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ON THE EXISTENCE OF GLOBAL STRONG SOLUTIONS TO

1D BILAYER SHALLOW WATER MODEL.

ROAMBA BRAHIMA1,2,ZONGO JULIEN1, BAMOGO MOHAMED BASSIROU1, ZONGO

YACOUBA3 AND ZABSONRE JEAN DE DIEU1,2

Abstract. Our study focuses on 1D viscous bilayer shallow water model.
The model considered is represented by two superposed immiscible fluids with

different physical properties. Each layer is governed by the shallow water

equations in one dimension. A regularized model of the considered model has
been the subject of some recent studies. Our contribution is to extend the

results of the work carried out in [Nonlinear Analysis, vol (14)2, 1216-1124,

(2013)] by proving the existence of global strong solutions of the considered
model.

1. Introduction

This paper is devoted to the existence of global strong solutions to 1D bilayer
shallow water model. The model studied is as follows:

∂th1 + ∂x(h1u1) = 0, (1.1)

∂t(h1u1) + ∂x(h1u1
2)− ν1∂x(h1∂xu1) + grh1∂xh2 + gh1∂xh1 = 0, (1.2)

∂th2 + ∂x(h2u2) = 0, (1.3)

∂t(h2u2) + ∂x(h2u2
2)− ν2∂x(h2∂xu2) + grh2∂xh1 + gh2∂xh2 = 0, (1.4)

where (t, x) ∈ (0, T )×Ω, with Ω a periodic domain in one dimension. The index
1 corresponds to the layer located below and the index 2 the one located at the top.
Thus we note h1, h2, u1 and u2 respectively the water heights for each layer and
velocity for each layer. The constant g > 0 is the gravity number and ν1 and ν2
are the kinematic viscosity. We also note ρ1, ρ2 the densities associated with each
layer, then we define the quotient of densities by r = ρ2

ρ1
< 1.
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Figure 1: Notation for the bilayer model

This work takes its inspiration from the work done in [1]. Note that in [1], the au-
thors showed the existence of global strong solutions of a regularized model of the
model studied in this paper by adding regularizing terms at the level of the momen-

tums equations of each layer of the form ε
β νi∂x(h

β
i ∂xui)) with β belongs to

(
0, 1

2

)
and ε is a small parameter. Also the studied model is associated with the initial
energies:

E0 =
1

2

∫
Ω

h10,ε|v10,ε|2+
g(1− r)

2

∫
Ω

h20,ε|v20,ε|2+
rg

2

∫
Ω

|h10,ε+h20,ε|2 ≤ Cε2 ≤ C

and

F0 =
1

2

∫
Ω

∣∣∣∣ν1 ∂xφε(h10,ε)√
h10,ε

∣∣∣∣2 + 1

2

∫
Ω

∣∣∣∣ν2 ∂xφε(h20,ε)√
h20,ε

∣∣∣∣2 ≤ Cε2 ≤ C.

But we noticed that when ε tends towards 0, they obtain the existence of a strong
solution of the stationary model. In this paper we study the evolutionary model of
the model studied in [1] when ε tends towards 0.
As a reminder, it should be noted that the authors in [1] have proven that the reg-
ularized approximate system verifies the BD entropy, which gives the lower bound
for the water heights. This allows them to have the existence of global strong solu-
tions for the approximate system by using the regularity theorem for smooth data
given in [2] and manages to pass to the limit. The mathematical entropy named BD
entropy was introduced firstly in [3]. This work followed an improvement in [4, 5]
where the authors extended the result to the more general Navier-Stokes equations
with an algebraic relationship between the coefficients of shear and viscosity in
bulk. We also note that many researchers have used this entropy in their work,
we can mention among others [6, 8, 9, 10] who thanks to this entropy have proven
the existence of global weak solutions for shallow water and viscous compressible
Navier-Stokes equations.

Several works have been carried out on the existence of strong solutions in shal-
low water and Navier-Stokes equations. Other examples include [8] where the au-
thors have proven the existence of strong solutions for one-dimensional compressible
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Navier-Stokes equations under the hypothesis that the initial datum is smooth and
the initial density is bounded below by a positive constant. In [1] the authors
proved according to the ideas developed in [8], the existence of strong solutions of
one dimensional regularized bilayer model. The existence of global strong solutions
to the Cauchy problem for a shallow water system in dimension N ≥ 2 has been
proven in [11]. In [12] the authors proved the existence of global strong solutions
for the compressible Navier-Stokes equations with degenerate viscosity coefficient
in 1D. The key ingredient of their proof resulting from the control of a new ef-
fective velocity (see [12]) in L∞((0, T );L∞(R)) and this control allowed them to
have control of the inverse of the density 1/ρ in the same space. Our result draws
inspiration from their work.

Our contribution to this work is to extend the results obtained by the authors
in [1]. Indeed the authors have noted the existence of global strong solutions of the
regularized model using a test function depending on the unknown. For our part,
we prove the existence of global strong solutions of the studied model in [1] when the
regularizing terms will tend towards zero by following the approach proposed in [12].

In section 2 we will give the theorem of the existence of global strong solutions
of bilayer shallow water model in one dimension. To prove this result of existence,
we have to use some intermediary results to achieve it, which will be the subject of
the third section. We will give the proof of some results in the last section.

2. Main results

In this section we give the initial data, the initial energy associated with the
system (1.1)− (1.4) and the existence of strong solutions theorem of the model.
Consider the initial data,

h10 = h1|t=0, h20 = h2|t=0, u10 = u1|t=0 and u20 = u2|t=0

testing the following assumptions

0 < c10 ≤ h10 ≤ c̄10 , 0 < c20 ≤ h20 ≤ c̄20

h10 ∈ H1(Ω), u10 ∈ H1(Ω), h20 ∈ H1(Ω), u20 ∈ H1(Ω)
(2.1)

where c10 , c20 , c̄10 and c̄20 are some positive constants. We also assume that
the viscosities ν1 and ν2 verify the following relation:

2ν1
ν1 + ν2

≥ r,
2ν2

ν1 + ν2
≥ r with 0 < r < 1. (2.2)

We further assume that the following quantities are finished:

1

2

∫
Ω

[
h10 |u10 |2 + h20 |u20 |2 + g(1− r)|h10 |2 + g(1− r)|h20 |2

+rg|h10 + h20 |2
]
dx ≤ C1, (2.3)

1

2

∫
Ω

[
h10 |u10 + ∂xφ(h10)|2 + h20 |u20 + ∂xφ(h20)|2

]
dx ≤ C2 (2.4)

where C1, C2 are real constants and φ(hi) = νi log hi, i = {1, 2}.
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Theorem 2.1. The system (1.1) − (1.4) admits a strong solution (h1, h2, u1, u2)
such that

h1 is bounded in L∞(0, T ;H1(Ω)),

h2 is bounded in L∞(0, T ;H1(Ω)),

u1 is bounded in L∞(0, T ;H1(Ω)) ∩ L2(0, T ;H2(Ω)),

u2 is bounded in L∞(0, T ;H1(Ω)) ∩ L2(0, T ;H2(Ω)),

∂tu1 is bounded in L2(0, T ;L2(Ω)),

∂tu2 is bounded in L2(0, T ;L2(Ω)).

(2.5)

Moreover for every T > 0, there exists constants α1(T ), α2(T ), β1(T ) and β2(T )
such that:

0 < α1(T ) ≤ h1(t, x) ≤ β1(T ), ∀(t, x) ∈ (0, T )× Ω,

0 < α2(T ) ≤ h2(t, x) ≤ β2(T ), ∀(t, x) ∈ (0, T )× Ω.
(2.6)

In the following section, we will give some results that will help prove the previous
theorem.

3. Energies inequalties

We start this section with the energy equality associated with the system (1.1)−
(1.4)

Proposition 3.1. For (h1, h2, u1, u2) smooth solution of the system (1.1) − (1.4)
with boundary conditions (2.1),(2.2) and (2.3), then the following classical equality
holds:

1

2

d

dt

∫
Ω

[
h1|u1|2 + h2|u2|2 + g(1− r)|h1|2 + g(1− r)|h2|2 + rg|h1 + h2|2

]
dx

+ν1

∫
Ω

h1|∂xu1|2 + ν2

∫
Ω

h2|∂xu2|2dx = 0. (3.1)

From this energy estimate (3.1), we deduce the following result:

Corollary 3.2. Let (h1, h2, u1, u2) be a solution of model (1.1) − (1.4). We have
the following uniform bounds:√

h1u1 is bounded in L∞(0, T ;L2(Ω)),
√
h2u2 is bounded in L∞(0, T ;L2(Ω)),

h1 is bounded in L∞(0, T ;L2(Ω)), h2 is bounded in L∞(0, T ;L2(Ω)),√
h1∂xu1 is bounded in L2(0, T ;L2(Ω)),

√
h2∂xu2 is bounded in L2(0, T ;L2(Ω)).

We need additional estimates on the unknown h1, h2, u1 and u2. The following
proposition will allow us to have some of them.
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Proposition 3.3. Let (h1, h2, u1, u2) be a smooth solution of (1.1)− (1.4), then the
following mathematical BD entropy inequality holds:

1

2

d

dt

∫
Ω

h1|u1 + ∂xφ(h1)|2dx+
1

2

d

dt

∫
Ω

h2|u2 + ∂xφ(h2)|2dx

+
1

2
g
d

dt

∫
Ω

[
(1− r)|h1|2 + (1− r)|h2|2 + r|h1 + h2|2

]
dx

+g(ν1 −
1

2
r(ν1 + ν2)

∫
Ω

|∂xh1|2 + g(ν2 −
1

2
r(ν1 + ν2)

∫
Ω

|∂xh2|2 ≤ 0. (3.2)

The BD mathematical entropy inequality allows us to find the estimates given
in the following Corrolary.

Corollary 3.4. Let (h1, h2, u1, u2) be a solution of model (1.1)− (1.4) verifying the
inequality given in (3.2). We have the following uniform bounds:

h1 is bounded in L∞(0, T ;H1(Ω)), h2 is bounded in L∞(0, T ;H1(Ω)),

u1 is bounded in L∞(0, T ;H1(Ω)), u2 is bounded in L∞(0, T ;H1(Ω)),

∂xh1 is bounded in L2(0, T ;L2(Ω)), ∂xh2 is bounded in L2(0, T ;L2(Ω)),

∂x
√
h1 is bounded in L∞(0, T ;L2(Ω)), ∂x

√
h2 is bounded in L∞(0, T ;L2(Ω)).

Remark 3.5. The sobolev embedding allows us to deduce that:

hi is bounded in L∞(0, T ;L∞(Ω)),

which leads to the existence of a constant β̄i(T ) ∀T > 0 such that:

0 ≤ hi(t, x) ≤ β̄i(T ), ∀(t, x) ∈ (0, T )× Ω; i = {1, 2}.

This assures us the upper bound of the heights in the theorem. To lower limit
the height, we need the following result.

Lemma 3.6. ∀ε > 0 small enough, we have for γ = 1
2 + ε :

hγ
i ui is bounded in L2(0, T ;L∞(Ω)), i = {1, 2}.

Proposition 3.7. For (h1, h2, u1, u2) solution of the system (1.1)− (1.4), we have
the following estimates:

u1 is bounded in L2(0, T ;H2(Ω)), ∂tu1 is bounded in L2(0, T ;L2(Ω)),

u2 is bounded in L2(0, T ;H2(Ω)), ∂tu2 is bounded in L2(0, T ;L2(Ω)).

Lemma 3.8. For i = {1, 2}, we have the following bounds:

vi = ui + νi∂xφ(hi) is bounded in L∞(0, T );L∞(Ω)).

For every T > 0, there exists a continuous fonction α and c > 0 such that for all
T < T0, we have:

hi(t, x) ≥ α(T ) ≥ c > 0.

The proofs of the Proposition 3.1 , Proposition 3.3, Proposition 3.7 ,
Lemma 3.6 ,Lemma 3.8 and the Remark 3.5 assures us the proof of the
theorem.
In the next section, we will give the proofs of the above Propositions.
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4. Appendix

Proof. Proposition 3.1

We multiply the momentum equations (1.2) and (1.4) respectively by u1 and u2

and we obtain:∫
Ω

[
(∂th1u1) + ∂x(h1u

2
1)

]
u1dx+ g

∫
Ω

[
h1∂xh1 + rh1∂xh2

]
u1dx

−ν1

∫
Ω

u1∂x(h1∂xu1)dx = 0,

and ∫
Ω

[
(∂th2u2) + ∂x(h2u

2
2)

]
u2dx+ g

∫
Ω

[
h2∂xh2 + rh2∂xh1

]
u2dx

−ν2

∫
Ω

u2∂x(h2∂xu2)dx = 0.

Look at the terms :∫
Ω

[
(∂th1u1) + ∂x(h1u

2
1)

]
u1dx =

1

2

d

dt

∫
Ω

h1|u1|2dx, (4.1)∫
Ω

[
(∂th2u2) + ∂x(h2u

2
2)

]
u2dx =

1

2

d

dt

∫
Ω

h2|u2|2dx. (4.2)

Furthermore,

g

∫
Ω

[
h1u1∂xh1 + h2u2∂xh2 + r

(
h1u1∂xh2 + h2u2∂xh1

)]
dx

=
1

2
g(1− r)

d

dt

∫
Ω

|h1|2dx+
1

2
g(1− r)

d

dt

∫
Ω

|h2|2dx

+
1

2
rg

d

dt

∫
Ω

|h1 + h2|2dx. (4.3)

We have also

−ν1

∫
Ω

u1∂x(h1∂xu1)dx− ν2

∫
Ω

u2∂x(h2∂xu2)

= ν1

∫
Ω

h1|∂xu1|2 + ν2

∫
Ω

h2|∂xu2|2dx. (4.4)

Now we add the equations (4.1)− (4.4) to find the proclaimed equality. □

Proof. Proposition 3.3

The system (1.1)− (1.4) can be written as follows: for i, j = 1, 2 with i ̸= j

(Si)


∂thi + ∂x(hiui) = 0,

∂t(hiui) + ∂x(hiui
2)− νi∂x(hi∂xui) + grhi∂xhj +

1

2
g∂xh

2
i = 0.

Following the idea proposed in [12], we set vi = ui + νi∂x log hi = ui + ∂xφ(hi) and
we can rewrite the system (Si) as follows:

(S′
i)


∂thi + ∂x(hivi)− νi∂

2
xhi = 0,

hi∂t(vi) + hiui∂x(vi) + grhi∂xhj +
1

2
g∂xh

2
i = 0,
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for i, j = 1, 2 with i ̸= j.
We multiply the second equation of (S′

i) by vi and integrate on Ω, for i = 1, 2.

We have for each layer:

1

2

d

dt

∫
Ω

h1|u1 + ∂xφ(h1)|2dx+ rg

∫
Ω

h2∂th1dx+ rgν1

∫
Ω

∂xh1∂xh2dx

+
1

2
g

∫
Ω

∂th
2
1dx+ gν1

∫
Ω

|∂xh1|2 = 0, (4.5)

And

1

2

d

dt

∫
Ω

h2|u2 + ∂xφ(h2)|2dx+ rg

∫
Ω

h1∂th2dx+ rgν2

∫
Ω

∂xh1∂xh2dx

+
1

2
g

∫
Ω

∂th
2
2dx+ ν2g

∫
Ω

|∂xh2|2 = 0. (4.6)

We sum up the equations by performing a simple calculation to have:

1

2

d

dt

∫
Ω

h1|u1 + ∂xφ(h1)|2dx+
1

2

d

dt

∫
Ω

h2|u2 + ∂xφ(h2)|2dx

+
1

2
g
d

dt

∫
Ω

[
(1− r)|h1|2 + (1− r)|h2|2 + r|h1 + h2|2

]
dx

+ν1g

∫
Ω

|∂xh1|2 + ν2g

∫
Ω

|∂xh2|2 + rg(ν1 + ν2)

∫
Ω

∂xh1∂xh2 = 0. (4.7)

We use the inequality xy ≤ 1

2
(x2 + y2) on the last term to deduce the proclaimed

inequality. □

Proof. Lemma 3.6 (We follow the ideas proposed in [12] )

The proof of the lemma 3.6 is inspired by the work of Boris Haspot in [12]. We
first rewrite the equations (1.2) and (1.4) as follows:

∂t(hiui) + ∂x(hiui
2)− νi∂x(hi∂xui) + grhi∂xhj +

1

2
g∂xh

2
i = 0,

for i, j = 1, 2 with i ̸= j. We multiply this momentum equation by ui |ui|p with
p > 0 and we integrate by parts over [0, T ]× Ω where T ∈ (0, T0)

1

p+ 2

∫
Ω

hi|ui|p+2dx+νi(p+1)

∫ T

0

∫
Ω

hi|∂xui|2|ui|pdxdt+g

∫ T

0

∫
Ω

hiui|ui|p∂xhidxdt

+gr

∫ T

0

∫
Ω

hiui|ui|p∂xhjdxdt =
1

p+ 2

∫
Ω

hi0 |ui0 |p+2dx. (4.8)

Next we have by integration by parts and Young inequality:∣∣∣∣∣g
∫ T

0

∫
Ω

hiui|ui|p∂xhidxdt

∣∣∣∣∣ =
∣∣∣∣∣g(p+ 1)

2

∫ T

0

∫
Ω

h2
i |ui|p∂xuidxdt

∣∣∣∣∣
≤ g(p+ 1)

4

∫ T

0

∫
Ω

hi |∂xui| |ui|pdxdt+
g(p+ 1)

4

∫ T

0

∫
Ω

h3
i |ui|pdxdt (4.9)

Using Hölder inequality and by interpolation, we get for p ≥ 2 :
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∫ T

0

∫
Ω

h3
i |ui|pdxdt ≤ ||hi||2L∞([0,T×Ω])

∫ T

0

∫
Ω

hi(t, x)|ui|p(t, x)dxdt

≤ ||hi||2L∞([0,T×Ω])

∫ T

0

∣∣∣∣∣∣h1/p+2
i ui(t, .)

∣∣∣∣∣∣ (p−2)(p+2)
p

Lp+2

∣∣∣∣∣∣√hiui(t, .)
∣∣∣∣∣∣ 4

p

L2
dt

≤ ||hi||2L∞([0,T×Ω])

∫ T

0

(
1 +

∣∣∣∣∣∣h1/p+2
i ui(t, .)

∣∣∣∣∣∣p+2

Lp+2

) ∣∣∣∣∣∣√hiui(t, .)
∣∣∣∣∣∣ 4

p

L2
dt (4.10)

Using Young inequality we have for η ≥ 0:∣∣∣∣∣gr
∫ T

0

∫
Ω

ui|ui|phi∂xhjdxdt

∣∣∣∣∣
≤ gr

[
η

2

∫ T

0

∫
Ω

|∂xhj |2 |ui|pdxdt+
1

2η

∫ T

0

||hi(t, .)||2L∞

(∫
Ω

|ui|p+2dx

)
dt

]
(4.11)

We recall that since ui0 belongs to L
∞(R)∩L2(R) then ui0 is any Lp+2(R). Plugging

(4.9)-(4.11) in (4.8) and using Gronwall lemma we deduce that h
1
p

i ui is bounded in
L∞(0, T0;L

p(Ω)) for any p ≥ 4 and by interpolation for any p ≥ 2.

Using the ideas that in [12], we now put the term ∂x (h
γ
i ui) in the following form:

∂x (h
γ
i ui) = h

γ− 1
2

i h
1
2
i ∂xui + (2γ)h

γ− 1
2

i ui∂x

(
h

1
2
i

)
Taking γ = ε+

1

2
with ε small enough, we have

∂x (h
γ
i ui) = hε

ih
1
2
i ∂xui + 2βhε

iui∂x

(
h

1
2
i

)
.

We note now that hε
iui is bounded in L∞

(
0, T0;L

1
ε (Ω)

)
because hi is bounded in

L∞ (0, T0;L
∞(Ω)) ( Remark 3.5) and h

1
p

i ui is in L∞ (0, T0;L
p(Ω)) for any p ≥ 2.

It implies via the estimates of the corollary 3.4 , the existence of a constant β̄i(T )
with ∀T > 0 such that:

0 ≤ hi(t, x) ≤ β̄i(T )

that ∂x (h
γ
i ui) is bounded in L2(0, T ;L2(Ω))+L∞(0, T ;Lp(Ω)) (for any T ∈ (0, T0))

which is embedded in L2(0, T ;L2(Ω))+Lp(Ω) with 1
p = 1

2 +ε. By the Riesz Thorin

theorem it implies that the Fourier transform F(∂x(h
γ
i ui)) is in L2(0, T ;L2(Ω)) +

Lq(Ω) with 1
p + 1

q = 1. In particular we deduce from Hölder inequality that

F (hγ
i ui) 1{|ξ|≥1} is in L2(0, T ;L1(Ω)) for any T ∈ (0, T0). As hγ

i ui = hε
i

√
hiui, we

obtain from Hölder inequality that hγ
i ui is in L2(0, T ;L2(Ω)) for any T ∈ (0, T0).

From Plancherel theorem we can prove that F (hγ
i ui) 1{|ξ|≤1} is in L2(0, T ;L1(Ω)).

It gives that F (hγ
i ui) is in L2(0, T ;L1(Ω)). We thus get that hγ

i ui is bounded in
L2(0, T ;L∞(Ω)). □

Proof. Proposition 3.7

We consider the momentum equation for i, j = {1, 2} i ̸= j,

∂t(hiui) + ∂x(hiui
2)− νi∂x(hi∂xui) + grhi∂xhj +

1

2
g∂xh

2
i = 0
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We rewrite that as:

hi∂tui + hiui∂xui − νi∂x(hi∂xui) + rghi∂xhj + ghi∂xhi = 0,

hi∂tui + hiui∂xui − νihi∂
2
xui − νi∂xhi∂xui + rghi∂xhj + ghi∂xhi = 0,

∂tui + ui∂xui − νi∂
2
xui − νi

∂xhi

hi
∂xui + rg∂xhj + g∂xhi = 0,

∂tui − νi∂
2
xui = −rg∂xhj − g∂xhi + (νi∂x log hi − ui)∂xui. (4.12)

Thanks to the corollary 2, ∂xhi is bounded in L2(0, T ;L2(Ω)). Following the ideas
proposed in [12] and [8] using Holder inequality, Gagliardo-Nirenberg inequality and
energy estimate, we have:

||(∂xφ(hi)− ui)∂xui||L2(0,T ;L2(Ω))

≤ ||∂xφ(hi)− ui||L∞(0,T ;L2(Ω))||∂xui||L2(0,T ;L∞(Ω))

≤ ||∂xφ(hi)− ui||L∞(0,T ;L2(Ω))||∂xui||
1
2

L2(0,T ;L2(Ω))||∂
2
xui||

1
2

L2(0,T ;L2(Ω))

≤ C||∂2
xui||

1
2

L2(0,T ;L2(Ω)).

Using regularity results for parabolic equation of the form (4.12) gives for any
T ∈ (0, T0):

||∂tui||L2(0,T ;L2(Ω)) + ||∂xui||L2((0,T ;H1(Ω)) ≤ C||∂xui||
1
2

L2(0,T ;H1(Ω)) + C,

with C depending on ||ui0 ||H1 and by boostrap for any T ∈ (0, T0):

||∂tui||L2((0,T );L2(Ω)) + ||ui||L2((0,T );H2(Ω)) ≤ C(T )

□

Proof. Lemma 3.8

We recall that if (h1, h2, u1, u2) is a regular solution which verifies the system
(1.1)− (1.4) on (0, T0) then (h1, h2, u1, u2) is the solution of the system (S′

i): ∂thi + ∂x(hivi)− νi∂
2
xhi = 0,

hi∂t(vi) + hiui∂x(vi) + grhi∂xhj + ghi∂xhi = 0,
(4.13)

for i, j = 1, 2 with i ̸= j.
We multiply the momentum equation of (4.13) by vi|vi|p for p ≥ 0 and integrate
over (0, T )× Ω where T ∈ (0, T0).∫ T

0

∫
Ω

[
hi∂t(vi) + hiui∂x(vi) + grhi∂xhj + ghi∂xhi

]
vi|vi|pdx = 0,

we notice that:

g(hi∂xhi)vi|vi|p =
g

νi
h2
i (vi − ui)|vi|p. (4.14)

Using (4.14), we have:∫ T

0

∫
Ω

[
g(hi(z, x)∂xhi(z, x))vi(z, x)|vi(z, x)|p

]
dx

=
g

νi

∫ T

0

∫
Ω

h2
i (z, x)|vi(z, x)|p+2dxdz
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+
g

νi

∫ T

0

∫
Ω

h2
i (z, x)ui(z, x)vi(z, x)|vi(z, x)|pdxdz.

Also, we have: ∣∣∣∣ ∫ T

0

∫
Ω

h2
i (z, x)ui(z, x)vi(z, x)|vi(z, x)|pdxdz

∣∣∣∣
=

∣∣∣∣ ∫ T

0

∫
Ω

h
1+ 1

p+2

i (z, x)uih
p+1
p+2

i (z, x)vi(z, x)|vi(z, x)|pdxdz
∣∣∣∣

≤
∫ T

0

[
∥ h

1
p+2

i vi(z, .) ∥p+1
Lp+2∥ h1+ 1

p+2ui(z, .) ∥Lp+2

]
dz

≤
∫ T

0

[
∥ h

1
p+2

i vi ∥p+1
Lp+2 × ∥ hγ

i ui ∥pL∞∥
√
hi(z, .)ui(z, .) ∥2L2∥ hi ∥

(p−2)(1− pγ
p+2 )

L∞ ,

for any γ such that: γ =
1

2
+ ε with ε > 0 (see [12]).

Furthermore,∣∣∣∣ ∫ T

0

∫
Ω

[
ghi(z, x)∂xhj(z, x)

]
vi(z, x)|vi(z, x)|pdx

∣∣∣∣
≤ g

[ ∫ T

0

∫
Ω

hi(z, x)|vi(z, x)|p+1dzdx+

∫ T

0

∫
Ω

|∂xhj(z, x)|2dzdx
]

≤ g

[ ∫ T

0

∫
Ω

hi(z, x)|vi(z, x)|p+11{|vi(z,x)|≥1}dzdx

+

∫ T

0

∫
Ω

hi(z, x)|vi(z, x)|p+11{|vi(z,x)|<1}dzdx+

∫ T

0

∫
Ω

|∂xhj(z, x)|2dzdx
]

≤ g

[ ∫ T

0

∫
Ω

hi(z, x)|vi(z, x)|p+21{|vi(z,x)|≥1}dzdx

+

∫ T

0

∫
Ω

hi(z, x)|vi(z, x)|21{|vi(z,x)|<1}dzdx+

∫ T

0

∫
Ω

|∂xhj(z, x)|2dzdx
]

≤ g

[
2

∫ T

0

∫
Ω

hi(z, x)|vi(z, x)|p+2dzdx

+2

∫ T

0

∫
Ω

hi(z, x)|vi(z, x)|2dzdx+

∫ T

0

∫
Ω

|∂xhj(z, x)|2dzdx
]
.

By borrowing the ideas developed in [12] (using Young inequality, the Gronwall
lemma, the Remark 3.5 and the Lemma 3.6), we have for all p ∈ [0,+∞[:

∥ hi(T, .)
1

p+2 vi(t, .) ∥Lp+2≤ C(T ) ∀T ∈ (0, T0), (4.15)

where C is a continuous function independent on p.
By considering the regularization on the initial data such that vi0 ∗ kn belongs to
Hs with s > 1

2 and kn the regularizing Kernel, the solution (h1, h2, v1, v2) verifies:

hi(t, x) ≥ βi(t) > 0 ∀x ∈ Ω and ∥ vi(t, .) ∥L∞≤ Ci(t), ∀t ∈ [0, T0],

with possibility βi(t) −→t→T0 0 and Ci(t) −→t→T0 +∞.

We observe that ∀ε > 0 sufficiently small (such that
∥ vi(t, .) ∥L∞

2
> ε)



EJMAA-2024/12(1) ON THE EXISTENCE OF GLOBAL STRONG SOLUTIONS ... 11

we have ∀p ≥ 2, t ∈ (0, T0):

∥ h
1
p

i vi(t, .) ∥Lp≥[
∥ vi(t, .) ∥L∞−ε

]
βi(t)

1
p

∣∣{x, |vi(t, x)| ≥∥ vi(t, .) ∥L∞−ε}
∣∣ 1
p . (4.16)

Since we have βi(t) > 0 and 0 <
∣∣{x, |vi(t, x)| ≥∥ vi(t, .) ∥L∞−ε}

∣∣ < +∞, we can
pass to the limit when the limit p goes to +∞ in (4.16). It implies that for any
ε > 0 small enough, we get using (4.15):

∥ vi(t, .) ∥L∞−ε≤ C(t) ∀t ∈ (0, T0).

Thanks to the maximum principle, we deduce according to the ideas proposed in
[2, 12] that:

1

hi
is bounded in L∞(0, T ;L∞)).

□

Conclusion

In this paper, we were interested in the theoretical study of a viscous bilayer
shallow water model of one dimension. Indeed, the authors in [Nonlinear Analysis,
vol (14)2, 1216-1124, (2013)], considered an approximate system while justifying
the existence of global strong solutions using the regularity theorem for smooth
data given in [R. I. American Mathematical Society, vol (23), ((1968)]. We have
improved their work by proving the existence of global strong solutions to the
initial model(without the regularizing terms) by getting inspired by the work done
in [Math Nachr. 291 (14-15), 2183-2203, (2018)].
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