

SOFT S_{b}-METRIC SPACES AND SOME OF ITS PROPERTIES

SK. NAZMUL, UTPAL BADYAKAR

Abstract

Firstly, we have founded a generalized concept of soft S-metric spaces, named soft S_{b}-metric space, based on soft points of soft sets, and some basic properties regarding soft S_{b}-metric spaces are studied with examples. After that, we have established a fixed point theorem on soft S_{b}-metric spaces with an application.

1. Introduction and Preliminaries

Soft set theory was first initiated by Molodtsov [4] in 1999, which is an extension of fuzzy set theory [7]. After that, Maji et al. [10] studied this theory in detail. The concepts of soft real set, soft real number, soft point, and soft metric spaces were introduced, and some of their important properties were studied by Das and Samanta in [13, 15].

In 2012, S-metric space was introduced by Sedghi et al. 12 and obtained some fixed point results on S-metric spaces. Thereafter, some more fixed-point results are discussed by many researchers in [8, 9, 16, 17, 19 .

As a continuation, Aras et al. [2] have extended the concept of S-metric spaces to soft S-metric spaces, and some important fixed point results were established in 2018 [3] with the help of soft mapping [1, 5, 11, 18]. Recently, soft S_{b}-metric space using soft elements was discussed in [6].

In the present study, using soft points, we have introduced a generalized notion of soft S-metric spaces called soft $S_{b^{-}}$metric spaces, and some of their fundamental properties are established with proper examples. An important soft fixed point result on soft S_{b}-metric spaces is also discussed with an application.

[^0]Choosing $X(\neq \emptyset)$, universal set; E^{*}, set of parameters, and $P(X)$, power set of X.

Definition 1.1. [4 Taking $F^{*}: Q^{*} \rightarrow P(X)$, a function; $Q^{*} \subseteq E^{*}$, then $\left(F^{*}, Q^{*}\right)$ is soft set over X.

Definition 1.2. 10 If $F^{*}\left(q^{*}\right)=X, \forall q^{*} \in Q^{*}$, then $\left(F^{*}, Q^{*}\right)$, a soft set over X, is designated absolute soft set and is glossed by \widetilde{X}.

Definition 1.3. [13] A function $H^{*}: E^{*} \rightarrow B(\mathbb{R})$ is a soft real set and is glossed by (H^{*}, E^{*}).
If $\left(H^{*}, E^{*}\right)$ is singleton, then it is designated a soft real number. It is prevailed as $\tilde{t^{*}}$, whereas $\overline{t^{*}}$ prevailed a especial form of soft real numbers, where $\overline{t^{*}}\left(a^{*}\right)=$ $t^{*}, \forall a^{*} \in E^{*}$.

Definition 1.4. [15] $\left(F^{*}, Q^{*}\right)$ is mentioned as a soft point of X if there is a specific one $q^{*} \in Q^{*}$ for which $F^{*}\left(q^{*}\right)=\{z\}$, for few $z \in X$ and $F^{*}\left(b^{*}\right)=\emptyset, \forall b^{*} \in$ $Q^{*} \backslash\left\{q^{*}\right\}$. It is prevailed by $P_{q^{*}}^{z}$.

Definition 1.5. [14] $P_{q_{1}^{1}}^{z_{1}}=P_{q_{2}^{*}}^{z_{2}} \Rightarrow z_{1}=z_{2}$ and $q_{1}^{*}=q_{2}^{*}$.
Again, $P_{q_{1}}^{z_{1}} \neq P_{q_{2}}^{z_{2}} \Rightarrow$ either $z_{1} \neq z_{2}$ or, $q_{1}^{*} \neq q_{2}^{*}$.

2. Soft S_{b}-Metric Spaces

In this part, we have initiated soft S_{b}-metric spaces, and some of their properties are discussed with application.

Definition 2.6. Let $S P(\widetilde{X})$ be the collection of all soft points of \widetilde{X} and $\mathbb{R}\left(E^{*}\right)^{*}$ be the collection of all non-negative soft real numbers.
A mapping $\widetilde{S_{b}}: S P(\widetilde{X}) \times S P(\widetilde{X}) \times S P(\widetilde{X}) \rightarrow \mathbb{R}\left(E^{*}\right)^{*}$, is entitled a soft S_{b} - metric on the soft set \widetilde{X} with constant soft real number $\bar{s} \widetilde{\geq} \overline{1}$, if $\widetilde{S_{b}}$ content the following conditions $\forall P_{a_{1}}^{x_{1}}, P_{a_{2}}^{x_{2}}, P_{a_{3}}^{x_{3}}, P_{a_{4}}^{x_{4}} \widetilde{\in} S P(\widetilde{X})$,

$$
\begin{aligned}
& \left(S_{1}\right) \widetilde{S_{b}}\left(P_{a_{1}}^{x_{1}}, P_{a_{2}}^{x_{2}}, P_{a_{3}}^{x_{3}}\right) \widetilde{\geq} \overline{0} \text {, equality holds if and only if } P_{a_{1}}^{x_{1}}=P_{a_{2}}^{x_{2}}=P_{a_{3}}^{x_{3}} \\
& \left(S_{2}\right) \widetilde{S_{b}}\left(P_{a_{1}}^{x_{1}}, P_{a_{2}}^{x_{2}}, P_{a_{3}}^{x_{3}}\right) \underset{\leq}{\leq}\left\{\widetilde{S_{b}}\left(P_{a_{1}}^{x_{1}}, P_{a_{1}}^{x_{1}}, P_{a_{4}}^{x_{4}}\right)+\widetilde{S_{b}}\left(P_{a_{2}}^{x_{2}}, P_{a_{2}}^{x_{2}}, P_{a_{4}}^{x_{4}}\right)\right. \\
& \left.\quad+\widetilde{S_{b}}\left(P_{a_{3}}^{x_{3}}, P_{a_{3}}^{x_{3}}, P_{a_{4}}^{x_{4}}\right)\right\}
\end{aligned}
$$

and the soft set \widetilde{X} with a soft S_{b}-metric on \widetilde{X} is called a soft S_{b}-metric space and is denoted by $\left(\widetilde{X}, S_{b}, E^{*}\right)$.

Example 1. Choose $X=\mathbb{R}=E^{*}$ and $\forall P_{a_{1}}^{x_{1}}, P_{a_{2}}^{x_{2}}, P_{a_{3}}^{x_{3}} \widetilde{\in} S P(\widetilde{X})$, define the function $\widetilde{S_{b}}$ by,
$\widetilde{S_{b}}\left(P_{a_{1}}^{x_{1}}, P_{a_{2}}^{x_{2}}, P_{a_{3}}^{x_{3}}\right)=\left[\left|\overline{x_{1}}-\overline{x_{2}}\right|+\left|\overline{x_{2}}-\overline{x_{3}}\right|+\left|\overline{x_{3}}-\overline{x_{1}}\right|\right]^{2}$
$+\left[\left|\overline{a_{1}}-\overline{a_{2}}\right|+\left|\overline{a_{2}}-\overline{a_{3}}\right|+\left|\overline{a_{3}}-\overline{a_{1}}\right|\right]^{2}$, where $\overline{x_{1}}\left(\lambda^{*}\right)=x_{1}, \forall \lambda^{*} \in E^{*}$.
Then, definitely the condition $\left(S_{1}\right)$ is satisfied. Now, for condition $\left(S_{2}\right)$,

$$
\begin{aligned}
\widetilde{S_{b}}\left(P_{a_{1}}^{x_{1}}, P_{a_{2}}^{x_{2}}, P_{a_{3}}^{x_{3}}\right)= & {\left[\left|\overline{x_{1}}-\overline{x_{2}}\right|+\left|\overline{x_{2}}-\overline{x_{3}}\right|+\left|\overline{x_{3}}-\overline{x_{1}}\right|\right]^{2}+\left[\left|\overline{a_{1}}-\overline{a_{2}}\right|\right.} \\
& \left.+\left|\overline{a_{2}}-\overline{a_{3}}\right|+\left|\overline{a_{3}}-\overline{a_{1}}\right|\right]^{2} \\
\widetilde{\leq} & {\left[\left|\overline{x_{1}}-\overline{x_{4}}\right|+\left|\overline{x_{4}}-\overline{x_{2}}\right|+\left|\overline{x_{2}}-\overline{x_{4}}\right|+\left|\overline{x_{4}}-\overline{x_{3}}\right|\right.} \\
& \left.+\left|\overline{x_{3}}-\overline{x_{4}}\right|+\left|\overline{x_{4}}-\overline{x_{1}}\right|\right]^{2} \\
& +\left[\left|\overline{a_{1}}-\overline{a_{4}}\right|+\left|\overline{a_{4}}-\overline{a_{2}}\right|+\left|\overline{a_{2}}-\overline{a_{4}}\right|+\left|\overline{a_{4}}-\overline{a_{3}}\right|\right. \\
& \left.+\left|\overline{a_{3}}-\overline{a_{4}}\right|+\left|\overline{a_{4}}-\overline{a_{1}}\right|\right]^{2} \\
= & {\left[\overline{2}\left|\overline{x_{1}}-\overline{x_{4}}\right|\right]^{2}+\left[\overline{2}\left|\overline{x_{2}}-\overline{x_{4}}\right|\right]^{2}+\left[\overline{2}\left|\overline{x_{3}}-\overline{x_{4}}\right|\right]^{2} } \\
& +\overline{8}\left|\overline{x_{1}}-\overline{x_{4}}\right|\left|\overline{x_{2}}-\overline{x_{4}}\right|+\overline{8}\left|\overline{x_{2}}-\overline{x_{4}}\right|\left|\overline{x_{3}}-\overline{x_{4}}\right| \\
& +\overline{8}\left|\overline{x_{3}}-\overline{x_{4}}\right|\left|\overline{x_{1}}-\overline{x_{4}}\right|+\left[\overline{2}\left|\overline{a_{1}}-\overline{a_{4}}\right|\right]^{2} \\
& +\left[\overline{2}\left|\overline{a_{2}}-\overline{a_{4}}\right|\right]^{2}+\left[\overline{2}\left|\overline{a_{3}}-\overline{a_{4}}\right|\right]^{2}+\overline{8}\left|\overline{a_{1}}-\overline{a_{4}}\right|\left|\overline{a_{2}}-\overline{a_{4}}\right| \\
& +\overline{8}\left|\overline{a_{2}}-\overline{a_{4}}\right|\left|\overline{a_{3}}-\overline{a_{4}}\right|+\overline{8}\left|\overline{a_{3}}-\overline{a_{4}}\right|\left|\overline{a_{1}}-\overline{a_{4}}\right| \\
\widetilde{\leq} & \overline{3}\left[\left[\overline{2}\left|\overline{x_{1}}-\overline{x_{4}}\right|\right]^{2}+\left[\overline{2}\left|\overline{x_{2}}-\overline{x_{4}}\right|\right]^{2}+\left[\overline{2}\left|\overline{x_{3}}-\overline{x_{4}}\right|\right]^{2}\right. \\
& \left.+\left[\overline{2}\left|\overline{a_{1}}-\overline{a_{4}}\right|\right]^{2}+\left[\overline{2}\left|\overline{a_{2}}-\overline{a_{4}}\right|\right]^{2}+\left[\overline{2}\left|\overline{a_{3}}-\overline{a_{4}}\right|\right]^{2}\right] \\
= & \overline{3}\left[\widetilde{S_{b}}\left(P_{a_{1}}^{x_{1}}, P_{a_{1}}^{x_{1}}, P_{a_{4}}^{x_{4}}\right)+\widetilde{S_{b}}\left(P_{a_{2}}^{x_{2}}, P_{a_{2}}^{x_{2}}, P_{a_{4}}^{x_{4}}\right)+\widetilde{S_{b}}\left(P_{a_{3}}^{x_{3}}, P_{a_{3}}^{x_{3}}, P_{a_{4}}^{x_{4}}\right)\right]
\end{aligned}
$$

Thus, $\left(\tilde{X}, S_{b}, E^{*}\right)$ is a soft S_{b}-metric space with constant $\bar{s}=\overline{3}$.

Note: Every soft S-metric space is a soft S_{b}-metric space with $\bar{s}=1$, but the function $\widetilde{S_{b}}$ may not be a soft S-metric, if we pick
$\overline{x_{1}}=\overline{4}, \overline{x_{2}}=\overline{6}, \overline{x_{3}}=\overline{8}, \overline{x_{4}}=\overline{5}$; and $\overline{a_{1}}=\overline{2}, \overline{a_{2}}=\overline{4}, \overline{a_{3}}=\overline{6}, \overline{a_{4}}=\overline{3}$, then from Example 1 we have $\forall \lambda^{*} \in E^{*}$,

$$
\begin{aligned}
\widetilde{S_{b}}\left(P_{a_{1}}^{x_{1}}, P_{a_{2}}^{x_{2}}, P_{a_{3}}^{x_{3}}\right)\left(\lambda^{*}\right)= & 128 \\
\widetilde{\leq} & {\left[\widetilde{S_{b}}\left(P_{a_{1}}^{x_{1}}, P_{a_{1}}^{x_{1}}, P_{a_{4}}^{x_{4}}\right)+\widetilde{S_{b}}\left(P_{a_{2}}^{x_{2}}, P_{a_{2}}^{x_{2}}, P_{a_{4}}^{x_{4}}\right)\right.} \\
& \left.+\widetilde{S_{b}}\left(P_{a_{3}}^{x_{3}}, P_{a_{3}}^{x_{3}}, P_{a_{4}}^{x_{4}}\right)\right]\left(\lambda^{*}\right) \\
= & 88, \text { which is a contradiction. }
\end{aligned}
$$

Lemma 2.1. In a soft S_{b}-metric space $\left(\widetilde{X}, S_{b}, E^{*}\right)$ with $\bar{s} \simeq \overline{1}$,

$$
\widetilde{S_{b}}\left(P_{a_{1}}^{x_{1}}, P_{a_{1}}^{x_{1}}, P_{a_{2}}^{x_{2}}\right) \widetilde{\leq} \widetilde{S_{b}}\left(P_{a_{2}}^{x_{2}}, P_{a_{2}}^{x_{2}}, P_{a_{1}}^{x_{1}}\right)
$$

Proof. Since, $\left(\widetilde{X}, S_{b}, E^{*}\right)$ is a soft S_{b}-metric space with $\bar{s} \geq \overline{1}$, we have

$$
\begin{aligned}
& \widetilde{S_{b}}\left(P_{a_{1}}^{x_{1}}, P_{a_{1}}^{x_{1}}, P_{a_{2}}^{x_{2}}\right) \widetilde{\leq} \bar{s}\left\{\widetilde{S_{b}}\left(P_{a_{1}}^{x_{1}}, P_{a_{1}}^{x_{1}}, P_{a_{1}}^{x_{1}}\right)+\widetilde{S_{b}}\left(P_{a_{1}}^{x_{1}}, P_{a_{1}}^{x_{1}}, P_{a_{1}}^{x_{1}}\right)\right. \\
&\left.+\widetilde{S_{b}}\left(P_{a_{2}}^{x_{2}}, P_{a_{2}}^{x_{2}}, P_{a_{1}}^{x_{1}}\right)\right\} \\
& \Rightarrow \widetilde{S_{b}}\left(P_{a_{1}}^{x_{1}}, P_{a_{1}}^{x_{1}}, P_{a_{2}}^{x_{2}}\right) \widetilde{\leq} \widetilde{s} \widetilde{S_{b}}\left(P_{a_{2}}^{x_{2}}, P_{a_{2}}^{x_{2}}, P_{a_{1}}^{x_{1}}\right)
\end{aligned}
$$

Definition 2.7. A soft S_{b}-metric space $\left(\widetilde{X}, S_{b}, E^{*}\right)$ with $\bar{s} \geq \overline{1}$ is called symmetric if

$$
\widetilde{S_{b}}\left(P_{a_{1}}^{x_{1}}, P_{a_{1}}^{x_{1}}, P_{a_{2}}^{x_{2}}\right)=\widetilde{S_{b}}\left(P_{a_{2}}^{x_{2}}, P_{a_{2}}^{x_{2}}, P_{a_{1}}^{x_{1}}\right)
$$

Example 2. In Example 1, the function $\widetilde{S_{b}}$ is a symmetric soft S_{b}-metric on \widetilde{X}.
Example 3. Take $X=\mathbb{R}=E^{*}$ and $\forall P_{a_{1}}^{x_{1}}, P_{a_{2}}^{x_{2}}, P_{a_{3}}^{x_{3}} \widetilde{\in} S P(\widetilde{X})$ pick $\widetilde{S_{b}}$ as,

$$
\begin{aligned}
\widetilde{S_{b}}\left(P_{0}^{0}, P_{0}^{0}, P_{1}^{1}\right) & =\overline{3}, \\
\widetilde{S_{b}}\left(P_{1}^{1}, P_{1}^{1}, P_{0}^{0}\right) & =\overline{6}, \\
\widetilde{S_{b}}\left(P_{a_{1}}^{x_{1}}, P_{a_{2}}^{x_{2}}, P_{a_{3}}^{x_{3}}\right) & =\overline{0}, \text { if } P_{a_{1}}^{x_{1}}=P_{a_{2}}^{x_{2}}=P_{a_{3}}^{x_{3}}, \\
\widetilde{S_{b}}\left(P_{a_{1}}^{x_{1}}, P_{a_{2}}^{x_{2}}, P_{a_{3}}^{x_{3}}\right) & =\overline{1}, \text { otherwise, }
\end{aligned}
$$

Then $\widetilde{S_{b}}$ is soft S_{b}-metric, but not symmetric.
Definition 2.8. A sequence $\left\{P_{d, n}^{x_{1}}\right\}$ in a soft S_{b}-metric space (\tilde{X}, S_{b}, E^{*}) is converges to P_{a}^{y} if and only if $\widetilde{S_{b}}\left(P_{d, n}^{x_{1}}, P_{d, n}^{x_{1}}, P_{a}^{y}\right) \rightarrow \overline{0}$ as $n \rightarrow \infty$.
i.e, for each $\widetilde{\varepsilon} \widetilde{\nabla}, \exists k \in \mathbb{N}$ such that $\widetilde{S_{b}}\left(P_{d, n}^{x_{1}}, P_{d, n}^{x_{1}}, P_{a}^{y}\right) \widetilde{<} \widetilde{\varepsilon}, \forall n \geq k$.

It is denoted by $\lim _{n \rightarrow \infty} P_{d, n}^{x_{1}}=P_{a}^{y}$.
Example 4. Take $E^{*}=\left\{d_{1}, d_{2}\right\}$ and $X=\mathbb{R}$.
Pick S_{b} from Example 1 .
Define $\left\{P_{d, n}^{x_{1}}\right\}$ by $P_{d, n}^{x_{1}}\left(d_{i}\right)=\frac{i}{n}, \forall n \in \mathbb{N} ; i=1,2$.
Then $\forall d_{i} \in E^{*} ; i=1,2$,

$$
\begin{aligned}
\widetilde{S_{b}}\left(P_{d, n}^{x_{1}}, P_{d, n}^{x_{1}}, P_{d}^{0}\right)\left(d_{i}\right) & =\widetilde{S_{b}}\left(P_{d}^{\frac{i}{n}}, P_{d}^{\frac{i}{n}}, P_{d}^{0}\right) \\
& =\left[\left|\frac{\bar{i}}{n}-\frac{\bar{i}}{n}\right|+\left|\frac{\bar{i}}{n}-\overline{0}\right|+\left|\overline{0}-\overline{\frac{i}{n}}\right|\right]^{2} \\
& =\left[\left|\frac{i}{n}-\frac{i}{n}\right|+\left|\frac{i}{n}-0\right|+\left|0-\frac{i}{n}\right|\right]^{2} \\
& =4\left[\frac{i}{n}\right]^{2} \\
& \rightarrow 0, \text { as } n \rightarrow \infty
\end{aligned}
$$

Therefore, $\lim _{n \rightarrow \infty} P_{d, n}^{x_{1}}=P_{d}^{0}$
Theorem 2.1. If a sequence $\left\{P_{d, n}^{x_{1}}\right\}$ in a symmetric soft S_{b} - metric space $\left(\widetilde{X}, S_{b}, E^{*}\right)$ converges to P_{a}^{y}, then P_{a}^{y} is unique.
Proof. Let $\left\{P_{d, n}^{x_{1}}\right\} \rightarrow P_{a}^{y}$, as $n \rightarrow \infty$ and $\left\{P_{d, n}^{x_{1}}\right\} \rightarrow P_{b}^{z}$, as $n \rightarrow \infty$, where $P_{a}^{y} \neq P_{b}^{z}$. So, for each $\widetilde{\varepsilon} \widetilde{>} \overline{0}, \exists k_{1}, k_{2} \in \mathbb{N}$ such that,

$$
\widetilde{S_{b}}\left(P_{d, n}^{x_{1}}, P_{d, n}^{x_{1}}, P_{a}^{y}\right) \widetilde{<} \frac{\widetilde{\varepsilon}}{4 \bar{s}}, \forall n \geq k_{1}
$$

and

$$
\widetilde{S_{b}}\left(P_{d, n}^{x_{1}}, P_{d, n}^{x_{1}}, P_{b}^{z}\right) \widetilde{<} \frac{\widetilde{\varepsilon}}{2 \bar{s}}, \forall n \geq k_{2}
$$

If we take $k^{*}=\max \left\{k_{1}, k_{2}\right\}$, then

$$
\widetilde{S_{b}}\left(P_{d, n}^{x_{1}}, P_{d, n}^{x_{1}}, P_{a}^{y}\right) \widetilde{<} \frac{\widetilde{\varepsilon}}{4 \bar{s}}, \forall n \geq k^{*}
$$

and

$$
\widetilde{S_{b}}\left(P_{d, n}^{x_{1}}, P_{d, n}^{x_{1}}, P_{b}^{z}\right) \widetilde{<} \frac{\widetilde{\varepsilon}}{2 \bar{s}}, \forall n \geq k^{*}
$$

Now,

$$
\begin{aligned}
& \widetilde{S_{b}}\left(P_{a}^{y}, P_{a}^{y}, P_{b}^{z}\right)= \bar{s}\left\{2 \widetilde{S_{b}}\left(P_{a}^{y}, P_{a}^{y}, P_{d, n}^{x_{1}}\right)+\widetilde{S_{b}}\left(P_{b}^{z}, P_{b}^{z}, P_{d, n}^{x_{1}}\right)\right\} \\
&= \bar{s}\left\{2 \widetilde{S_{b}}\left(P_{d, n}^{x_{1}}, P_{d, n}^{x_{1}}, P_{a}^{y}\right)+\widetilde{S_{b}}\left(P_{d, n}^{x_{1}}, P_{d, n}^{x_{1}}, P_{b}^{z}\right)\right\} \\
& \text { since } \widetilde{S_{b}} \text { is symmetric } \\
& \widetilde{<} \widetilde{\varepsilon}, \forall n \geq k^{*}
\end{aligned}
$$

Since $\widetilde{\varepsilon}>\overline{0}$ is arbitrary, so $\widetilde{S_{b}}\left(P_{a}^{y}, P_{a}^{y}, P_{b}^{z}\right)=\overline{0}$, i.e., $P_{a}^{y}=P_{b}^{z}$.

Note: If the function S_{b} is not symmetric, then P_{a}^{y} in Theorem 2.1 may not be unique.
In Example 3, P_{a}^{y} is not unique.
Definition 2.9. A sequence $\left\{P_{d, n}^{x_{1}}\right\}$ in a soft S_{b}-metric space $\left(\widetilde{X}, S_{b}, E^{*}\right)$ is Cauchy if $\widetilde{S_{b}}\left(P_{d, n}^{x_{1}}, P_{d, n}^{x_{1}}, P_{d, m}^{x_{1}}\right) \rightarrow \overline{0}$, as $n, m \rightarrow \infty$.
i.e, for each $\widetilde{\varepsilon} \widetilde{>} \overline{0}, \exists k \in \mathbb{N}$ such that $\widetilde{S_{b}}\left(P_{d, n}^{x_{1}}, P_{d, n}^{x_{1}}, P_{d, m}^{x_{1}}\right) \widetilde{<} \widetilde{\varepsilon}, \forall n, m \geq k$.

Example 5. In Example 4, the sequence $\left\{P_{d, n}^{x_{1}}\right\}$, where $P_{d, n}^{x_{1}}\left(d_{i}\right)=\frac{i}{n}, \forall n \in \mathbb{N} ; i=$ 1,2 is a Cauchy sequence, as for all $d_{i} \in E^{*} ; i=1,2$,

$$
\begin{aligned}
\widetilde{S_{b}}\left(P_{d, n}^{x_{1}}, P_{d, n}^{x_{1}}, P_{d, m}^{x_{1}}\right)\left(d_{i}\right) & =\widetilde{S_{b}}\left(P_{d}^{\frac{i}{n}}, P_{d}^{\frac{i}{n}}, P_{d}^{\frac{i}{n}}\right) \\
& =\left[\left|\frac{\bar{i}}{n}-\frac{\bar{i}}{n}\right|+\left|\frac{\bar{i}}{n}-\frac{\bar{i}}{m}\right|+\left|\frac{\bar{i}}{m}-\frac{\bar{i}}{n}\right|\right]^{2} \\
& =\left[\left|\frac{i}{n}-\frac{i}{n}\right|+\left|\frac{i}{n}-\frac{i}{m}\right|+\left|\frac{i}{m}-\frac{i}{n}\right|\right]^{2} \\
& =4\left[\frac{i}{m}-\frac{i}{n}\right]^{2} \\
& \rightarrow 0, \text { as } n, m \rightarrow \infty
\end{aligned}
$$

Theorem 2.2. If a sequence $\left\{P_{d, n}^{x_{1}}\right\}$ in a soft $S_{b^{-}}$metric space ($\left.\widetilde{X}, S_{b}, E^{*}\right)$ is converges to P_{a}^{y}, then $\left\{P_{d, n}^{x_{1}}\right\}$ is a Cauchy sequence.

Proof. As $\lim _{n \rightarrow \infty} P_{d, n}^{x_{1}}=P_{a}^{y}$, so for any $\widetilde{\varepsilon} \widetilde{>} \overline{0}, \exists k_{1}, k_{2} \in \mathbb{N}$ such that,

$$
\widetilde{S_{b}}\left(P_{d, n}^{x_{1}}, P_{d, n}^{x_{1}}, P_{a}^{y}\right) \widetilde{\sim} \frac{\widetilde{\varepsilon}}{4 \bar{s}}, \forall n \geq k_{1}
$$

and

$$
\widetilde{S_{b}}\left(P_{d, m}^{x_{1}}, P_{d, m}^{x_{1}}, P_{a}^{y}\right) \widetilde{<} \frac{\widetilde{\varepsilon}}{2 \bar{s}}, \forall n \geq k_{2}
$$

Set $k^{*}=\max \left\{k_{1}, k_{2}\right\}$
Now,

$$
\begin{aligned}
\widetilde{S_{b}}\left(P_{d, n}^{x_{1}}, P_{d, n}^{x_{1}}, P_{d, m}^{x_{1}}\right) & \widetilde{\leq} \bar{s}\left\{2 \widetilde{S_{b}}\left(P_{d, n}^{x_{1}}, P_{d, n}^{x_{1}}, P_{a}^{y}\right)+\widetilde{S_{b}}\left(P_{d, m}^{x_{1}}, P_{d, m}^{x_{1}}, P_{a}^{y}\right)\right\} \\
& \widetilde{<} \frac{\widetilde{\varepsilon}}{2}+\frac{\widetilde{\varepsilon}}{2}, \forall n, m \geq k^{*} \\
\Rightarrow \widetilde{S_{b}}\left(P_{d, n}^{x_{1}}, P_{d, n}^{x_{1}}, P_{d, m}^{x_{1}}\right) & \widetilde{<} \widetilde{\varepsilon}
\end{aligned}
$$

Therefore, $\left\{P_{d, n}^{x_{1}}\right\}$ is a Cauchy sequence.
Definition 2.10. A soft S_{b}-metric space $\left(\widetilde{X}, S_{b}, E^{*}\right)$ is complete if every Cauchy sequence in \widetilde{X} is converges to some soft point in \widetilde{X}.

Example 6. In Example4, if we take $\left(Y, E^{*}\right) \widetilde{\subset} \widetilde{X}$, where $Y(d)=[0,1], \forall d \in E^{*}$, then $\left(\widetilde{Y}, S_{b}, E^{*}\right)$ is a complete soft S_{b}-metric spaces.

Theorem 2.3. Let $\left(\tilde{X}, S_{b}, E^{*}\right)$ be a complete soft S_{b} - metric space with $\bar{s} \geq \overline{1}$. If f_{φ} and T_{ψ} are two soft mappings on $\left(\widetilde{X}, S_{b}, E^{*}\right)$, content the following condition,

$$
\begin{align*}
\widetilde{S_{b}}\left(f_{\varphi}\left(P_{\lambda^{*}}^{x}\right), f_{\varphi}\left(P_{\lambda^{*}}^{x}\right), T_{\psi}\left(P_{\mu^{*}}^{y}\right)\right) & \widetilde{\leq} \bar{a}\left[\widetilde{S_{b}}\left(P_{\lambda^{*}}^{x}, P_{\lambda^{*}}^{x}, P_{\mu^{*}}^{y}\right)\right] \\
\forall & P_{\lambda^{*}}^{x}, P_{\mu^{*}}^{y} \widetilde{\in} S P(\widetilde{X}), \text { where } \bar{a} \widetilde{\in}\left[\overline{0}, \frac{\overline{1}}{\bar{s}^{2}}\right), \tag{1}
\end{align*}
$$

then f_{φ} and T_{ψ} have a unique common fixed soft point in $\left(\widetilde{X}, S_{b}, E^{*}\right)$.
Proof. Let $P_{\lambda^{*}, 0}^{x} \widetilde{\in} S P(\widetilde{X})$.
Let us consider a sequence of soft points $\left\{P_{\lambda^{*}, n}^{x}\right\}$ in (\tilde{X}, S_{b}, E^{*}) defined as,
$P_{\lambda^{*}, 2 k+1}^{x}=f_{\varphi}\left(P_{\lambda^{*}, 2 k}^{x}\right), P_{\lambda^{*}, 2 k+2}^{x}=T_{\psi}\left(P_{\lambda^{*}, 2 k+1}^{x}\right) ; k=0,1,2, \ldots$
Now,

$$
\begin{aligned}
\widetilde{S_{b}}\left(P_{\lambda^{*}, 2 k+1}^{x}, P_{\lambda^{*}, 2 k+1}^{x}, P_{\lambda^{*}, 2 k+2}^{x}\right) & =\widetilde{S_{b}}\left(f_{\varphi}\left(P_{\lambda^{*}, 2 k}^{x}\right), f_{\varphi}\left(P_{\lambda^{*}, 2 k}^{x}\right), T_{\psi}\left(P_{\lambda^{*}, 2 k+1}^{x}\right)\right) \\
& \widetilde{\leq} \widetilde{S_{b}}\left(P_{\lambda^{*}, 2 k}^{x}, P_{\lambda^{*}, 2 k}^{x}, P_{\lambda^{*}, 2 k+1}^{x}\right)
\end{aligned}
$$

Again,

$$
\begin{aligned}
\widetilde{S_{b}}\left(P_{\lambda^{*}, 2 k+2}^{x}, P_{\lambda^{*}, 2 k+2}^{x}, P_{\lambda^{*}, 2 k+3}^{x}\right) & =\widetilde{S_{b}}\left(T_{\psi}\left(P_{\lambda^{*}, 2 k+1}^{x}\right), T_{\psi}\left(P_{\lambda^{*}, 2 k+1}^{x}\right), f_{\varphi}\left(P_{\lambda^{*}, 2 k+2}^{x}\right)\right) \\
& =\bar{s} \widetilde{S_{b}}\left(f_{\varphi}\left(P_{\lambda^{*}, 2 k+2}^{x}\right), f_{\varphi}\left(P_{\lambda^{*}, 2 k+2}^{x}\right), T_{\psi}\left(P_{\lambda^{*}, 2 k+1}^{x}\right)\right)
\end{aligned}
$$ from Lemma 2.1

$\widetilde{\leq} \bar{a} \bar{s} \widetilde{S_{b}}\left(P_{\lambda^{*}, 2 k+2}^{x}, P_{\lambda^{*}, 2 k+2}^{x}, P_{\lambda^{*}, 2 k+1}^{x}\right)$
$=\bar{a} \bar{s}^{2} \widetilde{S_{b}}\left(P_{\lambda^{*}, 2 k+1}^{x}, P_{\lambda^{*}, 2 k+1}^{x}, P_{\lambda^{*}, 2 k+2}^{x}\right)$, from Lemma 2.1

Therefore,

$$
\begin{aligned}
\widetilde{S_{b}}\left(P_{\lambda^{*}, 2 k+2}^{x}, P_{\lambda^{*}, 2 k+2}^{x}, P_{\lambda^{*}, 2 k+3}^{x}\right) & \widetilde{\leq} \bar{s}^{2} \widetilde{S_{b}}\left(P_{\lambda^{*}, 2 k+1}^{x}, P_{\lambda^{*}, 2 k+1}^{x}, P_{\lambda^{*}, 2 k+2}^{x}\right) \\
& \widetilde{\leq} \bar{a}^{2} \bar{s}^{2} \widetilde{S_{b}}\left(P_{\lambda^{*}, 2 k}^{x}, P_{\lambda^{*}, 2 k}^{x}, P_{\lambda^{*}, 2 k+1}^{x}\right) ; k=0,1,2, \ldots
\end{aligned}
$$

Now, $\forall n \in \mathbb{N}$,

$$
\begin{aligned}
\widetilde{S_{b}}\left(P_{\lambda^{*}, n+1}^{x}, P_{\lambda^{*}, n+1}^{x}, P_{\lambda^{*}, n+2}^{x}\right) & \widetilde{\leq} \bar{a} \widetilde{S_{b}}\left(P_{\lambda^{*}, n}^{x}, P_{\lambda^{*}, n}^{x}, P_{\lambda^{*}, n+1}^{x}\right) \\
& \widetilde{\leq} \bar{a}^{2} \bar{s}^{2} \widetilde{S_{b}}\left(P_{\lambda^{*}, n-1}^{x}, P_{\lambda^{*}, n-1}^{x}, P_{\lambda^{*}, n}^{x}\right) \\
& \vdots \\
& \widetilde{\leq} \bar{a}^{n+1} \bar{s}^{n+1} \widetilde{S_{b}}\left(P_{\lambda^{*}, 0}^{x}, P_{\lambda^{*}, 0}^{x}, P_{\lambda^{*}, 1}^{x}\right)
\end{aligned}
$$

Using Lemma 2.1, for $m>n$,

$$
\begin{aligned}
& \widetilde{S_{b}}\left(P_{\lambda^{*}, n}^{x}, P_{\lambda^{*}, n}^{x}, P_{\lambda^{*}, m}^{x}\right) \widetilde{\leq}\left[2 \widetilde{S_{b}}\left(P_{\lambda^{*}, n}^{x}, P_{\lambda^{*}, n}^{x}, P_{\lambda^{*}, n+1}^{x}\right)+\right. \\
& \left.\bar{s} \widetilde{S_{b}}\left(P_{\lambda^{*}, n+1}^{x}, P_{\lambda^{*}, n+1}^{x}, P_{\lambda^{*}, m}^{x}\right)\right] \\
& \widetilde{\leq}\left[2 \widetilde{S_{b}}\left(P_{\lambda^{*}, n}^{x}, P_{\lambda^{*}, n}^{x}, P_{\lambda^{*}, n+1}^{x}\right)\right. \\
& +\bar{s}\left[2 \widetilde{S_{b}}\left(P_{\lambda^{*}, n+1}^{x}, P_{\lambda^{*}, n+1}^{x}, P_{\lambda^{*}, n+2}^{x}\right)\right. \\
& \left.\left.+\bar{s} \widetilde{S_{b}}\left(P_{\lambda^{*}, n+2}^{x}, P_{\lambda^{*}, n+2}^{x}, P_{\lambda^{*}, m}^{x}\right)\right]\right] \\
& \begin{array}{l}
\vdots \\
\widetilde{\leq} \quad 2 \widetilde{s} \widetilde{S_{b}}\left(P_{\lambda^{*}, n}^{x}, P_{\lambda^{*}, n}^{x}, P_{\lambda^{*}, n+1}^{x}\right)
\end{array} \\
& +2 \bar{s}^{2} \widetilde{S_{b}}\left(P_{\lambda^{*}, n+1}^{x}, P_{\lambda^{*}, n+1}^{x}, P_{\lambda^{*}, n+2}^{x}\right) \\
& +\cdots+2 \bar{s}^{(m-n-1)} \widetilde{S_{b}}\left(P_{\lambda^{*}, m-2}^{x}, P_{\lambda^{*}, m-2}^{x}, P_{\lambda^{*}, m-1}^{x}\right) \\
& +2 \bar{s}^{(m-n)} \widetilde{S_{b}}\left(P_{\lambda^{*}, m-1}^{x}, P_{\lambda^{*}, m-1}^{x}, P_{\lambda^{*}, m}^{x}\right) \\
& \widetilde{\leq} 2 \bar{s} \widetilde{S_{b}}\left(P_{\lambda^{*}, n}^{x}, P_{\lambda^{*}, n}^{x}, P_{\lambda^{*}, n+1}^{x}\right) \\
& +2 \bar{s}^{2} \widetilde{S_{b}}\left(P_{\lambda^{*}, n+1}^{x}, P_{\lambda^{*}, n+1}^{x}, P_{\lambda^{*}, n+2}^{x}\right) \\
& +2 \bar{s}^{3} \widetilde{S_{b}}\left(P_{\lambda^{*}, n+2}^{x}, P_{\lambda^{*}, n+2}^{x}, P_{\lambda^{*}, n+3}^{x}\right) \\
& +2 \bar{s}^{4} \widetilde{S_{b}}\left(P_{\lambda^{*}, n+3}^{x}, P_{\lambda^{*}, n+3}^{x}, P_{\lambda^{*}, n+4}^{x}\right)+\cdots+ \\
& 2 \bar{s}^{(m-n-1)} \widetilde{S_{b}}\left(P_{\lambda^{*}, m-2}^{x}, P_{\lambda^{*}, m-2}^{x}, P_{\lambda^{*}, m-1}^{x}\right) \\
& +2 \bar{s}^{(m-n)} \widetilde{S_{b}}\left(P_{\lambda^{*}, m-1}^{x}, P_{\lambda^{*}, m-1}^{x}, P_{\lambda^{*}, m}^{x}\right)+\cdots \\
& \widetilde{\leq} 2\left[\bar{a}^{n} \bar{s}^{n+1}+\bar{a}^{n+1} \bar{s}^{n+3}+\bar{a}^{n+2} \bar{s}^{n+5}\right. \\
& \left.+\bar{a}^{n+3} \bar{s}^{n+7}+\cdots\right] \widetilde{S_{b}}\left(P_{\lambda^{*}, 0}^{x}, P_{\lambda^{*}, 0}^{x}, P_{\lambda^{*}, 1}^{x}\right) \\
& \widetilde{\leq} 2 \bar{a}^{n} \bar{s}^{n+1}\left[1+\left(\bar{a} \bar{s}^{2}\right)+\left(\bar{a} \bar{s}^{2}\right)^{2}\right. \\
& \left.+\left(\overline{a_{1}} \bar{s}^{2}\right)^{3}+\cdots\right] \widetilde{S_{b}}\left(P_{\lambda^{*}, 0}^{x}, P_{\lambda^{*}, 0}^{x}, P_{\lambda^{*}, 1}^{x}\right) \\
& \widetilde{\leq} 2 \frac{\bar{a}^{n} \bar{s}^{n+1}}{1-\left(\bar{a} \bar{s}^{2}\right)} \widetilde{S_{b}}\left(P_{\lambda^{*}, 0}^{x}, P_{\lambda^{*}, 0}^{x}, P_{\lambda^{*}, 1}^{x}\right) \\
& \rightarrow \overline{0}, \text { as } n \rightarrow \infty\left[\text { since, } \overline{a_{1}} \widetilde{\in}\left[\overline{0}, \overline{\frac{1}{\bar{s}^{2}}}\right)\right] .
\end{aligned}
$$

Therefore, $\left\{P_{\lambda^{*}, n}^{x}\right\}$ is a Cauchy sequence.
Since, $\left(\widetilde{X}, S_{b}, E^{*}\right)$ is a complete soft S_{b}-metric space, so $\exists P_{\alpha}^{t} \widetilde{\in} S P(\widetilde{X})$ such that $P_{\lambda^{*}, n}^{x} \rightarrow P_{\alpha}^{t}$, as $n \rightarrow \infty$.

Now,

$$
\begin{aligned}
\widetilde{S_{b}}\left(f_{\varphi}\left(P_{\alpha}^{t}\right), f_{\varphi}\left(P_{\alpha}^{t}\right), P_{\alpha}^{t}\right) \widetilde{ } & 2 \widetilde{S_{b}}\left(f_{\varphi}\left(P_{\alpha}^{t}\right), f_{\varphi}\left(P_{\alpha}^{t}\right), T_{\psi}\left(P_{\lambda^{*}, 2 k+1}^{x}\right)\right) \\
& +\widetilde{S_{b}}\left(P_{\alpha}^{t}, P_{\alpha}^{t}, T_{\psi}\left(P_{\lambda^{*}, 2 k+1}^{x}\right)\right) \\
\widetilde{\leq} & 2 \bar{a} \widetilde{S_{b}}\left(P_{\alpha}^{t}, P_{\alpha}^{t}, P_{\lambda^{*}, 2 k+1}^{x}\right)+\widetilde{S_{b}}\left(P_{\alpha}^{t}, P_{\alpha}^{t}, P_{\lambda^{*}, 2 k+2}^{x}\right)
\end{aligned}
$$

Taking $k \rightarrow \infty$,

$$
\begin{aligned}
\widetilde{S_{b}}\left(f_{\varphi}\left(P_{\alpha}^{t}\right), f_{\varphi}\left(P_{\alpha}^{t}\right), P_{\alpha}^{t}\right) & \widetilde{\leq} 2 \bar{a} \widetilde{S_{b}}\left(P_{\alpha}^{t}, P_{\alpha}^{t}, P_{\alpha}^{t}\right)+\widetilde{S_{b}}\left(P_{\alpha}^{t}, P_{\alpha}^{t}, P_{\alpha}^{t}\right) \\
\Rightarrow \widetilde{S_{b}}\left(f_{\varphi}\left(P_{\alpha}^{t}\right), f_{\varphi}\left(P_{\alpha}^{t}\right), P_{\alpha}^{t}\right) & \widetilde{\leq} \overline{0} \\
\Rightarrow f_{\varphi}\left(P_{\alpha}^{t}\right) & =P_{\alpha}^{t}
\end{aligned}
$$

Again,

$$
\begin{aligned}
\widetilde{S_{b}}\left(P_{\alpha}^{t}, P_{\alpha}^{t}, T_{\psi}\left(P_{\alpha}^{t}\right)\right) & =\widetilde{S_{b}}\left(f_{\varphi}\left(P_{\alpha}^{t}\right), f_{\varphi}\left(P_{\alpha}^{t}\right), T_{\psi}\left(P_{\alpha}^{t}\right)\right) \\
& \widetilde{\leq} \bar{a} \widetilde{S_{b}}\left(P_{\alpha}^{t}, P_{\alpha}^{t}, P_{\alpha}^{t}\right) \\
& =\overline{0} \\
\Rightarrow T_{\psi}\left(P_{\alpha}^{t}\right) & =P_{\alpha}^{t}
\end{aligned}
$$

Thus, $f_{\varphi}\left(P_{\alpha}^{t}\right)=T_{\psi}\left(P_{\alpha}^{t}\right)=P_{\alpha}^{t}$.
i.e., f_{φ} and T_{ψ} have common fixed soft point.

To assert uniqueness, let $P_{\beta}^{t^{*}}\left(\neq P_{\alpha}^{t}\right) \widetilde{\in} S P(\widetilde{X})$ be another fixed soft point of f_{φ} and T_{ψ}.
Now,

$$
\begin{aligned}
\widetilde{S_{b}}\left(P_{\alpha}^{t}, P_{\alpha}^{t}, P_{\beta}^{t^{*}}\right) & =\widetilde{S_{b}}\left(f_{\varphi}\left(P_{\alpha}^{t}\right), f_{\varphi}\left(P_{\alpha}^{t}\right), T_{\psi}\left(P_{\beta}^{t^{*}}\right)\right) \\
& =\bar{a} \widetilde{S_{b}}\left(P_{\alpha}^{t}, P_{\alpha}^{t}, P_{\beta}^{t^{*}}\right) \\
\Rightarrow \widetilde{S_{b}}\left(P_{\alpha}^{t}, P_{\alpha}^{t}, P_{\beta}^{t^{*}}\right) & =\overline{0} \\
\Rightarrow P_{\alpha}^{t} & =P_{\beta}^{t^{*}}
\end{aligned}
$$

Therefore, f_{φ} and T_{ψ} have unique common fixed soft point in $\left(\widetilde{X}, S_{b}, E^{*}\right)$.
Corollary 2.0. Let $\left(\tilde{X}, S_{b}, E^{*}\right)$ be a complete soft S_{b} - metric space with $\bar{s} \geq \overline{1}$. If h_{γ} is a soft mappings on $\left(\tilde{X}, S_{b}, E^{*}\right)$, content the following condition,

$$
\begin{align*}
\widetilde{S_{b}}\left(h_{\gamma}\left(P_{\lambda^{*}}^{x}\right), h_{\gamma}\left(P_{\lambda^{*}}^{x}\right), h_{\gamma}\left(P_{\mu^{*}}^{y}\right)\right) & \widetilde{\leq} \bar{b}\left[\widetilde{S_{b}}\left(P_{\lambda^{*}}^{x}, P_{\lambda^{*}}^{x}, P_{\mu^{*}}^{y}\right)\right] \\
& \forall P_{\lambda^{*}}^{x}, P_{\mu^{*}}^{y} \widetilde{\in} S P(\widetilde{X}) \text {, where } \bar{b} \widetilde{\in}\left[\overline{0}, \overline{\frac{1}{\bar{s}^{2}}}\right) \tag{2}
\end{align*}
$$

then h_{γ} has a unique fixed soft point in $\left(\widetilde{X}, S_{b}, E^{*}\right)$.
Proof. Choose $f_{\varphi}=h_{\gamma}=T_{\psi}$ and $\bar{a}=\bar{b}$. Then from Theorem 2.3, we get the result.
2.1. Application. Let $E^{*}=[-2, \infty)$ and $\widetilde{X}\left(\lambda^{*}\right)=\left[-\frac{1}{4}, \frac{1}{4}\right], \forall \lambda^{*} \in E^{*}$.

For all $P_{a_{1}}^{x_{1}}, P_{a_{2}}^{x_{2}}, P_{a_{3}}^{x_{3}} \widetilde{\in} S P(\widetilde{X})$, define $\widetilde{S_{b}}$ as,
$\widetilde{S_{b}}\left(P_{a_{1}}^{x_{1}}, P_{a_{2}}^{x_{2}}, P_{a_{3}}^{x_{3}}\right)=\left[\left|\overline{x_{1}}-\overline{x_{2}}\right|+\left|\overline{x_{2}}-\overline{x_{3}}\right|+\left|\overline{x_{3}}-\overline{x_{1}}\right|\right]^{2}$
$+\left[\left|\overline{a_{1}}-\overline{a_{2}}\right|+\left|\overline{a_{2}}-\overline{a_{3}}\right|+\left|\overline{a_{3}}-\overline{a_{1}}\right|\right]^{2}$, where $\overline{x_{1}}\left(\lambda^{*}\right)=x_{1}, \forall \lambda^{*} \in E^{*}$.
Then $\left(\tilde{X}, S_{b}, E^{*}\right)$ is a soft S_{b}-metric space.
Now, we define $\varphi:[-2, \infty) \rightarrow[-2, \infty)$ and $f:\left[-\frac{1}{4}, \frac{1}{4}\right] \rightarrow\left[-\frac{1}{4}, \frac{1}{4}\right]$ by $\varphi(x)=\frac{x}{2}-1, \forall x \in[-2, \infty]$ and $f(x)=x^{2}, \forall x \in\left[-\frac{1}{4}, \frac{1}{4}\right]$ respectively.

Let $f_{\varphi}:\left(\widetilde{X}, S_{b}, E^{*}\right) \rightarrow\left(\widetilde{X}, S_{b}, E^{*}\right)$ be such that $f_{\varphi}\left(P_{\lambda^{*}}^{x}\right)=P_{\varphi\left(\lambda^{*}\right)}^{f(x)}$.
Now,
$\widetilde{S_{b}}\left(f_{\varphi}\left(P_{a_{1}}^{x_{1}}\right), f_{\varphi}\left(P_{a_{2}}^{x_{2}}\right), f_{\varphi}\left(P_{a_{3}}^{x_{3}}\right)\right)\left(\lambda^{*}\right)$
$=\left[\left|\overline{f\left(x_{1}\right)}\left(\lambda^{*}\right)-\overline{f\left(x_{2}\right)}\left(\lambda^{*}\right)\right|+\left|\overline{f\left(x_{2}\right)}\left(\lambda^{*}\right)-\overline{f\left(x_{3}\right)}\left(\lambda^{*}\right)\right|\right.$
$\left.+\left|\overline{f\left(x_{3}\right)}\left(\lambda^{*}\right)-\overline{f\left(x_{1}\right)}\left(\lambda^{*}\right)\right|\right]^{2}+\left[\left|\overline{\varphi\left(a_{1}\right)}\left(\lambda^{*}\right)-\overline{\varphi\left(a_{2}\right)}\left(\lambda^{*}\right)\right|\right.$
$\left.+\left|\overline{\varphi\left(a_{2}\right)}\left(\lambda^{*}\right)-\overline{\varphi\left(a_{3}\right)}\left(\lambda^{*}\right)\right|+\left|\overline{\varphi\left(a_{3}\right)}\left(\lambda^{*}\right)-\overline{\varphi\left(a_{1}\right)}\left(\lambda^{*}\right)\right|\right]^{2}$
$=\left[\left|f\left(x_{1}\right)-f\left(x_{2}\right)\right|+\left|f\left(x_{2}\right)-f\left(x_{3}\right)\right|+\left|f\left(x_{3}\right)-f\left(x_{1}\right)\right|\right]^{2}$
$+\left[\left|\varphi\left(a_{1}\right)-\varphi\left(a_{2}\right)\right|+\left|\varphi\left(a_{2}\right)-\varphi\left(a_{3}\right)\right|+\left|\varphi\left(a_{3}\right)-\varphi\left(a_{1}\right)\right|\right]^{2},\left(\right.$ since $\left.\overline{x_{1}}\left(\lambda^{*}\right)=x_{1}\right)$
$=\left[\left|x_{1}^{2}-x_{2}^{2}\right|+\left|x_{2}^{2}-x_{3}^{2}\right|+\left|x_{3}^{2}-x_{1}^{2}\right|\right]^{2}+\left[\left|\frac{a_{1}}{2}-\frac{a_{2}}{2}\right|+\left|\frac{a_{2}}{2}-\frac{a_{3}}{2}\right|+\left|\frac{a_{3}}{2}-\frac{a_{1}}{2}\right|\right]^{2}$
$\widetilde{s}_{\frac{1}{4}}\left[\left[\left|x_{1}-x_{2}\right|+\left|x_{2}-x_{3}\right|+\left|x_{3}-x_{1}\right|\right]^{2}+\left[\left|a_{1}-a_{2}\right|+\left|a_{2}-a_{3}\right|\right.\right.$
$\left.\left.+\left|a_{3}-a_{1}\right|\right]^{2}\right]$
$=\frac{\overline{1}}{\overline{4}}\left[\left[\left|\overline{x_{1}}\left(\lambda^{*}\right)-\overline{x_{2}}\left(\lambda^{*}\right)\right|+\left|\overline{x_{2}}\left(\lambda^{*}\right)-\overline{x_{3}}\left(\lambda^{*}\right)\right|+\left|\overline{x_{3}}\left(\lambda^{*}\right)-\overline{x_{1}}\left(\lambda^{*}\right)\right|\right]^{2}\right.$
$\left.+\left[\left|\overline{a_{1}}\left(\lambda^{*}\right)-\overline{a_{2}}\left(\lambda^{*}\right)\right|+\left|\overline{a_{2}}\left(\lambda^{*}\right)-\overline{a_{3}}\left(\lambda^{*}\right)\right|+\left|\overline{a_{3}}\left(\lambda^{*}\right)-\overline{a_{1}}\left(\lambda^{*}\right)\right|\right]^{2}\right]$,
(since $\left.\overline{x_{1}}\left(\lambda^{*}\right)=x_{1}\right)$

$$
\Rightarrow \widetilde{S_{b}}\left(f_{\varphi}\left(P_{a_{1}}^{x_{1}}\right), f_{\varphi}\left(P_{a_{2}}^{x_{2}}\right), f_{\varphi}\left(P_{a_{3}}^{x_{3}}\right)\right)\left(\lambda^{*}\right) \widetilde{\leq} \overline{\overline{1}} \widetilde{S_{b}}\left(P_{a_{1}}^{x_{1}}, P_{a_{2}}^{x_{2}}, P_{a_{3}}^{x_{3}}\right)\left(\lambda^{*}\right)
$$

Since this is true for all $\lambda^{*} \in E^{*}$, so

$$
\widetilde{S_{b}}\left(f_{\varphi}\left(P_{a_{1}}^{x_{1}}\right), f_{\varphi}\left(P_{a_{2}}^{x_{2}}\right), f_{\varphi}\left(P_{a_{3}}^{x_{3}}\right)\right) \widetilde{\leq} \frac{\overline{1}}{\overline{4}} \widetilde{S_{b}}\left(P_{a_{1}}^{x_{1}}, P_{a_{2}}^{x_{2}}, P_{a_{3}}^{x_{3}}\right)
$$

Therefore, $\left(\widetilde{X}, S_{b}, E^{*}\right)$ is a complete soft S_{b}-metric space.
Also the condition,
$\widetilde{S_{b}}\left(f_{\varphi}\left(P_{a_{1}}^{x_{1}}\right), f_{\varphi}\left(P_{a_{2}}^{x_{2}}\right), f_{\varphi}\left(P_{a_{3}}^{x_{3}}\right)\right) \widetilde{\leq} \widetilde{b} \widetilde{S_{b}}\left(P_{a_{1}}^{x_{1}}, P_{a_{2}}^{x_{2}}, P_{a_{3}}^{x_{3}}\right), \forall P_{a_{1}}^{x_{1}}, P_{a_{2}}^{x_{2}}, P_{a_{3}}^{x_{3}} \widetilde{\in} S P(\widetilde{X})$, is satisfied for $\bar{b}\left(=\frac{\overline{1}}{\overline{4}}\right) \widetilde{\in} \mathbb{R}\left(E^{*}\right)$.

Thus, all the conditions of Corollary 2.0 are contented. So, from Corollary 2.0, we can say that f_{φ} has a unique fixed soft point.
Now, $f_{\varphi}\left(P_{-2}^{0}\right)=P_{\left(\frac{-2}{2}-1\right)}^{0^{2}}=P_{-2}^{0}$.
Hence, P_{-2}^{0} is a fixed soft point.

3. Conclusions

In this study, we have initiated soft S_{b}-metric space, and some elementary behaviours are investigated. A significant fixed point result on soft S_{b}-metric spaces is established with an application. We expect that this modern thought will favour researchers in enhancing and generalizing the theory of soft metric spaces and related fields.

References

[1] A. Kharal and B. Ahmad, Mappings on soft classes, New Math. Nat. Comput., 7, 3, 471-481, 2021.
[2] C. G. Aras, S. Bayramov and V. Cafarli, A Study on Soft S-Metric Spaces, Commun. Math. \& Appl., 9, 4, 713-723, 2018.
[3] C. G. Aras, S. Bayramov and V. Cafarli, Fixed Point Theorems on Soft S-Metric Spaces, Commun. Math. \& Appl., 9, 4, 725-735, 2018.
[4] D. Molodtsov, Soft Set Theory-First Results, Comput. Math. Appl., 37, 19-31, 1999.
[5] D. Wardowski, On A Soft Mapping And Its Fixed Points, Fixed Point Theory Appl., 182, 1-11, 2013.
[6] D. A. Kadhim, M. K. Abd Al-Rahem and Z. H. Abood, Convergence and its Properties on Soft S_{b} - Metric Spaces, J. Phys. Conf. Ser, 1818, 1-9, 2021.
[7] L. A. Zadeh, Fuzzy Sets, Inform. Control, 8, 103-112, 1965.
[8] M. Mursaleen and F. Basar, Sequence Spaces: Topics in Modern Summability Theory, Series: Mathematics and Its Applications, CRC Press/Taylor \& Francis Group, Boca Ratan, London, New York, 2020.
[9] N. Y. Ozgur and N. Tas, Some fixed point theorems on S-metric spaces, Mat. Vesnik, 69, 1, 39-52, 2017.
[10] P. K. Maji, R. Biswas and A. R. Roy, Soft set theory, Comput. Math. Appl., 45, 555-562, 2003.
[11] P. Majumdar and S. K. Samanta, On soft mappings, Comput. Math. Appl., 60, 2666-2672, 2010.
[12] S. Sedghi, N. Shobe and A. Aliouche, A generalization of fixed point theorem in S-metric spaces, Mat. Vesnik, 64, 258-266, 2012.
[13] S. Das and S. K. Samanta, Soft Real Set, Soft Real Number And Their Properties, J. Fuzzy Math., 20, 3, 551-576, 2012.
[14] S. Bayramov and C. Gunduz, Soft locally compact spaces and soft paracompact spaces, J. Math. System Sci., 3, 122-130, 2013.
[15] S. Das and S. K. Samanta, Soft metric, Ann. Fuzzy Math. Inform., 6, 1, 77-94, 2013.
[16] S. Sedghi and N. V. Dung, Fixed point theorem on S-metric spaces, Mat. Vesnik, 66, 1, 113-124, 2014.
[17] S. Sedghi, A. Gholidahneh, T. Došenović, J. Esfahani and S. Radenović, Common fixed point of four maps in S_{b}-metric spaces, J. Linear Topol. Algebra, 5, 2, 93-104, 2016.
[18] Sk. Nazmul, Some properties of soft groups and fuzzy soft groups under soft mappings, Palest. J. Math., 6, 2, 1-11, 2017.
[19] T. Mitra, Some Common Fixed Point Theorems in S-Metric Space, International Journal of Innovative Research in Science, Engineering and Technology, 4,9, 9039-9044, 2015.

Sk. Nazmul
Department of Mathematics, Kazi Nazrul University, Asansol, Paschim Bardwan-713340, West Bengal, India

Email address: sk.nazmul-math@yahoo.in

Utpal Badyakar (Corresponding Author)
Department of Mathematics, Bankura Sammilani College, Bankura-722102, West BenGAL, India

Email address: ubmath16@gmail.com

[^0]: 2010 Mathematics Subject Classification. 47H10, 54E50, 06D72.
 Key words and phrases. soft set, soft point, soft mapping, soft S_{b}-metric spaces, fixed soft point.

 Submitted April 1, 2023.

