3) 

ℎ(𝛼𝑖) = 𝜂2𝑖 = 𝑧𝑖
′𝛾                                                            (4) 

where 𝑔 and ℎ are adequate actual link features link functions, 𝛽 =

(𝛽0, 𝛽1, … , 𝛽𝑞)
′
, and 𝛾 = (𝛾0, 𝛾1, … , 𝛾𝑘) are respectively, the average and the 

shape regression parameter vectors, 𝑥𝑖, 𝑧𝑗 are, respectively, the average and 

the shape explanatory variables for the 𝑖 𝑡ℎ and observation and The 𝑖 𝑡ℎ value 

of the explanatory variables (represented by the vectors , 𝜂1𝑖, and 𝜂2𝑖) is a 

linear predictor (represented by the vector𝜂𝑖). Here, 𝑔(. ): (0, ∞) ↦ ℜ is a 

strictly monotonic, twice differentiated real value function. The logarithm 

function is one example of a frequently used mean link function in gamma 

regression. The identity function, 𝑔(𝜇𝑖) = 𝜇, and its inverse, 𝑔(𝜇𝑖) = 1/𝜇., 

can be written as 𝑔(𝜇𝑖) = log (𝜇). The inverse function is the standard link for 

the mean in generalised linear models. 

3. Maximum Likelihood Estimation 

Cepeda-Cuervo, et al. (2016), provided a traditional method for regression of 

gamma models, based on the Fisher scoring technique, in which the mean and 

shape parameters also adhere to regression structures. And shown that the 

likelihood function may be expressed as: when the gamma parameterization 

described by (2) is used. 

𝐿(𝜷, 𝜸) = ∏  𝑛
𝑖=1

1

Γ(𝛼𝑖)
(

𝛼𝑖

𝜇𝑖
)

𝛼𝑖

𝑦𝑖
𝛼𝑖−1

exp (−
𝛼𝑖

𝜇𝑖
𝑦𝑖)                                (5) 

𝑙(𝜷, 𝛾) = ∑  𝑛
𝑖=1 {−log [Γ(𝛼𝑖)] + 𝛼𝑖log (

𝛼𝑖𝑦𝑖

𝜇𝑖
) − log (𝑦𝑖) − (

𝛼𝑖

𝜇𝑖
) 𝑦𝑖}     (6) 

Assuming, then, the regression models described by 𝜇𝑖 = 𝑥𝑖
′𝛽, and  𝛼𝑖 = 𝑧𝑖

′𝛾, 

the score statistics are given by: 

∂𝑙

∂𝛽𝑗
= ∑  

𝑛

𝑖=1

−
𝛼𝑖

𝜇𝑖
(1 −

𝑦𝑖

𝜇𝑖
) 𝑥𝑖𝑗 , 𝑗 = 1, … 𝑝 

∂𝑙

∂𝛾𝑘
= ∑  

𝑛

𝑖=1

− 𝛼𝑖 [
𝑑

𝑑𝛼𝑖
log Γ(𝛼𝑖) − log (

𝛼𝑖𝑦𝑖

𝜇𝑖
) − 1 +

𝑦𝑖

𝜇𝑖
] 𝑧𝑖𝑘, 𝑘 = 1, … , 𝑟 
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and Formulas for establishing the Hessian matrix are 

∂2𝑙

∂𝛽𝑘 ∂𝛽𝑗
= ∑  

𝑛

𝑖=1

𝛼𝑖

𝜇𝑖
2 (1 −

2𝑦𝑖

𝜇𝑖
) 𝑥𝑖𝑗𝑥𝑖𝑘, 𝑗, 𝑘 = 1, … 𝑝 

∂2𝑙

∂𝛾𝑘 ∂𝛾𝑗
= ∑  

𝑛

𝑖=1

− 𝛼𝑖 [
𝑑

𝑑𝛼𝑖
log Γ(𝛼𝑖) − log (

𝛼𝑖𝑦𝑖

𝜇𝑖
) − 1 +

𝑦𝑖

𝜇𝑖
] 𝑧𝑖𝑗𝑧𝑖𝑘

− ∑  

𝑛

𝑖=1

𝛼𝑖 [𝛼𝑖

𝑑2

𝑑𝛼𝑖
2 Γ(𝛼𝑖) − 1] 𝑧𝑖𝑗𝑧𝑖𝑘, 𝑗, 𝑘 = 1, … , 𝑟 

Formula for the Fisher information matrix is given as 

−𝐸 (
∂2𝑙

∂𝛽𝑘𝛽𝑗
) = ∑  

𝑛

𝑖=1

𝛼𝑖

𝜇𝑖
2 𝑥𝑖𝑗𝑥𝑖𝑘, 𝑗, 𝑘 = 1, ⋯ , 𝑝 

−𝐸 (
∂2𝑙

∂𝛾𝑘𝛽𝑗
) = 0, 𝑗 = 1, ⋯ , 𝑝, 𝑘 = 1, ⋯ , 𝑟 

−𝐸 (
∂2𝑙

∂𝛽𝑘𝛽𝑗
) = ∑  

𝑛

𝑖=1

𝛼𝑖
2 [

𝑑2

𝑑𝛼𝑖
2 log Γ(𝛼𝑖) −

1

𝛼𝑖
] 𝑧𝑖𝑗𝑧𝑖𝑘, 𝑗, 𝑘 = 1, ⋯ , 𝑟 

The Fisher information matrix is a block diagonal matrix, with the two diagonal 

blocks representing the mean and shape regression parameters, respectively. As 

a result, the maximum likelihood estimators for and are asymptotically 

independent, proving that and are orthogonal according to Cox and Reid (1987). 

By considering the Fisher information matrix, Cepeda (2001) concludes that the 

Fisher scored info formula can be expressed as follows: 

𝛽(𝑘+1) = (𝑋′𝑊1
(𝑘)

𝑋)
−1

𝑋′𝑊1
(𝑘)

𝑌                                                            (7) 

𝛾(𝑘+1) = (𝑍′𝑊2
(𝑘)

𝑍)
−1

𝑋′𝑊2
(𝑘)

�̃�                                                            (8) 

A diagonal matrix 𝑾1
(𝑘)

 having elements of the form 𝑤𝑖𝑖
(𝑘)

= (𝜇𝑖
2/𝛼𝑖), and   

�̃�𝑖 = 𝜂2𝑖 −
1

𝛼𝑖
[

∂2

∂𝛼2
log Γ(𝛼𝑖) −

1

𝛼𝑖
]

−1

[
∂

∂𝛼𝑖
log Γ(𝛼𝑖) − log (

𝛼𝑖𝑦𝑖

𝜇𝑖
) − 1 +

𝑦𝑖

𝜇𝑖
]. 
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 a diagonal matrix 𝑾2
(𝑘) 

 having elements of the form 𝑤𝑖𝑖
(𝑘)

= 1/𝑑𝑖 

𝑑𝑖 = 𝛼𝑖
−2 [

𝑑2

𝑑𝛼𝑖
2 log Γ(𝛼𝑖) −

1

𝛼𝑖
]

−1

 

And suggested an iterative approach to derive maximum likelihood estimates of 

the model of the regression parameters based on the structure of the Fisher 

information matrix as 

1.  Initialize the iteration count to k = 0. 

2. Provide the starting values for 𝛽 and 𝛾. 

3. Given the current values of 𝛽 and 𝛾, use equation (7) to derive𝛽(𝑘+1). 

4. Given the current values of 𝛽 and 𝛾., calculate 𝛾(𝑘+1)  from equation (8). 

5. Put k = k + 1 into the counter iteration. 

6. Head for 3 until convergence occurs.  

The Fisher information matrix is blocking diagonal for other link functions such 

as like𝑔(. ) = 𝑙𝑜𝑔(. ) and ℎ(. ) = 𝑙𝑜𝑔(. ), allowing for the implementation of an 

alternative iterated method. 

4. Methods for Handling Missed Data in Gamma Regression 

Model  

Missed data are a frequently challenge that can affect the quality of the 

analysis and lead to biased or inefficient estimates. Therefore, handling missing 

data in gamma regression is essential to obtain accurate and reliable results. 

There are several methods available for handling missing data in gamma 

regression. The missing data's reason should be determined before any action is 

taken. We investigate four different "missingness mechanisms," starting with the 

most basic and working our way up to the most complex. There are three general 

missingness mechanisms commonly used in the statistics literature on missing 

data: first, when the missing data are unrelated to both the observed and the 

unobserved data, we say that the data are Missing Completely at Random 

(MCAR). Second, when missed data is unrelated to other missed data but is 

linked to part of the observed data, we call this "Missing at Random" (MAR). 

Third, According to Abonazel and Ibrahim (2018), "Missing Not at Random" 

(MNAR) occurs when missing data is linked to the way in which they were lost. 
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4.1 Linear Trend at Point 

The linear trend at point (LTP) method is a commonly used approach to 

assign missing data in a dataset. This approach estimates missing values by 

compitableing a model of linear regression to the observed values and then using 

the estimated coefficients to predict the missed data. The LTP approach assumes 

that the data follows a linear trend, and that the missing values lie in this trend. 

This method can be effective when the missed data is missed completely at 

random (MCAR) or missed at random (MAR) and can be used in the case of both 

discrete and continuous values. However, this method may not perform well 

when the data has non-linear patterns or when there is substantial missing data, 

Keating & Tripathy, (2018). 

4.2 Mean Imputation 

Mean imputation (substitution) is the most used estimation method; this 

technique replaces missing values for missing cases with the variable mean 

value. An advantage of this method is that by replacing the missing value with 

an actual value (mean value), this will increase the sample to its original size, 

which overcomes the issue of the wasted data produced by using deletion 

methods techniques. 

4.3 K- Nearest Neighbor Method (KNM) 

K-nearest neighbor (KNN) method: This method selects the K nearest 

individuals to the one with the missing value and chooses the donor from this 

subset. The distance between individuals is calculated using one of several 

methods, including the Mahalanobis distance method and the Euclidean distance 

method, van Buuren (2012); Little & Rubin (2019). 

4. 4 Predictive Mean Matching   (PMM) 

Predictive Mean Matching (PMM) is a type of multiple imputation 

technique that has been developed for handling missing data. In the PMM 

approach, it is presumed that the missing values on a variable for an individual 

should be similar to the observed values for that variable in individuals who are 

similar to the one with a missing value. PMM scans the data and for each missing 

value, it gathers a set of individuals called donor candidates, who are like the 

individual with the missing value. Then, the observed value of one of these 
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candidates is imputed to replace the missing value, creating a full data set. PMM 

is a popular imputation method because it is easy to use and generally provides 

better results than other approaches as average imputation or deletion. Several 

studies have shown that PMM is a powerful Technique of Imputation that can 

handle various kinds of data missing, including missed completely at random, 

missed at random, and missed not at random, De Waal et al. (2011). 

4.5 Expectation Maximization Imputation (EM) 

 Dempster et al. (1977) created the EM technique, an iterative approach 

for calculating maximum likelihood estimates in the presence of incomplete 

longitudinal data. The algorithm has two steps: E-step and M-step, or 

"expectation" and "maximisation," respectively. In the E-step, we use our best 

predictions for the model parameters to establish missing values, The M-step 

then re-estimates the model's parameters using the imputed data. These steps are 

iterated until convergence is reached. Using the EM technique has become 

widespread. in various fields such as biostatistics, finance, and natural language 

processing (NLP) due to its flexibility and ability to handle missing data. Several 

extensions and modifications of the EM algorithm have also been proposed, 

including the MCEM (Monte Carlo EM) technique and the SEM (Stochastic EM) 

approach, McLachlan & Krishnan, (2008); Meng & Rubin, (1993). 

5. Case study 

 We explored the impact of Land Change and Forestry (LUCF) 

and other factors in Egypt's total Co2 emission in the period 1990- 2019. 

Electricity and heat, Building, transportation, changing land uses, and 

forest management are all contributing variables, respectively. We 

considered that the Total emission include land use change forestry as a 

dependent variable, while the others variables are the independent 

variables. We investigate the study in and analyze three examples where 

data was missing at varying points in the sequence, at the beginning, at 

the mid-sereis, and at the ending of the series. Applying the methods of 

handling missed data, we examine the Gamma regression models and 

determine the one that provides the best fit in each case, We used R 

programming language for our Study. 

 



 

Scientific Journal for Financial and Commercial Studies and Research 5(1)1 January 2024 

Dr. Amira El-Desokey 

   

- 282 - 

 

5.1. Non- Missing Case 

Examining the dependent variable's normality in Fig. (1), we can see that is not 

distributed normally. 

.  

The Normality of Data Set 

Fig. (1) 

We used R language to get the descriptive data; we have provided a 

summary statistics for four covariates (independent variables) and one dependent 

variable "Total emissions include lucf". We get the sample size (N), each 

variable's minimum and maximum values, as well as the mean and standard 

deviation. For the dependent variable "Total emissions include lucf", the sample 

size is 30, with a minimum value of 87.34, a maximum value of 249.55, a mean 

of 159.2407, and a standard deviation of 57.03442. 

For the covariate "Electricity and heat", the sample size is also 30, with a 

minimum value of 25.36, a maximum value of 112.73, a mean of 60.5037, and a 

standard deviation of 29.60975. 

Similarly, for the covariates "Building" and "Transportation", the sample size is 

30, with minimum and maximum values of 8.10, 17.03, and 20.51, 40.62, 

respectively. The means for "Building" and "Transportation" are 12.7530 and 

29.6450, respectively, and their standard deviations are 2.86758 and 5.07910, 

respectively. Finally, for the covariate "land use change and forestry", the sample 

size is 30, with a minimum value of -0.41, a maximum value of 0.92, a mean of 

-0.0297, and a standard deviation of 0.47246. 

 

The Gamma Regression Model is given by the following Formula 

𝜇𝑦 =  𝑐0 + 𝛽1𝑥1 + 𝛽2𝑥2 + 𝛽3𝑥3 +  𝛽4𝑥4 
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5.1.1 Gamma Regression Model with Identity Link Function 

This study provides the estimated coefficients from the identity link function in 

a gamma regression model. The predictor variables included are "Electricity and 

heat", "Building", "Transportation", and "Land use change and forestry". The 

"Intercept" term represents the estimated constant term in the model. The p-

values for "Electricity and heat", "Building", and "Transportation" are all less 

than .001, which indicates that these variables are correlated extremely well with 

the resulting variable. The p-value for "Land use change and forestry" is .085, 

which is greater than .05 and suggests this variable is not significantly associated 

in terms of the resultant variable at the .05 the level of significant.  

5.1.2 Model of Gamma Regression with Logarithmic Link 

Function 

 In this section and with using the R Language programming we noticed 

that the p-values for "Electricity and heat", "Building", and "Transportation" are 

all less than .001, which indicates that these variables are correlated significantly 

with the outcome of the variable. The p-value for "Land use change and forestry" 

is .145, which is greater than .05, meaning that there is insufficient proof to 

establish that this independent variable significantly affects the dependent one 

"Total emissions including LUCF". 

 Now we use the omnibus test of the model of gamma regression uses both 

of the identity and log link functions. The omnibus test is used to determine 

whether the model significantly explains the dependent variable variability. The 

results presented that the LR𝜒2 (model likelihood chi-square) value with the 

identity link function is 166.283 with 4 degrees of freedom and a p-value of .000. 

This confirms the identity-link function model. Significantly explains the 

variability in the dependent variable. 

Similarly, the LR𝜒2value for the model with the log link function is 115.221 with 

4 degrees of freedom and a p-value of .000, indicating that the model with the 

log link function also significantly explains the variability in the dependent 

variable. 
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Overall, these results suggest that both the identity link function and the 

logarithmic link function are appropriate for modeling the relation between the 

gamma regression model's dependent variable and its independent variables.  

5.1.3 Compare between Models 

Table1: goodness of fit 

 Identity Link Function Log Link Function 

Pesudo R^2 0.995 0.978 

Log Likelihood -79.463 -104.994 

Akaike's Information Criterion (AIC) 170.927 221.989 

Corrected for a Finite Sample AIC 

(AICC) 
174.579 225.641 

Bayesian Information (BIC) 179.334 230.396 

Consistent AIC (CAIC) 185.334 236.396 

 Several indicators of the gamma regression models' goodness of fit are 

provided in Table 5, with identity and log link functions. 

• Pseudo R^2: these measures percentage of variation clarify by the model. 

The higher valued, indicates a more optimal fit. The pattern, with identity 

link function has a higher Pseudo R^2 (0.995) than the model with log 

link function (0.978), indicating a superior fit for the former pattern. 

• Log likelihood: This is a measurement of the model's fit to the data, based 

on the maximum likelihood estimation. The higher valued, the opyimal 

fit. The model with identity link function has a higher log likelihood (-

79.463) than the model with log link function (-104.994), suggesting a 

better fit for the former model. 

• Akaike's Information Criterion (AIC): The likelihood and the number of 

variables are used to get this measure of the model's quality. The lower 

valued, the better the fit. The model with identity link function has a lower 

AIC (170.927) than the model with log link function (221.989), 

suggesting a better fit for the former model. 
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• Finite Sample Corrected AIC (AICC): This is a modified version of AIC 

that corrects for the small sample size. The lower valued, the better the 

fit. The pattern with identity link function has a lower AICC (174.579) 

than the model with log link function (225.641), suggesting a better fit 

for the former model. 

• Bayesian Information Criterion (BIC): The likelihood and the number of 

variables are used to get this measure of the model's quality, the lower 

valued, the better fit. The model with identity link function has a lower 

BIC (179.334) than the model with log link function (230.396), 

suggesting a better fit for the former model. 

• Consistent AIC (CAIC): This is a modified version of AIC that penalizes 

for overfitting and is useful for small sample sizes. The lower valued the 

better fit. The pattern with identity link function has a lower CAIC 

(185.334) than the model with log link function (236.396), suggesting a 

better fit for the former model. 

Overall we find that the Identity Link function in the Gamma regression 

model superiors the Log Link functions. 

5.2 Handling Approaches with Missing Data  

In this case we are handling missing data in gamma regression in three cases, 

first when missing data in starting the data using the Identity Link function. 
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5.2.1 Missing Data in the Top data  

      5.2.1.1 Linear Trend at Point Method  

Table 2: Parameter Estimates 

Parameter B Std. Error 

95% Wald Confidence 

Interval 
Hypothesis Test 

Lower Upper 
Wald Chi-

Square 
df Sig. 

(Intercept) -43.002 32.5728 -106.843 20.840 1.743 1 .187 

electricity 

and heat 
.513 .4256 -.321 1.347 1.453 1 .228 

Building 9.754 3.8318 2.244 17.264 6.480 1 .011 

Transportat

ion 
1.670 .7933 .115 3.224 4.429 1 .035 

land use 

change and 

forestry 

12.038 12.5035 -12.469 36.544 .927 1 .336 

(Scale) .009a .0024 .006 .016    

This table provides the results of gamma regression with identity link 

function after handling missing data with the linear trend at point method, row 

one of the table displays the intercept coefficient, which represents the response 

variable's value when all independent variables have a value of zero. The 

intercept is not statistically significant in this case. (p = .187), indicating that 

there is no evidence of a non-zero intercept. 

The next four rows show the estimated coefficients for each of the 

independent variables: electricity and heat, building, transportation, and land use 

change and forestry. The coefficient for electricity and heat is statistically not 

significant (p ˃ .05), implying that there is no evidence of a linear relation 

between this variable and the response variable. The coefficients for building and 

transportation are statistically significant (p = .011 and p = .035, respectively), 

indicating that there is a positive linear relationship between these variables and 

the response variable. The coefficient for land use change and forestry is also not 

statistically significant (p = .316), indicating that no evidence exists of a linear 

relationship between this variable and the response variable. 
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The omnibus test for gamma regression is used to determine if the fitted 

model is significant or not, the results proved that the likelihood ratio chi-square 

statistic is 77.230, with 4 degrees of freedom and A level of significance lesser 

than .001. This shows that the fitted pattern is significantly better than the 

intercept-only pattern, and therefore, after handling missing values, the gamma 

regression model is an adequate fit for the data.  

 

5.2.1.2 Mean impute Method 

Table 3: Estimates of Parameters 

Parameter B Std. Error 

95% Wald Confidence Interval Hypothesis Test 

Lower Upper 
Wald Chi-

Square 
df Sig. 

(Intercept) -23.113 30.4295 -82.753 36.528 .577 1 .448 

electricity and heat .838 .3728 .107 1.568 5.051 1 .025 

Building 8.083 3.6513 .927 15.240 4.901 1 .027 

Transportation 1.055 .6313 -.182 2.293 2.794 1 .095 

land use change 

and forestry 
7.659 7.6458 -7.326 22.644 1.003 1 .316 

(Scale) 139.200a 35.9412 83.919 230.896    

This table shows the parameter estimates for gamma regression after using mean 

impute method to handle missing data. The coefficient for electricity and heat 

(x1) has a significant positive effect on the dependent variable (p < .05), 

indicating that an increase in electricity and heat production leads to a higher 

greenhouse gas emission. The coefficient for building (x2) also has a significant 

positive effect (p < .05), suggesting that building activities contribute 

significantly to greenhouse gas emissions. The coefficient for transportation (x3) 

does not reach statistical significance at the .05 level (p = .095), but it shows a 

positive effect on greenhouse gas emissions. Finally, the coefficient for land use 

change and forestry (xr) is not significant (p = .316), indicating that this variable 

may not be a significant predictor of greenhouse gas emissions in this model. The 

omnibus test is performed using a likelihood proportion chi-square test, with a 

chi-square value of 77.230 and 4 degrees of freedom. The p-value test is lesser 

than 0.05, implying that the model is significant. 
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5.2.1.3 KNN Method 

Table 4: Parameters Estimates 

Parameter B Std. Error 

95% Wald Confidence 

Interval 
Hypothesis Test 

Lower Upper Wald Chi-Square df Sig. 

(Intercept) -7.476 6.3711 -19.964 5.011 1.377 1 .241 

electricity and 

heat 
1.307 .0856 1.139 1.475 233.031 1 .000 

Building 4.835 .7455 3.374 6.296 42.067 1 <.001 

Transportation .887 .1578 .578 1.197 31.614 1 <.001 

land use change 

and forestry 
5.393 2.5479 .399 10.387 4.481 1 .034 

(Scale) .000a .0001 .000 .001    

 This table shows the parameter estimates for a gamma regression model 

fitting to the imputed dataset using the KNN imputation method. The intercept 

in this model is -7.476, at a standard error of 6.3711. This indicates the expected 

value of greenhouse gas emissions when all independent variables are equal to 

zero. The other independent variables show positive coefficients, indicating that 

they are positively associated with greenhouse gas emissions. The coefficient for 

electricity and heat is 1.307, building is 4.835, transportation is 0.887, and land 

use change and forestry is 5.393.  All of the predictor variables have statistically 

significant coefficients (p < .05), indicating that they are associated with carbon 

dioxide emissions. The intercept coefficient is not statistically significant (p = 

.241), which means that it is not significantly different from zero and may not be 

necessary to include in the model. Finally, the (Scale) parameter in the model is 

also shown, which estimates the scale parameter of the gamma distribution. This 

parameter indicates the degree of data variability that cannot be explained by the 

independent variables. 

 Using the omnibus test In this case, the likelihood proportion Chi-square 

test was used to determine statistical significance of the entire model, and the 

results show a value of chi-square of 174.395 with 4 degrees of freedom and a p-

value of .000, indicating that the model is significant. 
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5.2.1.4 PMM Method 

Table 5: Estimates of Parameters 

Parameter B 
Std. 

Error 

95% Wald 

Confidence Interval 
Hypothesis Test 

Lower Upper Wald Chi-Square df Sig. 

(Intercept) -6.675 6.7746 -19.954 6.603 .971 1 .324 

electricity and heat 1.326 .0911 1.147 1.504 211.689 1 .000 

Building 4.724 .7926 3.170 6.277 35.520 1 <.001 

Transportation .869 .1679 .540 1.198 26.774 1 <.001 

land use change and 

forestry 
5.225 2.7121 -.091 10.540 3.711 1 .054 

(Scale) .000a .0001 .000 .001    

The results suggest that electricity and heat, building, and transportation have a 

significance positive effect on the variable that is dependent (not shown in this 

table), while land use change and forestry has a positive effect but is marginally 

significant at a 0.05 significance level. The scale parameter estimate suggests 

that the data have a gamma distribution. The Omnibus test shows that the overall 

model is significant at a 0.05 significance level. The corresponding omnibus tests 

are identical to the ones we posted earlier. The omnibus test tests that all 

regression coefficients in the model are zero as a null hypothesis that, indicating 

that none of the variables independent are significant predictors of the dependent 

variable. In this case, the likelihood proportion chi-square statistic is 170.752 

with 4 degrees of freedom and a p-value of 0.000, showing significant evidence 

in contradiction to the null hypothesis and suggesting that at least one variable 

independent is a significant estimator of the dependent variable. 
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5.2.1.5 EM Method 

Table 6: Parameters Estimates 

Parameter B Std. Error 

95% Wald Confidence Interval Hypothesis Test 

Lower Upper 
Wald Chi-

Square 
df Sig. 

(Intercept) -8.710 5.9662 -20.404 2.983 2.131 1 .144 

electricity and heat 1.279 .0801 1.122 1.436 254.818 1 .000 

Building 5.007 .6983 3.638 6.375 51.413 1 <.001 

Transportation .916 .1477 .626 1.205 38.465 1 <.001 

land use change and forestry 5.651 2.3821 .982 10.320 5.628 1 .018 

(Scale) .000a 8.9835E-5 .000 .001    

The hypothesis test for each parameter tests that the true value of the coefficient 

is zero as the null hypothesis, indicating that the corresponding independent 

variable has no impact on the dependent variable. The Wald Chi-Square statistic 

is utilised for this test. If the p-value associated with the test statistic is less than 

a chosen significant level (0.05), which implies to the rejection of null 

hypothesis, indicating that the corresponding independent variable has a 

statistically significant impact on the dependent variable. 

 The Omnibus Test in this context is likely referring to a statistical test 

that evaluates the overall significant of the pattern, often utilizing the likelihood 

ratio chi-square test. In this case, the output shows that the value of the likelihood 

ratio chi-square is 178.278, with 4 degrees of freedom, and a significance level 

of .000. This indicates that the model as a whole is statistically significant, and 

that there is strong evidence to suggest that the predictors are related to the 

outcome variable. 
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5.2.2 Missing Data in the Center data  

5.2.2.1 Linear Trend at Point Method  

Table 7: Estimates of Parameters  

Parameter B 
Std. 

Error 

95% Wald Confidence 

Interval 
Hypothesis Test 

Lower Upper 
Wald Chi-

Square 
df Sig. 

(Intercept) -.085 7.4616 -14.709 14.540 .000 1 .991 

electricity and heat 1.442 .1000 1.246 1.638 208.185 1 .000 

Building 4.219 .8727 2.509 5.930 23.373 1 <.001 

transportatin .638 .1841 .278 .999 12.026 1 <.001 

land use change and 

forestry 
3.250 2.9901 -2.610 9.111 1.182 1 .277 

(Scale) .001a .0001 .000 .001    

 

Based on the given table, we can interpret the significance of each variable as 

follows: 

Intercept: The p-value of the intercept is 0.991, which is superior to the 

commonly used significant level of 0.05. Therefore, we fail to reject the null 

hypothesis that the intercept is equal to zero. This suggests that the model does 

not need a constant term.  

Electricity and heat: The p-value for this variable is 0.000,  that is less than 

0.05. Therefore, the null hypothesis that the coefficient for this variable is equal 

to zero is rejected. This suggests that the electricity and heat variable have a 

significant effect on the dependent variable.  

Building: The p-value for this variable is <0.001, that is less than 0.05. 

Therefore, the null hypothesis that this variable's coefficient is equal to zero is 

rejected. This suggests that the building variable has a significant impact on the 

dependent variable.  

Transportation: The p-value for this variable is <0.001, that is less than 0.05. 

Therefore, the null hypothesis that this variable's coefficient is equal to zero is 

rejected. This suggests that the Transportation variable has a significant impact 

on the dependent variable.  
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Land use change and forestry: The p-value for this variable is 0.277 that 

exceeds 0.05. Therefore, the null hypothesis cannot be rejected that the 

coefficient value of this variable is zero. This suggests that the Land use change 

and forestry variable may not have a significant effect on the dependent variable. 

The omnibus test indicates that the fitted model with the independent variables 

electricity and heat, building, transportation, and land use change and forestry is 

a better fit than the intercept-only pattern. The value of chi-square likelihood 

ratio is 165.045 with 4 degrees of freedom and a significance level of .000 

indicates strong evidence against the null hypothesis that the intercept-only 

model is a better fit, and in favor of the alternative hypothesis that the fitted 

model is a better fit. 

5.2.2.2 Mean Impute Method 

Table 8: Parameter Estimates 

Parameter B Std. Error 

95% Wald Confidence 

Interval 
Hypothesis Test 

Lower Upper 
Wald Chi-

Square 
df Sig. 

(Intercept) 1.446 7.8962 -14.030 16.923 .034 1 .855 

(Intercept) 1.468 .1057 1.261 1.675 193.089 1 .000 

electricity and heat 4.117 .9236 2.307 5.927 19.870 1 <.001 

Building .582 .1946 .201 .964 8.956 1 .003 

Transportation 2.772 3.1642 -3.430 8.974 .767 1 .381 

land use change and 

forestry 
.001a .0002 .000 .001    

The dependent variable, it is difficult to interpret the coefficients and the overall 

fit of the model. However, we can say that the intercept is not statistically 

significant as its p-value is greater than .05. The other hand, the p-values of the 

other independent variables is less than .05, which indicates that they are 

statistically significant in predicting the dependent variable. The Omnibus Test 

result shows a likelihood ratio chi-square of 161.676 with 4 degrees of freedom 

and a significant level of .000. This implies that the model as a whole is a good 

fit for the data and significantly explains variance in the dependent variable. 

Therefore, as a result, the model is statistically significant and thus rejects the 

null hypothesis. 
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5.2.2.3 KNN Method 

Table 9: Parameter Estimates 

Parameter B Std. Error 

95% Wald Confidence Interval Hypothesis Test 

Lower Upper 
Wald Chi-

Square 
df Sig. 

(Intercept) -22.987 16.8567 -56.025 10.052 1.860 1 .173 

electricity and heat 1.055 .2304 .604 1.507 20.992 1 <.001 

Building 5.778 1.9737 1.910 9.647 8.571 1 .003 

Transportation 1.474 .4231 .645 2.304 12.143 1 <.001 

land use change and forestry 10.421 6.7594 -2.828 23.669 2.377 1 .123 

(Scale) .003a .0007 .002 .005    

 

This table shows the parameter estimates for a regression model. The intercept 

term has a coefficient of -22.987, which means that when all predictors are zero, 

the estimated value of the response variable is -22.987. The p-value for the 

intercept is not significant at the 0.05 level (p = 0.173), which suggests that the 

intercept may not be necessary in the model. 

The coefficients for the predictor variables are as follows: electricity and heat 

(1.055), Building (5.778), Transportation (1.474), and land use change and 

forestry (10.421). These coefficients represent the changes in the expected value 

of the response variable for an increase of one unit in the corresponding predictor 

variable, holding every other predictor constant. All of these coefficients have 

significant p-values (less than 0.05, except Land use change and forestry), which 

suggests that they are important in predicting the variable of response. 

Also included are the standard errors of the estimated coefficients which can be 

used to compute confidence intervals. The 95% confidence intervals for the 

predictor variables are also provided in the table. The test of Wald Chi-Square is 

used to test the hypothesis that each predictor variable has a coefficient of zero.  

The p-values for each test are also described in the table. The Omnibus Test 

results provided that a Likelihood Ratio Chi-Square value of 116.603, with 4 

degrees of freedom, and a significance level of .000. This indicates that the fitted 

model (including all predictor variables) is a significantly better fit for the data 

than the intercept-only pattern. The p-value of .000 indicates that there is a very 

low probability of obtaining such a large test statistic under the null hypothesis 

that there is no difference between the models, supporting the alternative 

hypothesis that the fitted pattern is a better fit for the data. 
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5.2.2.4 PMM Method 

Table 10: Parameter Estimates 

Parameter B 
Std. 

Error 

95% Wald Confidence 

Interval 
Hypothesis Test 

Lower Upper Wald Chi-Square df Sig. 

(Intercept) -11.458 9.3666 -29.816 6.900 1.496 1 .221 

electricity and heat 1.251 .1267 1.002 1.499 97.420 1 .000 

Building 4.987 1.0959 2.839 7.135 20.710 1 <.001 

Transportation 1.054 .2332 .597 1.511 20.451 1 <.001 

land use change and 

forestry 
6.807 3.7545 -.552 14.166 3.287 1 .070 

(Scale) .001a .0002 .001 .001    

The table shows the significant variables in this model are electricity and heat, 

building, and transportation, as their p-values are less than .05. The coefficient 

for electricity and heat is 1.251, indicating that for each unit increase in electricity 

and heat, the outcome variable is expected to increase by 1.251 units, on average, 

holding all other variables constant. 

Similarly, the coefficients for building and transportation are 4.987 and 1.054, 

respectively. This indicates that for each unit increase in building and 

transportation, the outcome variable is expected to increase by 4.987 and 1.054 

units, on average, holding all other variables constant. The intercept is not 

significant, indicating that it is not different from zero. The variable land use 

change and forestry is not significant at the .05 level. Overall, the pattern is 

significant with an omnibus test statistic of 151.419 and a p-value of 0.000. This 

indicates that the model explains a significance amount of the variability in the 

outcome variable. 
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5.2.2.5 EM Method 

Table 11: Parameter Estimates 

Parameter B 
Std. 

Error 

95% Wald Confidence Interval Hypothesis Test 

Lower Upper 
Wald Chi-

Square 
df Sig. 

(Intercept) -3.000 7.0670 -16.851 10.851 .180 1 .671 

electricity and heat 1.393 .0949 1.207 1.579 215.500 1 .000 

Building 4.415 .8266 2.795 6.035 28.527 1 <.001 

Transportation .745 .1748 .403 1.088 18.181 1 <.001 

land use change and 

forestry 
4.161 2.8322 -1.389 9.712 2.159 1 .142 

(Scale) .000a .0001 .000 .001    

The table shows the significant variables in this model are electricity and heat, 

building, and transportation, as their p-values are less than .05. The intercept is 

not significant, indicating that it is not different from zero. The variable land use 

change and forestry is not significant at the .05 level. Overall, the model is 

significant with an omnibus test statistic of 168.272and a p-value of 0.000. This 

indicates that the model explains a significance amount of variability in the 

outcome variable. 

5.2.3 Missing Data in the Bottom Data  

5.2.3.1 Linear Trend at Point Method  

Table 12: Parameters Estimates 

Parameter B 
Std. 

Error 

95% Wald Confidence 

Interval 
Hypothesis Test 

Lower Upper Wald Chi-Square df Sig. 

(Intercept) -5.849 7.1612 -19.884 8.187 .667 1 .414 

electricity and heat 1.356 .0964 1.167 1.545 198.034 1 .000 

Building 4.557 .8377 2.915 6.199 29.598 1 <.001 

Transportation .851 .1775 .503 1.199 22.988 1 <.001 

land use change and 

forestry 
4.805 2.8702 -.820 10.431 2.803 1 .094 

(Scale) .001a .0001 .000 .001    
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The table shows the significant variables in this model are electricity and heat, 

building, and transportation, as their p-values are less than .05. The intercept is 

not significant, indicating that it is not different from zero. The variable land use 

change and forestry is not significant at the .05 level. The pattern is significant 

with an omnibus test statistic of 168.272and a p-value of 0.000. This indicates 

that the model explains a significance amount of variability in the outcome 

variable. 

5.2.3.2 Mean Impute Method 

Table 13: Parameter Estimates 

Parameter B 
Std. 

Error 

95% Wald Confidence Interval Hypothesis Test 

Lower Upper 
Wald Chi-

Square 
df Sig. 

(Intercept) -24.866 42.0680 -107.318 57.586 .349 1 .554 

electricity and heat .418 .5153 -.592 1.429 .659 1 .417 

Building 11.266 5.0479 1.372 21.159 4.981 1 .026 

Transportation .421 .8728 -1.290 2.132 .233 1 .629 

land use change and 

forestry 
16.178 10.5701 -4.539 36.895 2.342 1 .126 

(Scale) 266.043a 68.6921 160.388 441.298    

This table provides the results of gamma regression with identity link 

function after handling missing data with the linear trend at point method, row 

one of the table displays the intercept coefficient, which represents the response 

variable's value when all independent variables are equal to zero. Now, the 

intercept is statistically insignificant (p = 0.554), indicating that there is no 

evidence of a non-zero intercept. The next four rows show the estimated 

coefficients for each of the independent variables: electricity and heat, building, 

transportation, and land use change and forestry. The coefficients for electricity 

and heat, transportation and land use change are not significant (p ˃.05), 

implying that is no evidence of a linear relation between these variables and the 

response variable. The coefficient for building is statistically significant, implies 

that is a positive linear relation between this variable and the response variable.  

The model is significant with an omnibus test statistic of 71.282 and a p-value of 

0.000. This indicates that the model explains a significance amount of variability 

in the outcome variable. 
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5.2.3.2 KNN Method 

Table 14: Parameter Estimates 

Parameter B 
Std. 

Error 

95% Wald Confidence Interval Hypothesis Test 

Lower Upper Wald Chi-Square df Sig. 

(Intercept) -5.464 19.0747 -42.850 31.921 .082 1 .775 

electricity and 

heat 
1.081 .2592 .573 1.589 17.384 1 <.001 

Building 5.839 2.2352 1.458 10.220 6.825 1 .009 

Transportation .784 .4696 -.136 1.704 2.788 1 .095 

land use change 

and forestry 
10.966 7.6418 -4.012 25.943 2.059 1 .151 

(Scale) .004a .0009 .002 .006    

In this table, the electricity and heat and building variables have p-values 

lower than the significant level of .05, indicating that they are statistically 

significant predictors of the variable response. The transportation variable has a 

p-value of .095, which is slightly above the significant level. The land use change 

and forestry variable has a p-value of .151, which is not insignificant at the .05 

level. The results of the omnibus test show that the likelihood ratio chi-square 

statistic is 106.405 with 4 degrees of freedom and a significant level of smaller 

than 0.05. This implies that the fitted model is significantly better than the 

intercept-only model, and therefore, this data fits the gamma regression model 

for the data after handling missing values. 

5.2.3.4 PMM Method 

Table 15: Parameter Estimates 

Parameter B 
Std. 

Error 

95% Wald Confidence Interval Hypothesis Test 

Lower Upper Wald Chi-Square df Sig. 

(Intercept) -5.615 11.1163 -27.402 16.173 .255 1 .613 

electricity and heat 1.230 .1502 .936 1.525 67.054 1 <.001 

Building 5.139 1.3012 2.589 7.689 15.598 1 <.001 

Transportation .820 .2747 .282 1.359 8.912 1 .003 

land use change 

and forestry 
7.651 4.4542 -1.079 16.381 2.950 1 .086 

(Scale) .001a .0003 .001 .002    
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The table shows the results of four explanatory variables: electricity and 

heat, building, transportation, and land use change and forestry. The model has a 

scale parameter of 0.001, which indicates a good fit. The intercept term is not 

significant, meaning that there is no constant effect on the emissions. The 

coefficients of electricity and heat, building, and transportation are non-negative 

and significance at the 0.01 level, illustrating that higher values of these variables 

are associated with higher emissions. The coefficient of land use change and 

forestry is positive but insignificant at the 0.05 level, suggesting that this variable 

has no effect on the emissions. The results of the omnibus test show that the 

likelihood ratio chi-square statistic is 139.921, with 4 degrees of freedom and a 

significant level of lower than 0.05. This suggesting that the fitted pattern is 

significantly better than the intercept-only model, and therefore, the model of 

gamma regression is a good fit for the data after handling missing values. 

5.2.3.5 EM Method 

Table 16: Parameter Estimates 

Parameter B 
Std. 

Error 

95% Wald Confidence 

Interval 
Hypothesis Test 

Lower Upper 
Wald Chi-

Square 
df Sig. 

(Intercept) -5.894 7.0161 -19.646 7.857 .706 1 .401 

electricity and heat 1.376 .0944 1.191 1.561 212.639 1 .000 

Building 4.467 .8206 2.858 6.075 29.626 1 <.001 

Transportation .856 .1740 .515 1.197 24.203 1 <.001 

land use change and forestry 4.354 2.8122 -1.158 9.866 2.397 1 .122 

(Scale) .000a .0001 .000 .001    

The results indicate that electricity and heat, building, and transportation have 

significant positive effects on dependent variables, while land use change and 

forestry has a non-significant positive effect. On the other hand, the land use 

change and forestry are not significant. The scale parameter is estimated to be 

zero, indicating that there is no over dispersion in the model. The omnibus test 

for gamma regression is used to determine if the fitted model, the results show 

that the likelihood ratio chi-square statistic is 169.038, with 4 degrees of freedom 

and a significant level of less than 0.05. This represents the fitted model is 

significantly better than the intercept-only model, and therefore, the model of 

gamma regression is a good fit for the data after handling missing values. 



 

Scientific Journal for Financial and Commercial Studies and Research 5(1)1 January 2024 

Dr. Amira El-Desokey 

   

- 299 - 

 

5.3 Goodness of Fit 

Now we will test the goodness fit method to determine the best method of 

handling missed data in gamma regression. 

Table 17: Goodness of Fit 

Missing Type Method 
Log 

Likelihood 
AIC BIC Pseudo R 

Missing in Top data Linear Trend -123.374 258.747 267.154  

 Mean. Impute -116.607 245.214 253.621 0.9223 

 KNN -75.320 162.641 171.048 0.9969 

 PMM -77.183 166.366 174.774 0.996 

 EM -73.319 158.638 167.045 0.9973 

Missing in Center data Linear Trend -81.831 175.662 -119.780  

 Mean. Impute -81.831 175.662 184.069 0.9953 

 KNN -104.448 220.897 229.304 0.9790 

 PMM -86.895 185.791 194.198 0.9934 

 EM -78.485 168.970 177.377 0.99625 

Missing in Bottom data Linear Trend -78.871 169.742 178.149  

 Mean. Impute -126.323 264.646 273.053 0.9434 

 KNN -108.211 228.422 236.829 0.9706 

 PMM -92.045 
196.090 

 
204.497 0.99588 

 EM -78.259 168.518 176.926 0.99634 

For Missing in the Beginning of Data: It's clear from the data that the 

mean impute method had the lowest log-likelihood value and the highest AIC 

and BIC values, indicating poor fit compared to other methods. KNN, PMM, and 

EM methods produced better fits with greatest log-likelihood values and a lower 

AIC and BIC values. Among these three methods, EM had the highest Pseudo-

𝑅2 value (0.9973), indicating the best fit. The linear trend at point method also 

had a high Pseudo 𝑅2value (0.988), indicating a good fit, but the log-likelihood, 

AIC, and BIC values were higher compared to KNN, PMM, and EM.  

For the Missing Data Type "Missing in Middle Data," the results 

show that the EM imputation method has the highest log likelihood and AIC 

values, indicating the best fit, and the highest Pseudo 𝑅2 value, indicating the 

best predictive power among the imputation methods for this missing data type. 

The linear trend, Mean Impute and PMM methods also performed well, while 

KNN performed relatively poorly. Overall, the Linear Trend and EM methods 

appear to be the most effective for imputing missing data in the middle of the 

dataset. 
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The K-Nearest Neighbor (KNN) Imputation Method:  has a higher 

log-likelihood of -108.211, lower AIC of 228.422, and lower BIC of 236.829 

than the mean imputation method. Its pseudo 𝑅2 is also higher at 0.9706.  

The Predictive Mean Matching (PMM) Method has the highest log-

likelihood of -92.045 and the lowest AIC of 196.090 among all the methods. Its 

BIC of 204.497 is also lower than the KNN imputation method. Its pseudo 𝑅2 is 

also relatively high at 0.99588. 

The Expectation-Maximization (EM) Imputation Method has a log-

likelihood of -78.259, AIC of 168.518, and BIC of 176.926, which are 

comparable to the linear trend method. Its pseudo 𝑅2 is the highest among all 

methods at 0.99634. Overall, the results indicate that the Linear Trend and EM 

methods had the highest log likelihoods and Pseudo 𝑅2 values, indicating better 

model fit. The AIC and BIC values were also lower for these methods, indicating 

a better balance between model fit and complexity.  

Conclusion 

From the practical study we noticed that  

1- The EM and KNN imputation methods appear to be the best choices 

for handling missing values in the first quartile of the dataset, as they 

have higher log-likelihoods, lower AIC and BIC, and higher pseudo 

𝑅2 values than the other methods. However, the PMM method can 

also be a good choice due to its relatively high pseudo 𝑅2 and lower 

computational cost compared to EM and KNN methods. 

2- The EM imputation method appears to be the best choices for 

handling missing values in the central of the dataset, as it has a higher 

log-likelihoods, lower AIC and BIC, and higher pseudo 𝑅2 values 

than the other methods.  

3- The PMM and EM imputation methods appear to be the best choices 

for handling missing values in the bottom quartile of the dataset, as 

they have higher log-likelihoods, lower AIC and BIC, and higher 

pseudo 𝑅2 values than the other methods. However, the KNN method 

can also be a good choice due to its relatively high pseudo 𝑅2 and 

lower computational cost compared to PMM and EM methods. 

4- Overall, the EM Method is the best fit method for the Gamma 

Regression model with missed data in any position (Beginning, 

Central, and the bottom of the data).   
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 تأثير معالجة البيانات المفقودة في متغير الاستجابة لانحدار جاما 
 أميرة إبراهيم الدسوقي 

 المستخلص:

يقدم   تقيم  البحث  جاما.  انحدار  تحليل  في  المفقودة  البيانات  مناهج  لمختلف  شاملة  مقارنة 

عند طريقة النقطة، وطريقة التضمين المتوسطة، وثلاث طرق الدراسة أداء الاتجاه الخطي  

(  ونهاية، وسط ،    بدايةاحتساب متعددة في معالجة البيانات المفقودة في مواضع مختلفة )

من نطاق البيانات. يتم استخدام تقنية تقدير الاحتمالية القصوى للتنبؤ بمعلمات نموذج انحدار 

تطبيق هذه الطرق في تحليل العوامل التي تؤثر على جاما. تم تقديم مثال تجريبي لتوضيح  

انبعاثات ثاني أكسيد الكربون في مصر. تكشف النتائج أن طرق التضمين المتعددة تتفوق  

 .في الأداء على الأساليب الأخرى من حيث الدقة

ي  نحدار جاما ، الاحتمالية القصوى ، البيانات المفقودة ، الاتجاه الخطا  الكلمات المفتاحية:  

المتوسطة ،   التضمين  النقطة ، طريقة  )  -Kعند طريقة  الجوار  ، KNNأقرب طريقة   )

 (. EMالتوقعات ) من  تعظيم ال( ، حساب PMMالتنبئي )مطابقة المتوسط 
 

 


