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VIETA-LUCAS POLYNOMIAL COMPUTATIONAL TECHNIQUE

FOR VOLTERRA INTEGRO-DIFFERENTIAL EQUATIONS

T. OYEDEPO , A.M. AYINDE, E.N. DIDIGWU

Abstract. In this study, we introduce a computational technique for tack-

ling Volterra Integro-Differential Equations (VIDEs) using shifted Vieta-Lucas

polynomials as the foundational basis functions. The approach involves adopt-
ing an approximative solution strategy through the utilization of Vieta-Lucas

polynomials. These polynomials are then integrated into the pertinent VIDEs.

Subsequently, the resulting equation is subjected to collocation at evenly spaced
intervals, generating a system of linear algebraic equations with unspecified

Vieta-Lucas coefficients. To solve this system, we employ a matrix inversion

method to deduce the unknown constants. Once these constants are deter-
mined, they are incorporated into the earlier assumed approximate solution,

thus yielding the sought-after approximated solution. To validate the accu-
racy and efficiency of this technique, we conducted numerical experiments.

The obtained results underscore the outstanding performance of our method

in comparison to outcomes found in existing literature. The precision and
effectiveness of the approach are further illustrated through the utilization of

tables.

1. Introduction

Integro-differential equations (IDEs) are types of mathematical equations that
involve both derivatives and integrals. They arise in various fields of science and en-
gineering, including physics, biology, economics, and finance, where systems exhibit
memory or history-dependent behavior. Unlike Ordinary Differential Equations
(ODEs) that involve only derivatives, integro-differential equations incorporate the
influence of past values of the unknown function through the integration term.
Integro-differential equations often appear in problems involving diffusion, prop-
agation of waves, population dynamics, and control theory, among others. They
provide a more realistic description of phenomena that exhibit memory effects or
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spatial interactions. Since most IDEs cannot be solved analytically, researchers
have focused on developing numerical methods to obtain approximate solutions.
Several authors have contributed to this area. For example, [1] employed the dif-
ferential transform method, [2] used the Bernstein operational matrix approach, [3]
applied the Chebyshev collocation method, [4] employed Lucas collocation method,
and [5] introduced the reliable iterative method for Volterra-Fredholm IDEs. In
[6], Euler polynomials with the least squares method are used to solve IDEs. For
Fredholm-Volterra IDEs, various methods were utilized. [7]employed the projection
method based on a Bernstein collocation approach; [8] used the Bernstein colloca-
tion method; [9] applied a fixed-point iterative algorithm; and [10] employed a col-
location method based on Bernstein polynomials. In [11], a new numerical method
was developed specifically for solving systems of Volterra IDEs. In [12], the Lucas
polynomial is employed to solve nonlinear differential equations with variable de-
lays. The use of third-kind Chebyshev polynomials for solving IDEs was examined
in [13] and [14]. In [15] and [16], a Computational algorithm is used to find the
solution of fractional Fredholm IDEs and Volterra-Fredholm IDEs. In [17], the ho-
motopy perturbation approach is employed for Fractional Volterra and Fredholm
IDEs. Other methods mentioned in this study include the quadrature-difference
method [18], and Adomian’s decomposition approach [19], which were used to solve
Fredholm IDEs. Based on the works mentioned above, this study proposes a com-
putational algorithm that utilizes shifted Legendre polynomials. This technique is
inspired by previous research and aims to enhance the outcomes achieved by [14]
and [6]. This work considers the Volterra integro-differential equation, which is
represented in the following form:

n∑
i=0

ρi(z)w
i(z) = f(z) + λ

∫ z

0

K(z, ν)w(ν)dν. (1)

This equation is accompanied by initial conditions:

wj(0) = wj , j = 0, 1, 2, . . . n− 1. (2)

In the above equations, j denotes the order of derivatives, and the functions K
and ρi(z) (where i = 0, 1, 2, . . . , n) are known. It is important to note that ρi(z)
and λ are nonzero. Additionally, f(z) is a known function, and wi(z) is the ith
derivatives of the unknown function w(z) that needs to be determined. Equation
(1) is commonly referred to as a VIDE.

2. Material and Method

Definition 1
An integral equation is an equation that has an unknown function, w(z), that
appears under the integral sign. Standard integral equation have the following
form:

w(z) = f(z) + λ

∫ g(z)

h(z)

K(z, t)w(t)dt.

where K(z, t) is a function of two variables z and t known as the kernel or the
nucleus of the integral equation, g(z) and h(z) are the limits of integration, λ is a
constant parameter.
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Definition 2
The Vieta-Lucas polynomials exhibit orthogonality and are defined for |ζ| < 2 as

follows: V Ln(ζ) = 2 cos(nθ), where θ = cos−1 ( ζ2 ), θ ∈ [0, π]
An explicit power series formula for V Ln(ζ) is given by:

V Ln(ζ) =
∑⌈n

2 ⌉
i=0 (−1)i nΓ(n−i)

Γ(i+1)Γ(n+1−2i)ζ
n−2i , n ≥ 2 where

⌈
n
2

⌉
denotes the ceiling function. The iterative formula for generating the Vieta-

Lucas polynomials is: V Ln(ζ) = ζV Ln−1(ζ) − ζV Ln−2(ζ), n ≥ 2, starting with
V L0(ζ) = 2 and V L1(ζ) = ζ.

Consequently, the initial Vieta-Lucas polynomials are as follows: V L0(ζ) = 2,
V L1(ζ) = ζ, V L2(ζ) = ζ2 − 2,. . . ,
These polynomials hold significance due to their orthogonality properties and find
applications in various mathematical contexts.

Definition 3
The Shifted Vieta-Lucas polynomials of degree n on [0, 1] can be obtained from
V Ln(ζ) as demonstrated below: The Vieta-Lucas polynomials exhibit orthogonality
and are defined for |ζ| < 2 as follows:

V L∗
n(ζ) = V Ln(4ζ − 2) = V L2n(2

√
ζ)

The expression for V L∗
n(ζ) can also be established using the explicit power series

formula:
V L∗

n(ζ) = 2n
∑n

i=0(−1)i 4n−iΓ(2n−i)
Γ(i+1)Γ(2n−2i+1)ζ

n−i , n ≥ 2

The iterative formula for generating the Shifted Vieta-Lucas polynomials is:

V L∗
n+1(ζ) = (4ζ − 2)V L∗

n(ζ)− V L∗
n−1(ζ), n ≥ 1, starting with V L∗

0(ζ) = 2 and
V L∗

1(ζ) = 4ζ − 2.

Hence, the initial Shifted Vieta-Lucas polynomials are as follows:

V L∗
0(ζ) = 2, V L∗

1(ζ) = 4ζ − 2, V L∗
2(ζ) = 16ζ2 − 16ζ + 2,. . . ,

These polynomials exhibit distinct properties and applications, and they stem
from the original Vieta-Lucas polynomials with appropriate shifts.

Definition 4
Collocation method: The collocation method is a numerical technique used for solv-
ing differential equations and other mathematical problems by transforming them
into algebraic equations. In this method, a set of discrete points, known as colloca-
tion points, is chosen within the domain of the problem. The differential equation
or mathematical problem is then evaluated at these collocation points, and the re-
sulting equations are solved algebraically to approximate the solution.

Definition 5
Approximate solution: An approximate solution refers to an estimation or an ed-
ucated guess of a value, quantity, or solution to a problem that is not obtained
precisely but is close enough to the actual or true value to be useful for practi-
cal purposes. In various fields, including mathematics, science, engineering, and
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computing, it’s common to encounter problems that are difficult or even impos-
sible to solve exactly due to their complexity, nonlinearity, or lack of analytical
solutions. In such cases, an approximate solution provides a practical way to gain
insights, make predictions, or solve problems within an acceptable level of accuracy.

Definition 6
Exact solution: An exact solution refers to a precise and rigorous mathematical
expression or representation that completely satisfies a given problem or equation.
In various mathematical, scientific, and engineering contexts, finding an exact solu-
tion is highly valued because it provides an unambiguous and complete description
of the problem at hand. An exact solution fully adheres to the principles and con-
ditions of the problem, leaving no room for uncertainty or approximation.

Definition 7
Absolute Error(AE): We defined absolute error as follows in this study: Absolute
Erro: = |W(z) − w(z)|; 0 ≤ z ≤ 1, where W(z)is the exact solution and w(z) is
the Approximate Solution(AS).

3. Demonstration of the method

Proposed method
In the pursuit of obtaining a numerical approximation for the general class of prob-
lems addressed in this study, we introduced an approximate solution using shifted
Vieta-Lucas polynomials expressed as:

w(z) =

r∑
i=0

V L∗
r(z)ar. (3)

Here ar, r = 0(1)n are the constants to be determined. With this in mind, we
substituted Equation (3) into Equation (1), leading to:

n∑
i=0

ρi(z)

r∑
i=0

V L∗r
r (z)ar = f(z) +

∫ z

0

K(z, ν)

r∑
i=0

V L∗
r(ν)ardν. (4)

Where V L∗r
r (z) is the rth derivative of V L∗

r(z).

Defining p(z) =
∑n

i=0 ρi(z)
∑r

i=0 V L∗r
r (z)ar, q(z) =

∫ z

0
K(z, ν)

∑r
i=0 V L∗

r(ν)ardν
Eq. (4) transform into:

p(z)− q(z) = f(z) (5)

To formulate the linear algebraic system of equations for the (n + 1) unknown

constants a′rs we employ the collocation method at equidistant points zi = a+ (b−a)i
n

, (i = 0(1)(n)). on Eq. (5). Furthermore, incorporating the initial conditions of Eq.
(2), the problem takes on a matrix representation:
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H11 H12 H13 · · · · · · · · · H1n

H21 H22 H23 · · · · · · · · · H2r

...
...

...
...

...
...

...
...

Hm1 Hm2 Hm3 · · · · · · · · · Hmn

H0
11 H0

12 H0
13 · · · · · · · · · H0

1r

H1
21 H1

22 H1
23 · · · · · · · · · H1

2r
...

...
...

...
...

...
...

...
Hn−1

m1 An−1
m2 Hn−1

m3 · · · · · · · · · Hn−1
mn





a0
a1
...
...
...
...
...
...
an



=



G11

G22

...

...
Gmn
G0

11

G1
22

...
...

Gn−1
mn



(6)

where H ′
is and H0′s

i are the coefficients of a′is and G′
is are values of f(zi). The

matrix inversion approach is then used to solve the system of equations in order to
obtain the unknown constants.



a0
a1
...
...
...
...
...
...
ar



=



H11 H12 H13 · · · · · · · · · H1n

H21 H22 H23 · · · · · · · · · H2n

...
...

...
...

...
...

...
...

Hm1 Hm2 Hm3 · · · · · · · · · Hmr

H0
11 H0

12 H0
13 · · · · · · · · · H0

1n

H1
21 H1

22 H1
23 · · · · · · · · · H1

2n
...

...
...

...
...

...
...

...
Hn−1

m1 Hn−1
m2 Hn−1

m3 · · · · · · · · · An−1
mn



−1 

G11

G22

...

...
Gmn
G0

11

G1
22

...
...

Gr−1
mn


(7)

Ultimately, the sought-after approximate solution is obtained by solving Eq. (7)
and substituting the determined constant values into the assumed approximate
solution.

4. Numerical Applications

Example 1 [14]: Consider fourth-order Volterra integro- differential equation

wiv(z) = −1 + w(z) +

∫ w

0

(z − ν)w(ν)dν

Subject to the conditions w(0) = −1, w
′
(0) = 1, w

′′
(0) = 1, w

′′′
(0) = −1. The

exact solution is w(z) = sin z − cos z.

Example 2 [14] Consider the Volterra Integro-differential equation of second
order

w
′′
(z) = 2− 2z sin z −

∫ w

0

(z − ν)w(ν)dν
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Subject to the conditions w(0) = 0, w
′
(0) = 0. The exact solution is w(z) = z sin z

Example 3 [6] Consider the FVIDE of first order

w
′′
(z) = z −

∫ w

0

(z − ν)w(ν)dν

w(0) = 0,w
′
(0) = 1 −1 ≤ s ≤ 1.

5. Numerical Results

Table 1. Shows comparison of the Absolute Error (AE) for ex-
ample 1

wi ES AS AE the proposed Method at n=10 AE of [14] at n=10
0.0 −1.00000000000000 −0.99999999970000 3.000E − 10 6.00E − 09
0.2 −0.78139724700000 −0.78139724670000 2.500E − 10 2.10E − 09
0.4 −0.53164265170000 −0.53164265150000 3.500E − 10 6.20E − 09
0.6 −0.26069314150000 −0.26069314110000 4.000E − 10 6.80E − 09
0.8 0.02064938160000 0.02064938220000 6.000E − 10 4.77E − 09
1.0 0.30116867890000 0.30116867970000 8.000E − 10 9.55E − 07

Table 2. Shows comparison of the Absolute Error (AE) for ex-
ample 2

wi ES AS AE the proposed Method at n=10 AE of [14] at n=10
0.0 0.00000000000000 −0.00000000013468 1.347E − 10 1.13E − 10
0.2 0.03973386616000 0.03973386603000 1.100E − 10 2.56E − 07
0.4 0.15576733690000 0.15576733680000 0.000E + 00 2.22E − 07
0.6 0.33878548400000 0.33878548390000 3.000E − 10 1.68E − 07
0.8 0.57388487270000 0.57388487260000 1.000E − 10 5.38E − 07
1.0 0.84147098480000 0.84147098460000 2.000E − 10 9.55E − 07

Table 3. Shows comparison of the Absolute Error (AE) for ex-
ample 2

wi ES AS AE the proposed Method at n=5 AE of [6] at n=5
0.0 0.00000 0.00000002382332 −2.3823E − 08 0.2500E − 4
0.1 0.1001668 0.10016637490000 4.2510E − 07 0.2364E − 4
0.2 0.2013360 0.20132872620000 7.2738E − 06 0.2148E − 4
0.3 0.3045203 0.30447456400000 4.57360E − 05 0.1932E − 4
0.4 0.4107523 0.41057233410000 1.7996E − 04 0.1702E − 4
0.5 0.5210953 0.52056007870000 5.352213E − 04 0.1408E − 4
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6. Discussion of results

This study investigated three instances. Examples 1 and 2 were resolved through
the approach presented in [14], utilizing Chebyshev third-kind polynomials as the
underlying basis. A comparison of the outcomes in tables 1 and 2 reveals the
superiority of the suggested method employing Vieta Lucas polynomials over the
results presented in [14]. Furthermore, example 3 was tackled by [6] employing
Euler polynomials combined with the least squares technique. A comparison of the
outcomes in tables 1 and 2 demonstrates the enhanced accuracy of the proposed
method compared to the findings of [6].

7. Conclusion

In this study, the suggested approach has been adeptly employed to yield nu-
merical solutions for VIDEs employing Vieta- Lucas polynomials. Through the
utilization of tables, three distinct numerical illustrations have been employed to
showcase the accuracy and effectiveness of the technique. The comparison across
Table 1–3 clearly reveals the heightened precision of the employed approach, as ev-
idenced by smaller error values in contrast to those reported in [14] and [6]. Hence,
researchers have a foundation to extend this methodology to address a range of
other VIDEs based on the insights gained from this study.
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