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         INTRODUCTION  

 

 Gamma radiation is a naturally occurring electromagnetic radioactive wave with a short 

wavelength and is the most energetic type of electromagnetic radiation (Moussa, 2001; Khodary & 

Moussa, 2003; Sreedhar et al., 2013). Due to their widespread availability and potent penetrating 

capability, gamma rays have been shown to be more affordable and efficient than other ionizing 

radiations. Gamma irradiation was used for the enhancement of different plant species (Moussa, 
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Natural antioxidant substitutes have gained popularity as alternatives to synthetic 
antioxidants in recent years. Microalgae are considered as an alternative natural 
source of antioxidants with interesting bioactive compounds. One of the fascinating 
bioactive features of the microalgae is their antioxidant activity. The purpose of this 
study was to assess the antioxidant characterization of three microalgae: 
Arthrospira platensis, Scenedesmus obliquus, and Chlorella vulgaris, after 
treatments with gamma irradiation at a dose of 200, 300, and 700 Gy, respectively. 
The phytochemical examination of the three algae revealed that the maximum total 
antioxidant activity in S. obliquus at 300 Gy was 73.8mg g

-1
 ascorbic acid, followed 

by A. platensis at 700 Gy by 62.9 mg g
-1

 ascorbic acid. The minimum activity was 
noticed for C. vulgaris at 200 Gy by 46.7 mg g

-1
 ascorbic acid as compared to the 

control. In addition, a significant increase was detected in the activity via γ-
irradiation treatment of the three algae as compared to the control. Their levels 
were 2.26, 2.02, and 1.49mg g

−1
FW in S. obliquus (300 Gy), A. platensis (700 Gy), and 

C. vulgaris (200 Gy). The antioxidant capacity of DPPH˙(2,2-diphenyl-1-
picrylhydrazyl), ABTS˙⁺[2,2-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid)] radical 
scavenging activity, and ferric-reducing antioxidant power (FRAP) indicated high 
values in S. obliquus at 300 Gy, followed by A. platensis at 700 Gy, and C. vulgaris at 
200 Gy, as compared to the control. Fifteen polyphenol fractions (ten phenolics and 
five flavonoids) were identified, which increased significantly by gamma irradiation 
treatment. Therefore, treatments of A. platensis, S. obliquus, and C. vulgaris with the 

optimum dose of γ-irradiation increased significantly the antioxidant characterization 

and the content of polyphenol fractions, which directly or indirectly can help 

maintain the health of living beings as they are natural, safe, cheap, available, and 

easy to obtain. 
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2006; Vanhoudt et al., 2014) and stimulating the growth of A. platensis (Moussa et al., 2015). 

Low doses of γ-radiation may increase enzymatic activity and most physiological activities, which 

results in stimulating the rate of cell division (Moussa, 2011; Moussa & Abdul Jaleel, 2011). 

Recently, there has been a rising interest in the use of relatively low doses of gamma irradiation to 

activate biological processes in microalgae (Tale et al., 2017; Ermavitalini et al., 2017a, b; 

Moisescu et al., 2019; Almarashi et al., 2020). Water makes up 90% of an infant's body and 70% 

of an adult's; therefore, its chemical change by ionizing radiation is a substantial consideration in 

relation to the chemical effects of ionizing radiation (Halliwell & Gutteridge, 2004). When water 

is exposed to ionizing energy, a variety of free radicals are produced, including ionized water 

molecules (H2O
•+

), H
•
 and 

•
OH radicals. Following a series of processes, ionized molecules create 

secondary reactive oxygen species (ROS) such as H2O2 and O2
•−

, which ultimately lead to oxidative 

stress (Lee et al., 2009; Moussa & Mohamed, 2011; Moussa & Amira, 2018; Mohamed et al., 

2023). Experimental evidence shows that ROS contribute to the rise in lipid content in 

microorganisms (Yilancioglu et al., 2014; Tale et al., 2017; Shi et al., 2017). The organism under 

stress has developed a variety of defensive mechanisms, such as non-enzymatic antioxidants viz. 

phenols and proline, as well as enzymatic antioxidants including glutathione reductase, ascorbate 

peroxidase, superoxide dismutase, peroxidase, and catalase to prevent oxidative damage (Zhao & 

Li, 2014). Microalgae are one of the most valuable sources of natural biochemical contents for 

food, pharmaceutical, and cosmetics in addition to being potential sources of protein, lipids, 

vitamins, amino acids, and minerals for humans. Humans can get most of their antioxidants from 

plants; however, most microalgae can also be an untraditional source of these compounds instead of 

artificial antioxidants (Rani et al., 2021). Arif et al. (2023) suggested that some microalgae are 

potential sources of carotenoids that have high antioxidant activity and have a potential source of 

food in the future. The green microalgae Scenedesmus obliquus have antimicrobial properties 

(Danielli et al., 2019). Agam et al. (2022) concluded that S. platensis is considered a very potential 

source of antioxidants and phytonutrients, and according to Food and Drug Substances in the USA, 

Spirulina is recorded as a great food supplement due to its enrichment of vitamins, antioxidants, and 

phytonutrients. Chlorella vulgaris is employed in biofuels like biodiesel and bioethanol as well as 

in antibiotics, food, and pharmaceuticals (Novoveska et al., 2019). Furthermore,  in vitro tests on C. 

vulgaris reveal anticancer capabilities (Ragaa et al., 2022). 

 The aim of this manuscript was to assess the antioxidant capacity of DPPH˙(2,2-diphenyl-1-

picrylhydrazyl), ferric-reducing antioxidant power (FRAP), ABTS˙⁺[2,2-azino-bis(3-

thylbenzothiazoline-6-sulfonic acid)] radical scavenging activity, total antioxidant capacity, 

carotenoids, and polyphenol fractions (flavonoid and phenolic) in some microalgae (A. platensis, S. 

obliquus, and C. vulgaris) in response to γ-irradiation treatment after 20 days of growth. 

 

          MATERIALS AND METHODS  

 

Algae cultivation conditions 

 The algae used in this study (Arthrospira platensis, Scenedesmus obliquus, and Chlorella 

vulgaris) were obtained from the National Institute of Oceanography and Fisheries, hydrobiology 

laboratory. The microalgae S. obliquus and C. vulgaris were cultured in BG-11 media (Muna & 

Ameel, 2018; Supriya et al., 2023). While, A. platensis was cultivated using modified Zarrouk 

medium (Aboelkheir et al., 2008). The culture medium was autoclaved for 20 minutes at 121°C 
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before inoculation using an autoclave (STERIF0W-1341), and the required illumination was 

provided by sunlight. The solution was continually mixed by an aerator at a rate of 0.5L/ min (Hei-

mix S, Heidolph, Germany), the photoperiod was 16/ 8h of day/ night cycle, a temperature of 30±2 

°C, and the pH was adjusted at 7.5 for S. obliquus and C. vulgaris, 8.5 to 9 for A. platensis. The 

harvested biomass was allowed to precipitate before being filtered using 0.45mm pore size 

Whatman GF/C filter paper to get a concentrated algae paste (Hamid et al., 2016). 

Irradiation of A. platensis, S. obliquus, and C. vulgaris 

 Volumes of 250mL of A. platensis, S. obliquus, and C. vulgaris of four-day-old culture 

grown were subjected to ten doses of γ-irradiation (0.0, 100, 200, 300, 400, 500, 600, 700, 800, 900, 

and 1000 Gy). The γ-irradiation is produced using a Co
60

 source at the Egyptian Atomic Energy 

Authority in Nasr City, Egypt (Moussa et al., 2015; Moussa & Mohamed, 2015; Moussa et al., 

2023). The exposure rate was 0.84 Gy min
-1

. A precise volume of the dark-adapted, irradiated cells 

was used to inoculate 750mL of modified Zarrouk media into one liter Erlenmeyer flasks with an 

initial optical density of 680 nm for 20 days. 

Biochemical analysis of A. platensis, S. obliquus, and C. vulgaris 

 Antioxidant capacity of [DPPH˙(2,2-diphenyl-1-picrylhydrazyl) (mg VCE/g DW), ferric-

reducing antioxidant power (FRAP)] (mM Fe
2+

 equivalent/g DW), and ABTS˙⁺[2,2-azino-bis (3-

ethylbenzothiazoline-6-sulfonic acid)] radical scavenging activity (mg VCE/g DW) in A. platensis, 

S. obliquus, and C. vulgaris treated with and without gamma irradiation after 20 days of growth was 

determined by the procedure of Sayed et al. (2018) and Mohamed et al. (2023). Total antioxidant 

capacity (TAC, mg g
-1

 Ascorbic acid) in A. platensis, S. obliquus, and C. vulgaris treated with and 

without gamma irradiation after 20 days of growth was determined by the phosphomolybdenum‖ 

method, and the results were calculated from a standard curve with ascorbic acid as a reference 

(Prieto et al., 1999).  

 Photosynthetic pigments (carotenoids) were measured (mg g
−1

FW) in the acetone algal 

extracts using a Unico 1201 spectrophotometer (Metzner et al., 1965; Lichtenthaler & 

Buschmann, 2001). Flavonoid and phenolic fractions were determined by high-performance liquid 

chromatography (Waters, USA) using the technique described in Abdel-Farid et al. (2020). 

 

            RESULTS AND DISCUSSION  

 

 A. platensis, S. obliquus, and C. vulgaris were treated with different doses of γ-irradiation at 

0.0, 100, 200, 300, 40, 500, 600, 700, 800, 900, and 1000 Gy. Considering how these doses affect 

the growth curve (optical density at 680 nm) and biomass productivity of the three algae after 14 

days of growth, the optimum dose for each algae was estimated (data not included in the text). The 

optimum doses obtained from γ-irradiation treatments were 700, 300, and 200 Gy for A. platensis, 

S. obliquus, and C. vulgaris, respectively. 

Antioxidant capacity of ABTS˙⁺[2,2-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid)] radical 

scavenging activity, [DPPH˙(2,2-diphenyl-1-picrylhydrazyl), ferric-reducing antioxidant 

power (FRAP)], total antioxidant capacity (TAC), and carotenoids in A. platensis, S. obliquus, 

and C. vulgaris treated with and without gamma irradiation after 20 days of growth 

 The data for antioxidant capacity of DPPH˙, ABTS˙, FRAP, TAC, and carotenoids in A. 

platensis, S. obliquus, and C. vulgaris treated with and without gamma irradiation after 20 days of 

growth are listed in Table (1) and Fig. (1). 
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 The phytochemical analysis of the three algae treated with γ-irradiation increased the 

antioxidant characterization significantly (P<0.05), and the maximum total antioxidant activity in S. 

obliquus at 300 Gy was 73.8 mg g
-1

 ascorbic acid, followed by A. platensis at 700 Gy by 62.9 mg g
-

1
 ascorbic acid. The minimum activity was noticed for C. vulgaris at 200 Gy by 46.7 mg g

-1
 

ascorbic acid, as compared to the control samples. Additionally, carotenoid contents increased 

significantly (P< 0.05) by gamma irradiation treatment of the three algae as compared to the 

control. Their levels were 2.26, 2.02, and 1.49 mg g
−1

FW in S. obliquus (300 Gy), A. platensis (700 

Gy), and C. vulgaris (200 Gy), as compared to the control samples. The antioxidant capacity of 

DPPH˙(2,2-diphenyl-1-picrylhydrazyl), ABTS˙⁺[2,2-azino-bis (3-ethylbenzothiazoline-6-sulfonic 

acid)] radical scavenging activity, and ferric-reducing antioxidant power (FRAP) indicated high 

values in S. obliquus at 300 Gy, followed by A. platensis at 700 Gy, and C. vulgaris at 200 Gy 

compared to the control samples.  

 The results revealed that antioxidant activity increased significantly (P< 0.05) compared to 

the control samples. S. obliquus recorded the highest antioxidant screening results (340, 187, 5.2, 

and 73.8 mg VCE/g DW for ABTS, DPPH, FRAP mM Fe
2+

 equivalent/g DW, and TAC mg g
-1

 

Ascorbic acid, respectively). These values are higher than results recorded for A. platensis (245, 

141, 3.3, and 62.9) and C. vulgaris. On the other hand, the lowest antioxidant results were 221, 123, 

2.2, and 46.7, respectively. 

 The overall antioxidant capacities of plant extracts were examined using superoxide radical 

scavenging tests, DPPH, ABTS, and FRAP (Su et al., 2021). Montone et al. (2018) identified 25 

sequenced peptides with angiotensin-converting enzyme inhibitory activities. They added tha 

conceivable antioxidant was found in Scenedesmus obliquus. Four of these peptides, in particular, 

have shown strong DPPH radical scavenging activity. Moreover, proteins from all Scenedesmus 

obliquus showed significant antioxidant activity using the ABTS radical scavenging method (Afify 

et al., 2018). According to Marecek et al. (2017), the DPPH and ABTS techniques are both 

effective tools for measuring antioxidant activity. A. platensis, S. obliquus, and C. vulgaris 

investigated were noticeably able to quench the DPPH and ABTS radicals and serve as powerful 

reductants. These antioxidant activities are likely related to their phenolic and flavonoid contents, 

where these potent compounds are electron and/or hydrogen donors, and they therefore can react 

with the DPPH and ABTS free radicals to convert them into more stable products. In agreement 

with our results, the recent contributions of Devi et al. (2011) and Ismail et al. (2016) pointed out 

that both phenolic and flavonoids are common in seaweeds and have a wide niche of free radical 

scavenging and biological activities. Furthermore, Ismail (2017) concluded that there is a 

significant positive correlation between the DPPH radical scavenging activity and total phenolics 

and flavonoids in brown seaweed, Sargassum linifolium. Raja et al. (2016) highlighted a 

significant positive correlation between ABTS radical quenching activities and ferric-reducing 

antioxidant capacities in the brown macroalga Eisenia arborea. 

Carotenoids which are red, yellow, or orange pigments that are insoluble in water are found in 

most photosynthetic organisms. Due to their distinctive qualities, particularly the health 

advantages and novel methods for manufacturing, microalgal carotenoids are receiving more and 

more attention from scientists worldwide (Novoveska et al., 2019). Microalgal carotenoids are 

safe and non-toxic colorants that are frequently employed as nutritional supplements, anticancer 

agents, and enhancers for antibodies synthesis (Ng et al., 2011). 
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Table 1. Antioxidant capacity of [DPPH˙(2,2-diphenyl-1-picrylhydrazyl) (mg VCE/g DW), 

ABTS˙⁺[2,2-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid)] radical scavenging activity (mg 

VCE/g DW), ferric-reducing antioxidant power (FRAP)] (mM Fe
2+

 equivalent/g DW), total 

antioxidant capacity (TAC, mg g
-1

 Ascorbic acid) and carotenoids (mg g
−1

FW), in A. platensis, S. 

obliquus, and C. vulgaris treated with and without gamma irradiation after 20 days of growth 

Values are represented as mean ± SD of samples in triplicate. Means assigned the same superscript 

letters in each column are not-significant different (P> 0.05), whereas others with different 

superscript letters are significant different (P< 0.05). 

 

Fig. 1. Antioxidant capacity of carotenoids in A. platensis, S. obliquus, and C. vulgaris 

treated with and without gamma irradiation after 20 days of growth  

 

 Microalgae-derived carotenoids are non-toxic colorants that are frequently used as 

nutritional supplements, anticancer agents, and catalysts for increasing antibody synthesis. 

Carotenoids are therefore in greater demand and have more applications in numerous industries 

(Liu et al., 2016) and as a result, more and more studies focus on increasing the production of 

carotenoids in microalgae (Kuo et al., 2012; Reyes et al., 2014; Liu et al., 2016). Gamma radiation 

increased the synthesis of carotenoids, which were often increased in stressful situations to protect 

chlorophyll from photooxidative degradation (Kovács & Keresztes, 2002; Moussa et al., 2015; 

Effat et al., 2017).  

Algal 

species 

Dose 

(Gy) 
ABTS DPPH FRAP TAC Carotenoids 

A. platensis 
0.0 201±12.1

e
 127±6.3

d
 2.1±0.1

c
 41.2±3.1

e
 1.06±0.05

f
 

700 245± 9.4
c
 141±8.3

c
 3.3±0.2

b
 62.9±2.3

b
 2.02±0.08

b
 

S. obliquus 
0.0 312±18.4

b
 152±9.1

b
 3.1±0.2

b
 51.6±3.1

c
 1.73±0.10

c
 

300 340±10.8
a
 187±12.1

a
 5.2±0.3

a
 73.8±5.1

a
 2.26±0.18

a
 

C. vulgaris 
0.0 187±11.2

f
 99±6.9

e
 1.0±0.1

d
 34.2±1.1

f
 1.23±0.09

e
 

200 221±14.7
d 

123±7.4
d
 2.2±0.1

c
 46.7±2.1

d
 1.49±0.11

d
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Identification and quantification of polyphenol fractions (flavonoid and phenolic) by HPLC in 

A. platensis, S. obliquus, and C. vulgaris treated with and without gamma irradiation after 20 

days of growth 

 The studied microalgae in this study (A. platensis, S. obliquus, and C. vulgaris) have 

naturally occurring polyphenol amounts of 10 phenolic and 5 flavonoid fractions, which are both 

potent effective antioxidants. After the three species of microalgae (A. platensis, S. obliquus, and C. 

vulgaris) were exposed to gamma irradiation at 700, 300, and 200 Gy, respectively, the phenolic 

compounds, benzoic acid, had the minimum values at 99, 78, and 92.5µg/ gDW, respectively. 

Salicylic acid (474µg/ gDW) had the highest concentration of phenolic compounds in A. platensis, 

whereas gallic acid concentrations in S. obliquus and C. vulgaris were 597 and 539µg/ gDW, 

respectively. 

 The physiological redox equilibrium depends on the consumption of antioxidants in the diet 

(Wang et al., 2007). Antioxidant polyphenols investigated in this study can be used as natural 

supplements in the food industry instead of synthetic antioxidants responsible for many intensively 

hazardous effects on human health (Carocho et al., 2014). Algae can produce a wide range of 

primary and secondary metabolites with potent antioxidant properties, such as phenolic compounds, 

vitamins, and carotenoids (Munir et al., 2016; Mona et al., 2016). The results revealed that 

microalgae are considered as a good source of strong polyphenol antioxidants (phenolic and 

flavonoid fractions), which agrees with the findings of Abdel-Daim et al. (2018) and Rani et al. 

(2021), who could identify and make use of natural antioxidant items that are pharmaceutically 

effective and have minimal or no adverse effects while dealing with various diseases. As dietary 

polyphenols function as antioxidants, they reduce oxidative stress and neutralize ROS. 

Consequently, the apigenin, kaempferol, caffeic acid, and quercetin found in A. platensis, S. 

obliquus, and C. vulgaris reduce the oxidative damage brought on by gamma irradiation treatment 

(Mohamed et al., 2019; Abdel-Farid et al., 2020; Abdel-Hamid et al., 2021). γ-irradiation 

treatments increased the phenolic content of Mucuna pruriens (Bhat et al., 2007). The strong 

antioxidant properties of phenolic compounds, which function as scavengers of ROS created under 

the stress of gamma irradiation, are one theory put in to explain this increase (Effat et al., 2017). 

Numerous investigations on some plant species and the snow alga Chlamydomonas nivalis have 

supported strong potent antioxidant activities (Devi et al., 2011). According to Wright et al. 

(2001), there are two potential ways in which phenolic chemicals function as antioxidants. The first 

mechanism included contributing electrons to a free radical atom so that it could form a radical 

cation, while the second involved transferring a hydrogen atom to a free radical. The antioxidant 

properties and antiinflammatory activity of kaempferol have been reported (Karthivashan et al., 

2013). The biological effects of chlorogenic acid include anticancer, hypolipidemic, antibacterial, 

antioxidant, and hypoglycemic properties (Sotillo & Hadley, 2002; Santos et al., 2006; Bassoli et 

al., 2008). Due to the presence of β-carotene, α-tocopherol, and phenolic acids, it has been observed 

that Spirulina sp. offers some antioxidant protection both in vitro and in vivo (Banskota, 2019). 

These findings are in agreement with the results of Ali and Doumandji (2017), who stated that 

although the microalgae are more rudimentary, they are still capable of creating polyphenols that 

are relatively complex (Klejdus et al., 2010; Li et al., 2011). 
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Table 2. Estimation of polyphenol (flavonoid and phenolic) fractions (µg/gDW) in A. platensis, S. 

obliquus, and C. vulgaris treated with and without gamma irradiation after 20 days of growth 

     RT (retention time). Values are mean±SD of samples in triplicate. 

 Polyphenols exhibit a wide range of biological effects as a consequence of their antioxidant 

properties. Due to their antioxidant capabilities, polyphenols in marine algae species display a wide 

variety of biological effects that can be useful in lowering oxidative processes harmful to health 

(Abdel-Daim et al., 2018; Rani et al., 2021).  

 The human cell experiences oxidative stress during disease conditions or when it is not 

receiving the best nutrition. It is possible for the ROS to start lipid peroxidation and harm other 

biomolecules in these conditions. Thus, it is suggested that phenolic compounds play a role in the 

prevention of diabetes mellitus, cancer, and neurological illnesses in addition to the protection 

against cancer and cardiovascular disease (Urquiaga & Leighton, 2000).  

 

     CONCLUSION 

 

 This study concluded that gamma irradiation has the ability to increase the antioxidant 

activity of DPPH, ABST, FRAP, and TAC in microalgae such as Scenedesmus obliquus, Spirulina 

platensis, and Chlorella vulgaris, with the highest activity in S. obliquus, followed by S. platensis, 

and C. vulgaris. In addition, carotenoid content and polyphenol (flavonoid and phenolic) fractions 

increased by gamma irradiation treatment in the three algae as compared to the control samples. 

Antioxidant polyphenol fractions (flavonoid and phenolic) investigated in this study are highly 

recommended to be used as valuable and natural supplements in the food industry instead of 

synthetic antioxidants responsible for many intensively hazardous effects on human health. 

Furthermore, the findings highlighted the possibility of using these microalgae as antioxidants in the 

future in the pharmaceutical, nutritional supplement, food, and cosmetic industries. 

 

 

      Polyphenols 

      fractions 

 

  RT 

  (min.)     

       A. platensis         S. obliquus C. vulgaris 

Dose (Gy)   Dose (Gy) Dose (Gy) 

    0.0    700      0.0      300      0.0     200 

Phenolics 

   Benzoic acid 

 

1.1 

 

81±2.6 

 

99±1.9 

 

65±4.1 

 

78±3.9 

 

82±4.8 

 

92.5±8.4 

   Gallic acid 1.9 393±19.6 451±23.3 474±42.7 597±33.2 438±25.7 539±45.2 

   Resorcinol 2.1 84±5.1 119±5.9 113±4.6 133±6.5 100±6.7 123±8.6 

   Chloragenic acid 3.0 190±5.9 233±9.3 247±18.6 323±17.5 266±7.9 335±30.2 

   Caffeic acid 3.6 350±13.4 442±23.1 74±3.8 105±4.2 102±5.4 129±5.3 

   P-Coumaric acid 4.5 198±11.8 267±16.2 234±14.7 280±16.1 217±15.4 259±33.5 

   Salicylic acid 4.8 346±19.3 474±33.2 410±36.9 488±41.7 346±20.9 415±34.2 

   Ferulic acid 5.5 291±18.7 395±15.3 345±40.2 456±29.8 340±34.4 396±34.2 

   Cinnamic acid 6.1 126±7.5 173±6.8 150±16.2 211±8.7 161±14.7 188±12.4 

   Syringic acid 8.2 132±5.5 157±6.6 158±14.3 189±13.2 154±16.3 203±23.1 

Flavonoids 

   Catechin 

 

1.1 

 

135±8.1 

 

166±9.9 

 

97±5.9 

 

123±6.6 

 

101±10.2 

 

124±6.3 

   Kaempferol 2.3 110±8.8 134±6.7 131± 7.7 178±12.7 136±12.3 182±5.2 

   Rutin 3.2 105±6.4 127±10.3 122±6.1 149±10.3 112±7.8 154±9.5 

   Hesperidin 4.9 149±8.8 176±14.2 176±10.2 241±9.8 190±13.3 239±18.4 

   Quercetin 6.9 88±4.4 119±7.6 65±3.3 92±5.6 94±8.7 124±8.8 
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ABBREVIATION  

TAC: Total antioxidant capacity  

ROS: Reactive oxygen species (ROS) 

FRAP: Ferric-reducing antioxidant power  

ABTS˙⁺: 2, 2-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) 

DPPH˙: 2, 2-diphenyl-1-picrylhydrazyl  
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