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ABSTRACT 

This study modelled the compressive strength of concrete with polyethylene terephthalate (PET) waste as fine 

aggregate replacement. Artificial neural network (ANN) was used to model and predict the compressive strength of 

PET concrete at various percentage replacements (2 to 50% at a step of 2% by weight), with the multilayer 

feedforward neural network and the radial basis function methodologies compared to see which is more accurate. 

The multilayer feedforward neural network modelling results showed a predictive accuracy of 95.364% with root 

mean square error value of 3.6621 × 10-15 while, the radial basis function neural network modeling results showed 

a higher predictive accuracy of 99.812% with root mean square error value of 3.7748 × 10-15. The results of this 

study demonstrated that computer-generated models such as the radial basis function may accurately predict the 

compressive strength of PET concrete, as the results of the experimental and predicted tests were similar. 

Additionally, it was discovered that the radial basis function method takes less time to create the model because 

there is no repetition required to get at the model's favorable parameters. Furthermore, radial basis function networks 

train more quickly than multilayer perceptrons, but classification is slower since each hidden layer node must 

calculate the radial basis function for the input sample vector during classification. 

Keywords: Concrete Strength, Computer Model, Neural Network, Plastic waste.  

 

1. INTRODUCTION 

The most common building material worldwide is concrete. Cement, water, and aggregates make up its ingredients. 

About 65 to 80 percent of concrete is made up of aggregate, and it can give concrete great qualities including 

strength, permeability, volume stability, workability, and durability [1]. A significant number of fine and coarse 

aggregates are needed to produce enormous amounts of concrete for worldwide consumption [2]. By utilizing 

recycled resources to create fresh concrete, significant amounts of waste can be saved. This approach can be used to 

address environmental problems with aggregate mining, waste disposal, and aggregate shortages on construction 

sites [3, 4]. Numerous different forms of plastic are manufactured each year as a result of the existing demand from 

human activities. However, the vast majority of plastic varieties are made to be used only once. Because plastic 

garbage has a very poor biodegradability and cannot be properly recycled, it pollutes the environment. One of the 

best ways to lessen the impact plastic trash has on the environment in terms of energy and natural resource use, 

waste disposal, global warming, and environmental contamination is to recycle it. Among the numerous types of 

recycling management techniques, the reuse of plastic waste in the construction industry is the best choice for 

disposing of plastic trash [5, 6]. 
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As was already indicated, recycled plastic aggregates can be utilized successfully to make concrete in order to reduce 

the consumption of natural aggregates. Several research have been done on the use of waste PET as a complete or 

partial replacement for different concrete materials. Akinyele et al. [7] investigated how PET waste affected the 

structural characteristics of burned bricks. Compressive strength decreased as PET waste volume increased. It was 

found that a good percentage to add to the brick for optimal performance would be less than 5% PET. The effect  of  

partial  substitution  of  fine  aggregate  with  PET  in  concrete  was  investigated  by Nadimalla  et  al. [8]. The 

slump value of the concrete mixtures reduced because of the uneven edges of the PET. Improvement in strength 

properties of concrete was observed only at less than 10% replacement levels. Akinyele and Toriola [9] investigated 

the effect of crushed PET in sandcrete bricks as a fine aggregate replacement at 0, 5, 10, 15, and 20%. The 

compressive and flexural strengths showed that at 5% PET replacement performed better than the control. The effect 

of waste PET fragments as a partial replacement for fine aggregate was investigated by Azhdarpour et al. [10]. There 

was an improvement in both the physical and strength properties of concrete when 5 to 10% of waste PET fragments 

were used. Akinleye et al. [6] evaluated the use of discarded plastic waste for interlocking paving stone production 

using the proportions of 10%, 20%, 30%, 40% and 50% plastic wastes relative to stone dust. All mixtures of plastic 

waste relative to stone dust evaluated met the minimum standard of 30 N/mm2 specified for a single concrete paving 

stone according to BS code. 

Among the several concrete qualities, compressive strength is a crucial quality for building engineering structures. 

Compressive strength is related to other durability and mechanical factors, and these values can be determined via 

indirect relationships with it [11]. Since compressive strength is sensitive to mixture proportions and depends on a 

number of factors, more advanced techniques should be used to minimize the need for laboratory experiments as 

much as possible and provide engineers with more user-friendly techniques and mathematical formulas for 

predicting the results of laboratory experiments. Artificial intelligence methods, such as those utilizing Artificial 

Neural Networks (ANN), may be thought of as a suitable answer in this case. ANN is a potent simulation program 

created for data analysis and computing to process and analyze information like a human brain. In order to forecast 

the future behavior of many numerical issues, construction engineering frequently uses this machine learning method 

[12, 13]. Some researchers have utilized ANN models to predict the compressive strength of various types of 

concrete, including self-compacting concrete, recycled aggregate concrete, pervious concrete, and fly ash modified 

concrete [13, 14, 15, 16, 17]. This study modeled the compressive strength of concrete made with PET waste as fine 

aggregate replacement (up to 50%) using ANN with the multilayer feedforward neural network (MLFFNN) and the 

radial basis function (RBF) methodologies compared to see which is more accurate. The findings of this study could 

help prevent the impending destruction of our ecosystem caused by PET waste. The ANN models would offer a 

quicker and more dependable substitute for the demanding laboratory testing, hence reducing the testing's financial 

cost.  

The work that is being presented is set up as follows: The methodology is provided in Section 2, where the 

characterization of the materials utilized, the PET concrete experimentation process, and the ANN modeling process 

were covered. The experimental findings of the compressive strength of PET concrete were discussed in Section 3. 

Modeling of compressive strength utilizing multilayer feedforward and radial basis function was done after that. For 

validation, the experimental and predicted compressive strength values were compared. Finally, Section 4 

summarizes the main conclusions. 

2. MATERIALS AND METHODS 

Materials 

Dangote brand of Portland limestone cement of grade 32.5 class with specific gravity 3.1 was used. Coarse aggregate 

of 20 mm size classified as well graded gravel was used while fine aggregate classified as poorly graded sand was 

used. The PET waste was obtained from domestic PET plastic wastes, the paper around the bottle and the bottle 

covers were removed before it was then grinded into fine aggregate with the maximum size of 2.36 mm using an 

industrial grinding machine. As a chemical admixture, MasterRheobuild 858 super-plasticizer was used to increase 



 
 

( ASWJS / Volume1, issue 2 /December 2021)                                                                                                                             P a g e  3 

 

(ASWJST 2021/ printed ISSN: 2735-3087 and on-line ISSN: 2735-3095)                              https://journals.aswu.edu.eg/stjournal  
 

 

the workability of the concrete with as little water as feasible. The Superplasticizer was added to the mix at a rate of 

not more than 1% of the total cement weight. The specific of the coarse, fine and PET aggregates used were 2.71, 

2.65 and 1.34 respectively. 

 

PET Concrete Experimental Procedure 

Concrete mix ratio of 1:1.5:3 (cement: sand: granite respectively) was adopted. The percentage of replacement of 

fine aggregates by PET waste aggregates were 2%, 4%, 6%, 8%, 10%, 12%, 14%, 16%, 18%, 20%, 22%, 24%, 

26%, 28%, 30%, 32%, 34%, 36%, 38%, 40%, 42%, 44%, 46%, 48%, and 50%. Concrete without PET waste serves 

as the control. All of the concrete samples were made using a 100 mm x 100 mm x 100 mm mold that matched the 

requirements of BS EN 12390-1 [18]. The moulds were lubricated before being filled with PET waste concrete to 

make demoulding easier. All of the samples were covered with a plastic sheet after casting and finishing to prevent 

moisture loss due to evaporation. After 24 hours of casting, the samples were demoulded and moved to a curing 

tank, where they cured for 28 days before being tested for compressive strength in accordance with British standard. 

 

 

ANN Modeling Procedure 

A two-layer neural network (hidden and output) was used to predict compressive strength using an ANN. The 

numerical data (ANSYS) was fed into the ANN after the input data from the laboratory tests were rectified. Based 

on the mistake results, the number of neurons in the buried layer was calculated. In order for the output layer to be 

one neuron, one output neuron is necessary.  The method used historical data in conjunction with current data to 

forecast compressive strength.  MLFFNN and RBF techniques were used to operate the neural network. Following 

that, the precision of the results from both approaches were compared, and the most precise technique was 

recommended. The  optimum  architecture  of  a  back  propagation  neural  network  for  this  study  was  found  by 

experimenting  with  different  numbers  of  neurons  for  different  hidden  layers. In order to minimize overtraining 

and to measure the confidence in the network's performance, the input data was gathered from the experimental data, 

with 70% of the data utilized for training, 15% for testing, and 15% for validation. The Sigmoid function was chosen 

as the activation function in this study. To avoid overtraining, the algorithm learning was supervised (i.e. working 

toward a specific outcome). The neural network was trained to match the collection of input data that had been 

weighted into the networks through repeated weight modifications. Backward propagation of error was used to 

optimize the weights between the neurons throughout the learning process. Root Mean Square Error was used to 

calculate the performance of the ANN. 

 

3. RESULTS AND DISCUSSION 

Compressive Strength  

The compressive strength of the concretes made with PET waste substitution is shown in Table 1. The study 

discovered that adding PET trash in place of fine aggregate reduces the compressive strength of concrete. A larger 

interfacial transition zone (i.e., an increase in the surface area of the PET waste particles) in the concrete that allows 

for the saturation of a greater amount of water in its surface and reduces the bonding ability between the PET waste 

and the cement paste as compared to the control may be to blame for the steady decline in the compressive strength 

of the PET concrete as the percentage replacement of the PET aggregate increased. The binding strength between 

the cement paste and the PET particles is negatively impacted by the smooth surface of the PET particles. The result 

is consistent with [19, 20, 21, 22, 23, 24, 25]. 
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Table 1: Compressive strength of PET concrete 

S/N Fine Aggregate Replacement (%)     Compressive Strength (N/mm2) 

1 0 23.39 

2 2 22.8 

3 4 21.96 

4 6 20.47 

5 8 18.53 

6 10 18.22 

7 12 17.83 

8 14 16.89 

9 15 16.45 

10 16 15.94 

11 18 14.5 

12 20 13.03 

13 22 12.01 

14 24 9.46 

15 26 8.87 

16 28 8.08 

17 30 7.33 

18 32 7.11 

19 34 6.09 

20 36 5.56 

21 38 6.33 

22 39 5.67 

23 40 5.11 

24 42 4.68 

25 44 3.87 

26 45 3.5 

27 46 3.04 

28 48 2.22 

29 50 1.38 

30 55 1.21 

31 60 1.01 

 

Compressive Strength Modelling Using Multilayer Feedforward 

ANN architecture  

The multilayer feedforward (MLFF) ANN design for compressive strength predictions is depicted in Figure 1. As 

indicated in Figure 2, the input variables were one (1), twenty-two (22) hidden neurons were used, and five (5) 

epochs were traversed by the model. The performance of the neural network depends on the epoch and the quantity 

of hidden neurons. Up until the best performance was realized and the results were recorded, several settings of 
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these two values were explored. In order to avoid bias in the modeling of the outcome, these values were chosen at 

random throughout the entire procedure. 

 

 

Error histograms  

The error histograms for the compressive strength values are displayed in Figure 3. The difference between the 

anticipated compressive strength and the actual compressive strength for the 28-day forecasts was displayed by the 

error histogram as a percentage of zero or a distance from zero. The outcome will be more accurate the closer the 

histograms are to zero. According to the image, notably for the majority of the training datasets, a significant portion 

of the disparities between the projected and actual values lie under the yellow zero line and zero score. Little differs 

between the expected and actual numbers are evident from this. 

 

 

ANN regression residual plots  

Figure 4 displays the residual fit for the regression line for the dataset's training, validation, and testing parameters 

as well as all other parameters. Additionally, it displays the regression's level of accuracy using the provided R score. 

For all phases (training, testing, and validation), the values above the regression line of fit reflected the values that 

were properly predicted, whereas the values below the line of fit represented the values that were incorrectly 

forecasted. Each value's deviation from the line of fit serves as a gauge for its accuracy or imprecision. 

Figure 1: MLFFNN architecture for modelling compressive strength 

Figure 2: Epoch for modelling compressive strength using MLFFNN 

 

Figure 3: MLFFNN error histograms used for modelling compressive 

strength 
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Nearly all values for the training phase were covered by the line of fit, which was accompanied by a high level of 

accuracy of 100 percent. With a high degree of accuracy of 94.316 percent during the validation phase, a significant 

number of the values were inside the line of fit and very few were apart below the line of fit. The regression model 

line's accuracy was judged to be 95.364 percent for all values combined, whereas the test has an accuracy level of 

87.967 percent. Given the input variable into the ANN produced model, this demonstrated the great capabilities of 

the developed ANN model employing the multilayer perceptron technique in estimating the compressive strength 

of the PET concrete. The predictive model's Root Mean Square Error (RMSE) value is displayed in Figure 5. The 

RMSE score of 3.6621 10-15 indicated a very low error value that was practically nonexistent. This serves as another 

example of how the MLFFNN ANN model can accurately predict the compressive strength of PET concrete. 

 

 

 

 

 

 

Figure 4: MLFFNN error regression residuals plot for modelling 

compressive strength 

 

Figure 5: MLFFNN Root Mean Square Error (RMSE) value for 

modelling compressive strength 
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Compressive Strength Modelling Using Radial Basis Function 

ANN architecture  

The Radial Basis Function (RBF) ANN design for the prediction of compressive strength is depicted in Figure 6. As 

indicated in Figure 7, the input variable was one (1), there were eighteen hidden neurons employed, and the model 

went through five hundred seventy-two (572) epochs. The performance of the neural network depends on the epoch 

and the quantity of hidden neurons. Up until the best performance was realized and the results were recorded, several 

settings of these two values were explored. In order to avoid bias in the modelling of the outcome, these values were 

chosen at random throughout the entire procedure. 

 

 

 

 

Error histograms  

The error histograms for the compressive strength result obtained using the radial basis function technique are shown 

in Figure 8. The discrepancy between the anticipated compressive strength and the actual compressive strength for 

the 28-day forecasts is displayed by the error histogram as a percentage of zero or a distance from zero. The outcome 

will be more accurate the closer the histograms are to zero. The chart shows that a sizeable share of the disparities 

between the predicted and actual values, particularly for the majority of the training datasets, fall below the yellow 

zero line. Little differs between the expected and actual numbers are evident from this. 

Figure 6: RBF architecture for modelling compressive strength 

Figure 7: Epoch for modelling compressive strength using RBF 
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ANN regression residual plots  

Figure 9 displays the residuals for the regression line of fit for the dataset's training, validation, and testing 

parameters as well as all other parameters. Additionally, it displays the regression's level of accuracy using the 

provided R score. For all phases (training, testing, validation, etc.), the values above the regression line of fit 

indicated the values that were properly predicted, whereas the values below the line of fit represented the values that 

were incorrectly forecasted. Each value's deviation from the line of fit serves as a gauge for its accuracy or 

imprecision. 

Nearly all data for the training phase were covered by the line of fit, which was accompanied by a high level of 

accuracy of 99.998 percent. The regression model line's correctness was evaluated to be 99.812 percent for all values 

combined, whereas the test has a degree of accuracy of 99.499 percent. This demonstrated that the radial basis 

function technique outperformed the multilayer perceptron technique at estimating the compressive strength values 

of PET concrete. The prediction model's RMSE value is displayed in Figure 10. The RMSE score of 3.7748 10-15 

indicated a very low error value that was practically nonexistent. The ability to accurately estimate the compressive 

strength of PET concrete serves as another example of the RBF technique of the ANN model in action. 

 

 

Figure 9: Error regression residuals plot for modelling compressive 

strength using RBF 
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Validation of the Model  

In comparing the accuracy of the multi-layer feed-forward (MLFFNN) and the radial basis function (RBF) 

techniques of the ANN in predicting the compressive strength of PET concrete, it was discovered that the RBF was 

more accurate judging from the values obtained from their error histograms, regression residual plot, and root mean 

square error values. Hence, in validating the model by predicting for various percentage replacement of fine 

aggregate with PET, the RBF technique was used. The superior in accuracy of the RBF agrees with past studies 

from other researchers. RBF analyzes the multiple subspaces of the input set as separate relationships and gives local 

solution, whereas MLFFNN presents a generic approach to addressing non-linear relationships between the input 

parameter(s) and output parameter(s). 

Tables 2 illustrates the results of the laboratory tests and the predicted results from the ANN for compressive strength 

using the more precise radial basis function approach, respectively. The projected values from the ANN are without 

a doubt accurate and dependable for forecasting the compressive strength of PET concrete, since the ANN modeling 

findings are comparable to laboratory test results. Despite the fact that the RBF approach produced the most desirable 

results, the MLFFNN's performance was also acceptable. 

Table 2: The experimental values and predicted values of compressive strengths for validation 

S/NO Replacement (%) Lab Result (N/mm2) ANN Result (N/mm2) 

1 15 16.45 16.44 

2 39 5.67 5.67 

3 45 3.5 3.76 

4 55 1.21 1.24 

5 60 1.01 1.08 

4. CONCLUSION 

This study used radial basis function (RBF) and ANN with multilayer feedforward neural network (MLFFNN) 

approaches to simulate the compressive strength of concrete built using PET waste as fine aggregate replacement 

(up to 50%). The design with twenty-two (22) hidden neurons and five (5) epochs for compressive strength 

prediction was the best MLP ANN architecture with the highest effective predictive performance. During the training 

phase, the model's accuracy was 100%. The test phase's accuracy was 87.967 percent, while the validation phase's 

accuracy was a high 94.316 percent. The regression model line's accuracy was calculated to be 95.364 percent for 

all values combined. The compressive strength predictions' Root Mean Square Error (RMSE) value was 3.6621 10-

Figure 10: Error RMSE for modelling compressive strength using RBF 
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15, which is a very low error value that is practically nonexistent. This serves as an example of the MLP ANN model's 

capability to accurately predict the compressive strength of PET concrete. 

The architecture with 18 hidden neurons and 572 epochs for compressive strength predictions was the ideal RBF 

ANN architecture with the highest effective predictive performance. The accuracy of the regression model line was 

estimated to be 99.812 percent for all values combined. The model had a degree of accuracy of 99.998 percent during 

the training phase and a degree of accuracy of 99.499 percent during the test phase. The compressive strength 

predictions' Root Mean Square Error (RMSE) value was 3.7748 10-15, which is a very small and nearly undetectable 

error. RBF technique of ANN fared better than MLFFNN approach. 

REFERENCES 

[1] Faraj, R. H., Mohammed, A. A., Mohammed, A., Omer, K. M. and Ahmed, H. U. Systematic multiscale 

models to predict the compressive strength of self-compacting concretes modified with nanosilica at different 

curing ages. Engineering with Computers (2021) 1-24. https://doi.org/10.1007/ s00366-021-01385-9 

[2] Spiesz, P., Rouvas, S., Brouwers, H. J. H. Utilization of waste glass in translucent and photocatalytic 

concrete. Construction and Building Materials, 128 (2016) 436–448. 

https://doi.org/10.1016/j.conbuildmat.2016.10.063 

[3] Tijani, M. A., Ajagbe, W. O. and Agbede, O. A. Combined Reusing of Sorghum Husk Ash and Recycled 

Concrete Aggregate for Sustainable Pervious Concrete Production. Journal of Cleaner Production 343, 

(2022) 131015. 

[4] Saikia, N. and Brito, J. D. Waste polyethylene terephthalate as an aggregate in concrete. Materials Research 

16 (2) (2013), 341–350. https://doi.org/ 10.1590/S1516-14392013005000017 

[5] Sadrmomtazi, A., Dolati-Milehsara, S., Lotfi-Omran, O. and Sadeghi-Nik, A. The combined effects of waste 

polyethylene terephthalate (PET) particles and pozzolanic materials on the properties of self-compacting 

concrete. Journal of Cleaner Production, 112 (2016), 2363–2373. https:// 

doi.org/10.1016/j.jclepro.2015.09.107 

[6] Akinleye, M. T., Tijani, M. A., Salami, L. O., Joseph, O. P., Salami, M. O. and Ogungbola, O. I. Mechanical 

performance of interlocking paving stone using dissolved waste plastics. FUOYE Journal of Innovation 

Science and Technology, 2 (1), (2022), 66 – 72. 

[7] Akinyele, J. O., Igba, U. T. and Adigun, B. Effect of PET waste on the structural properties of burnt bricks. 

Scientific African Volume 7, (2020). Https://Doi.Org.1016/J.Sciaf.2020.E00301. 

[8] Nadimalla, A., Masjuki, S. and Saad, A. Polyethylene Terephthalate (PET) bottles waste as fine aggregate in 

concrete. Material Science (2019). 

[9] Akinyele, O. and Toriola, I. The effect of crushed plastics waste on the structural properties of sandcrete 

blocks. African Journal of Science Technology Innovation and Development 10(2), (2018), 1-5 doi: 

10.1080/20421338.2018.1496614. 

[10] Azhdarpour, A., Nikoudel, M., and Taheri, M. The effect of using polyethylene terephthalate particles on 

physical and strength-related properties of concrete; A laboratory evaluation. Construction Building 

Materials, 109 (2016), 55-62. 

[11] Peruma, R. Correlation of Compressive Strength and Other Engineering Properties of High-Performance 

Steel Fiber–Reinforced Concrete. Journal of Materials in Civil Engineering, 27(1), (2015), 

04014114 doi:10.1061/(ASCE)MT.1943-5533.0001050 

https://doi.org/10.1016/j.conbuildmat.2016.10.063
https://doi.org.1016/j.sciaf.2020.e00301


 
 

( ASWJS / Volume1, issue 2 /December 2021)                                                                                                                             P a g e  11 

 

(ASWJST 2021/ printed ISSN: 2735-3087 and on-line ISSN: 2735-3095)                              https://journals.aswu.edu.eg/stjournal  
 

 

[12] Sihag, P., Jain, P. and Kumar, M. Modelling of impact of water quality on recharging rate of storm water 

filter system using various kernel function based regression. Modeling Earth Systems and Environment 4(1), 

(2018), 61–68. https://doi.org/10.1007/s40808-017-0410-0 

[13] Mohammed, A., Rafiq, S., Mahmood, W., Al-Darkazalir, H., Noaman, R., Qadir, W. and Ghafor, K. Artificial 

Neural Network and NLR techniques to predict the rheological properties and compression strength of 

cement past modified with nanoclay. Ain Shams Engineering Journal (2020). 

https://doi.org/10.1016/j.asej.2020.07.033 

[14] Ghafor, K., Qadir, S., Mahmood, W. and Mohammed, A. Statistical variations and new correlation models 

to predict the mechanical behaviour of the cement mortar modified with silica fume. Geomechanics and 

Geoengineering (2020). https://doi.org/10.1080/17486025.2020. 1714083 

[15] Tijani, M. A., Ajagbe, W. O. and Agbede, O. A. Recycling Sorghum Husk and Palm Kernel Shell Wastes 

for Pervious Concrete Production. Jornal of Cleaner Production, 380, (2022), 134976.  

[16] Faraj, R. H., Mohammed, A. A., Omer, K. M. and Ahmed, H. U. Soft computing techniques to predict the 

compressive strength of green self-compacting concrete incorporating recycled plastic aggregates and 

industrial waste ashes. Clean Technologies and Environmental Policy (2022), 

https://doi.org/10.1007/s10098-022-02318-w. 

[17] Deshpande N, Londhe S, Kulkarni S. Modeling compressive strength of recycled aggregate concrete by 

artificial neural network, model tree and nonlinear regression. Int J Sustain Built Environ 3(2), (2014), 187–

198. https://doi.org/10.1016/j.ijsbe.2014.12. 002 

[18] BS EN 12390-1:2000 Testing hardened concrete- shape, dimension and other requirements and moulds, 

British Standards Institute, London. UK. 

[19] Choi Y. W., Moon D. J., Chung J. S. and Cho, S. K. Effects of waste PET bottles aggregate on the properties 

of concrete, Cement and Concrete Research, 35(4), (2005), 776–781. 

[20] Frigione, M. Recycling of PET bottles as fine aggregate in concrete. Waste management. Elsevier Science 

B.V., 30(6), (2010), 1101- 1106. PMid: 20176466. http://dx.doi.org/10.1016/j. wasman.2010.01.030 

[21] Mokhtar, M., Kaamin, M., Sahat, S. and Hamid, N. B. The utilization of shredded PET as aggregate 

replacement for interlocking concrete block. EDPSciences (2018),  

https://doi.org/10.1051/e3sconf/20183401006 

[22] Dawood, A. O., AL-Khazraji, H. and Falih, R. S. (2021). Physical and mechanical properties of concrete 

containing PET wastes as a partial replacement for fine aggregates. Case Studies in Construction Materials, 

14, e00482, https://doi.org/10.1016/j.cscm.2020.e00482. 

[23] Kangavar, M. E., Lokuge, W., Manalo, A., Karunasena, W. and Frigione, M. Investigation on the properties 

of concrete with recycled polyethylene terephthalate (PET) granules as fine aggregate replacement. Case 

Studies in Construction Materials, 16, (2022), e00934, https://doi.org/10.1016/j.cscm.2022.e00934. 

[24] Nikbin, I. M., Dezhampanah, S., Charkhtab, S., Mehdipour, S., Shahvareh, I., Ebrahimi, M., Pournasir, A. 

and Pourghorban, H. Life cycle assessment and mechanical properties of high strength steel fiber reinforced 

concrete containing waste PET bottle. Construction and Building Materials, 337, (2022), 127553, 

https://doi.org/10.1016/j.conbuildmat.2022.127553. 

https://doi.org/10.1007/s40808-017-0410-0
https://doi.org/10.1016/j.asej.2020.07.033
https://doi.org/10.1080/17486025.2020.%201714083
https://doi.org/10.1007/s10098-022-02318-w
https://doi.org/10.1016/j.ijsbe.2014.12.%20002
http://dx.doi.org/10.1016/j.%20wasman.2010.01.030
https://doi.org/10.1051/e3sconf/20183401006
https://doi.org/10.1016/j.cscm.2020.e00482
https://doi.org/10.1016/j.cscm.2022.e00934


 
 

( ASWJS / Volume1, issue 2 /December 2021)                                                                                                                             P a g e  12 

 

(ASWJST 2021/ printed ISSN: 2735-3087 and on-line ISSN: 2735-3095)                              https://journals.aswu.edu.eg/stjournal  
 

 

[25] Qaidi, S., Al-Kamaki, Y., Hakeem, I., Dulaimi, A. F., Özkılıç, Y., Sabri, M. and Sergeev, V. Investigation 

of the physical-mechanical properties and durability of high-strength concrete with recycled PET as a partial 

replacement for fine aggregates. Frontiers in Materials, 10, (2023), 10.3389/fmats.2023.1101146 

 

 

 

  

 

  

  

 


