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Abstract: A lot of study has been done in recent years to increase the energy efficiency of engineering 

systems. It is essential to create effective temperature control systems since electric furnaces (EF) 

account for a significant portion of energy usage. The majority of established techniques need accurate 

system parameter knowledge/sufficient data. Nevertheless, in the case of dynamic parameter variation, 

these methods might not operate as well. In many industrial applications, controlling the temperature 

of EFs is regarded as one of the key problems. In this paper, an EF temperature system with an adaptive 

lag compensator is proposed. Application of artificial gorilla troops optimization (GTO) supported by 

the balloon effect (BE) (GTO+BE) identifier estimates the integral coefficient of the adaptive lag 

compensator for temperature control purposes. Due to the low efficiency of the objective functions 

employed in ordinary optimization, the BE identifier is used to raise the optimization technique's 

objective function's efficiency and the controller's ability to handle system problems, both of which rise 

as a result. The issue of parameter fluctuations and step disruption is intractable for conventional 

controls like PID controllers. The proposed technique adaptive lag compensator based on GTO+BE is 

compared with the modified flower pollination algorithm (MFPA)-based PIDA, and MFPA-based PID 

controllers. From the results, the proposed adaptive lag compensator with GTO+BE gives the best 

dynamic performance of an EF temperature system with the minimum overshoot, rise time, and settling 

time. 
 

Keywords: Adaptive lag compensator; balloon effect; electric furnace; gorilla troops optimization (GTO); modified flower 
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List of abbreviations 
HFs: heating furnaces MLP: multi-layer perceptron 

PID: proportional-integral-derivative GWO: grey wolf optimization 

ZN: Ziegler-Nicholes WOA: whale optimization algorithm 

CC: Cohen-Coons SCA: sine cosine algorithm 

SMCs: sliding mode controllers PSS: power system stabilizer 

RCC: A robust composite control ITSE: integral time square error 

PIDA: PID accelerated TID: tilt-integral-derivative 

EFT: electrical tube furnace BE: balloon effect 

MFPA: modified flower pollination algorithm  GTO: gorilla troops optimization 

FOMPC: fractional order model predictive control TL: Tyreus Luyben's 

MRFO: Manta ray foraging optimizer  TC: temperature control 
ENMSS: extended non-minimal state space  EF: electric furnace 

1. Introduction 

Industrial goods, such as those involving metal melting, polymerization, drying, and other physical-

chemical processes, commonly employ industrial heating furnaces (HFs) [1], [2]. Electric HF 

temperature processes are characterized by great inertia, time delay, and unpredictability, which makes 
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it difficult for conventional control techniques to fulfill the growing expectations for control 

performance improvement that directly impact product quality [3], [4]. Traditional control, such as 

proportional-integral-derivative (PID), is widely used because of its ease of use and simplicity [5], [6]. 

One of the well-known, efficient techniques is the PID controller, which continues to be a common 

research topic and application in industrial process control. However, the PID controller may take a 

long time to reach a steady state for processes with high inertia and time delays, and it cannot 

adequately meet the growing demands for control performance. Ziegler-Nicholes (ZN) and Cohen-

Coons (CC) techniques are considered to be the most preferred for tweaking the standard PID approach 

[7]. 

 A tempered glass furnace system was designed using two sliding mode controllers (SMCs) to manage 

the temperature of the glass plate, the upper and lower walls, and the furnace to a common desired 

temperature [8]. For the electrical tube furnace (ETF), a robust composite control (RCC) approach 

offered accurate and reliable temperature tracking performance [9]. On the electric furnace (EF) 

temperature control (TC) system, the PID accelerated (PIDA) controller design based on the modified 

flower pollination algorithm (MFPA) [10], an improved approach of extended non-minimal state space 

(ENMSS) fractional order model predictive control (FOMPC) [11], is tested. 

The ZN and TL (Tyreus Luyben) tuning techniques are applied to obtain the three PID parameters. For 

the given system, LQR and PID (using ZN and TL) control techniques provide better performance [12]. 

For the EF, a fuzzy PID controller is created [13], [14]. For the electrical heater furnace problem, the PID 

decoupling control approach based on the DRNN neural network setting was proposed under Jacobian 

information identification of the DRNN neural network [15]. The PID controller parameters were 

adjusted by the Nelder Mead optimization process to function in an EF-TC system [16]. To address the 

low precision, long rise time, and settling time of the controller, a PID controller based on genetic 

algorithms was introduced for regulating the EF's temperature [17]. For an electrical heating furnace 

system, a predictive fuzzy-PID controller reduced overshoot, minimized stability time, and increased 

control precision [3]. An algorithm for fuzzy control has two stages. The control variable is selected by 

the first-stage controller using the deviation data of the controlled variable. The second-stage controller 

is responsible for changing the control variable, which comes from the first-stage controller, by adding 

new process parameters. Next, the control algorithm is highly robust, accurate, and so on [18], [19]. 

Insufficient temperature control in an EF leads to increased power losses. As a result, consistent 

temperature control is considered a method to lower the EF's overall energy consumption. 

In many industrial applications, gains of conventional controllers have been adaptively tuned using 

optimization approaches like the artificial gorilla troops optimization (GTO) [20]. The optimum gains of 

the cascaded PI-FOPID controller are fine-tuned using GTO to improve the frequency response of a 

hybrid microgrid system [21], [22]. Moreover, GTO trains a multi-layer perceptron (MLP) and its result 

is compared with grey wolf optimization (GWO), the whale optimization algorithm (WOA), and the 

sine cosine algorithm (SCA) [23],[24][25]. The complicated nonlinear variables of current voltage and 

power voltage make it challenging to extract the characteristics of solar photovoltaic generating 

systems. To extract parameters from various PV models, a new implementation of the GTO method was 

developed [26]. To control energy consumption in DC-AC hybrid distribution networks, GTO was 

presented. It was suggested to put in place an energy management system that accounts for load 

demand, distributed generation, and battery charge status [27], [28]. The GTO algorithm determines the 

best tuning parameters for a power system stabilizer (PSS) unit. The integral time square error (ITSE) is 

used as a fitness function, which should ideally be reduced. The investigation of a single-machine 
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approach as a model for the infinite bus uses four different controllers tilt-integral-derivative (TID), 

PID, lead-lag, and FOPID. The TID exhibits a greater performance response [29], [30]. 

On the other hand, utilizing nominal parameters when building the objective function while 

considering the zero-load disturbance is one of the drawbacks of using classical techniques in the 

adaptive control approach. As a result, when disturbances and parameter changes occur, the 

performance will be weak. To address this problem and increase the optimization algorithm's 

sensitivity to both disturbances and parameter changes, this paper suggested adding a balloon effect 

(BE) modification [31], [32].  

This paper proposes an EF temperature system for TC with an adaptive lag compensator based on 

GTO+BE. GTO+BE is used to estimate the adaptive lag compensator's integral coefficient. To determine 

the impact of the suggested method on the system under investigation, the suggested control technique 

is compared with MFPA-based PIDA and MFPA-based PID controllers. It is anticipated that the 

dynamic performance of an EF temperature system will be enhanced in terms of minimum overshoot, 

rise time, and settling time as a result of the superiority and accuracy of GTO+BE. 

 The rest of this paper is structured as follows: There is an EF temperature system in Section 2. Section 3 

discusses the GTO. In Section 4, the BE is showcased. In Section 5, the suggested control system is 

described. Section 6 examines the simulation results. Section 7 presents the conclusions. 

2. Electric Furnace Temperature System 

Figure 1 depicts the schematic diagram of the EF temperature system, which includes an EF, a 

controller, a thermocouple, and a heater to regulate the furnace's temperature [10]. In this figure, r, U, y, 

and R represent the input voltage, the controller's output voltage, the thermocouple's output voltage, 

and the armature resistance, respectively. The second-order transfer function plus time delay describes 

the EF temperature system as follows: 

                                     (1) 

                               (2) 

 

Figure 1. EF temperature system [10]. 

The first-order Pade approximation estimates the time delay as shown in Equation (3).  

                                                                                      (3) 
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Then, the transfer function of the EF temperature system will be: 

  

                                                                   (4) 

This plant model  is used in the control loop in Figure 2. The transfer function of the PIDA 

controller is [33]: 

 

 

                                                     (5) 

 

where Kp, Ki, Kd, and Ka stand for proportional, integral, derivative, and accelerated gains, 

respectively. The poles of the PIDA controller (d, e) can be neglected, when 0 << d, e. The PIDA transfer 

function can be rewritten as: 

 

 

Figure 2. Closed loop electric furnace temperature control system [10]. 

                     (6) 

The MoFPA is utilized to design the optimal PIDA controller of the EF temperature control system [10].  

             (7) 

The block diagram in Figure 3 demonstrates the MFPA-based PIDA controller design optimization 

structure for the EF-TC system. 
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Figure 3. Block diagram of MoFPA-based PIDA controller design optimization 

structure [10]. 

 

3. Artificial Gorilla Troops Optimization (GTO) 

It is a new metaheuristic algorithm that was motivated by the social behaviors of gorillas. The GTO 

method contains two phases of exploration and exploitation based on five distinct operators [27]. The 

exploration phase has three different operators: 

• Departure for an unknown location boosts GTO exploration; 

• A gorilla reaching out to others enhances the balance between exploration and exploitation;  

• Departure for a known location improves the study of different optimization spaces. 

The exploitation phase has two operators to improve the search performance: 

• Adhere to the silverback; 

• The struggle for adult females. 

Figure 4 shows the flowchart of GTO that simplifies the principles of searching for a solution. Three 

types of solutions in the optimization space of GTO are a representation of the social life of gorillas in 

nature that contain the gorillas' position vector , position vectors of the gorilla candidate  generated 

in each phase improve the current solution, and the silverback yields the best solution every iteration. 

The number of search agents suggests only one silverback in the entire population. Gorillas tend to have 

a communal life. Therefore, they search for food together executing the decisions of a silverback leader. 

The population’s worst solution is a representation of the weakest member of the gorilla group in a 

formulation phase, so the gorillas move near the best solution (silverback) far from the worst solution. 

This improves all of the gorillas' positions. The GTO method employs a number of the below-described 

mechanisms for optimization activities. 

3.1. Exploration Phase 

All gorillas are considered candidate solutions in the GTO algorithm, and the silverback gorilla is 

the best candidate solution at each iteration of the optimization process. In the exploration phase, three 

various methods have been utilized: migration to an unknown position, migration towards a known 

position, and migration to other gorillas. Each of these three methods is chosen based on a general 

process.  

Equation 8 shows the three methods.  stands for the gorilla candidate position vector in  

iteration.  stands for the current vector of the gorilla position. Moreover, , , , and rand represent 
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random values from 0 to 1. The mechanism of migration to an unknown position was chosen using a 

parameter p that has a range of 0–1 before the optimization operation. When rand < p, the mechanism of 

migration to an unknown position is chosen. However, if rand ≥ 0.5, the mechanism of movement 

towards other gorillas is chosen. However, the mechanism of migration to a known position is chosen 

when rand < 0.5. The GTO algorithm benefits greatly from each of the techniques. The first mechanism 

enables the algorithm to effectively monitor the entire challenge space, the second mechanism enhances 

the GTO's performance during exploration, and the third mechanism supports the GTO's ability to flee 

from local optimal regions. The upper and lower bounds of the variables are UB and LB, respectively. 

Xr and GXr are two of the gorillas in the group that were randomly chosen from the entire population. 

The positions updated in each phase are included in one of the vectors of gorilla candidate positions 

that were randomly chosen.   

 

           (8) 

                                                                                                  (9) 

                                                                                                    (10) 

                                                                 (11) 

                                                         (12)  

                                                             (13) 

 

 represents the current value of iterations, and  represents the overall number of optimization 

iterations used.  denotes the cosine function, while  represents random values updated every 

iteration varying from 0 to 1.  simulates the silverback leadership, which  indicates a random value in 

the range of −1 and 1. The position of search agent vectors changes during the exploration phase, as 

shown in Figure 5. A group formation operation is carried out after the termination of the exploration 

phase. The cost of each GX solution is determined after the exploration phase, and if the cost is GX (t) < 

X (t), the GX(t) solution is utilized in place of the X(t) solution. As a result, the best solution produced 

during this stage is sometimes referred to as a silverback. 
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Figure 4. GTO flowchart [27]. 

 

Figure 5. An illustration of overall vectors in an exploration phase [27]. 



 
 

( ASWJS / Volume3, issue 2 /December 2023)                                                                                                                             P a g e  20 

 

(ASWJST 2023/ printed ISSN: 2735-3087 and on-line ISSN: 2735-3095)                              https://journals.aswu.edu.eg/stjournal  
 

 

3.2. Exploitation Phase 

Two behaviors, competing for adult females and following the silverback, are used in this phase. 

The C value in Equation 9 selects between two behaviors. If C ≥ W, the silverback mechanism is chosen; 

however, if C < W, the competition for adult females is chosen. W is a parameter that must be specified 

before the optimization process.  

3.2.1. Follow The Silverback 

Male gorillas comply with all instructions from Silverback to travel to various locations in search of 

food supplies. Additionally, each group member might have an impact on how the group moves. This 

behavior is simulated using Equation 14. This process is also demonstrated in Figure 6. 

                       (14) 

                                                                  (15) 

                                                                                                  (16) 

The gorilla position vector is X(t), and Xsilverback denotes the silverback gorilla position vector (best 

solution). Moreover, GXi(t) denotes the vector position of each candidate gorilla in iteration t. N stands 

for the total number of gorillas. 

 

 

Figure 6. An example of overall vectors follows the silverback in 2D and 3D space [27]. 

 

3.2.2. Competition For Adult Females 

When young gorillas reach puberty, they compete violently with other male gorillas from their 

group for the choice of adult females. These conflicts, which involve group members, sometimes linger 

for days. This behavior is simulated using Equation 17. 

                (17) 

                                                                                (18) 

                                                                                        (19) 
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                                                                     (20) 

r5 represents random values ranging from 0 to 1. The coefficient vector A determines the degree of 

violence in conflicts. Before the optimization operation, the parameter β must have a value. E is used to 

simulate the effect of violence on the dimensions of solutions. The dimensions of the problem and the 

value of E will be identical to random values in the normal distribution if rand ≥ 0.5, but if rand < 0.5, E 

will be equal to a random value in the normal distribution. Rand represents a random number between 

0 and 1. How the solutions alter is shown in Figure 7. 

 

 

Figure 7. Example of overall vectors in the competition for adult females [27]. 

The best solution found across the overall population is viewed as a silverback. A group formation 

operation is carried out at the end of the exploitation phase, during which the costs of all GX solutions 

are estimated. If the costs of GX (t) and X (t) are equal, the GX(t) solution is used as the X(t) solution. 

4. Balloon Effect Identifier 

The expression “balloon effect” simulates how air affects balloon size. The impact of system 

challenges like disturbances and parameter uncertainty on  is comparable to the impact of the 

balloon effect. So, the balloon effect (BE) acts as an online identifier for the electric furnace temperature 

system. The BE identifier will affect online the objective function of the optimization strategy at any 

iteration as shown in Figure 8. Therefore, this technique enhances the algorithm process [31], [32]. 

 

Figure 8. Optimization strategy-based Balloon Effect identifier [31], [32]. 
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The online transfer function of the electric furnace temperature system for any iteration (i) will be: 

                                                              (21) 

Furthermore,  is a function of its previous value .  stands for a gain and  represents 

the nominal process transfer function. 

                                                  (22) 

                                                    (23) 

where 

                                                      (24) 

                                              (25) 

5. GTO-Based BE Identifier 

Equation (2) describes the second-order transfer function plus the time delay for the electric furnace 

temperature system. By neglecting the time delay, Equation (2) is reduced to be: 

                                               (26) 

The lag compensator is chosen to provide a satisfactory tracking and regulating response of the 

electric furnace temperature control system. The transfer function of the lag compensator  will be: 

  

                                                   (27) 

Figure 9 shows the block diagram of the electric furnace temperature system controlled by an 

adaptive lag compensator using GTO-based Balloon Effect identifier. The GTO technique is used to 

determine the online transfer function of the electric furnace temperature system  for any iteration 

(i). However, the transfer function of the closed loop of the electric furnace temperature system is:   

  

  (28) 

where  is a negative unity feedback transfer function and  depends on the transfer function 

of the electric furnace temperature system , which is called the nominal process transfer function, as 

explained below: 

 
 

 

Then, the characteristic equation in Equation (28) will be: 

  

 

So, 
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,              (29) 

,    ,     (30) 

The objective function of GTO based Balloon Effect identifier is chosen as:  

                             (31) 

This means that The objective function  is a function of  and  to address the system challenges.   

 

 

Figure 9. EF temperature system with GTO+BE. 

6. Results and Discussion 

In this part, the simulation results for the investigated three techniques are presented along with a 

comparison of their dynamic performance using the same circumstances. The three techniques are the 

adaptive lag compensator based on GTO+BE (C), MoFPA-based PID controller (C1) [10], and MoFPA-

based PIDA controller (C2) [10]. All of C, C1, and C2 are designed and implemented for control of EF 

temperature. This control process aims to energy efficiency. The MATLAB/Simulink software is used to 

prove the efficacy and superiority of the proposed control scheme over other recent controllers. 

6.1. First Scenario 

With a constant temperature desired value, the dynamic performance of C for the EF temperature 

system is investigated in this scenario. Figure 10 explains the dynamic performance of C, C2, and C1 

techniques. With C1, the dynamic performance rises at 4.1 s, reaches the steady state at 24 s, and has the 

maximum percent overshoot ( ) about 18%. Moreover, the system dynamic performance with C2 rises 

at 7.5 s approximately and yields settling time ( ) = 24 s and = 5%. However, the dynamic response of 

the EF temperature system with C gives = 2.9 s, = 11 s, and = 9%, as shown in Table 1. As a result, C 

generates a fast response and goes to a settling state quickly. So, the proposed C provides a satisfactory 

tracking and regulating response of the EF-TC system.    
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Figure 10. The dynamic performance of the EF under a constant temperature 

desired value. 

 

 

Table 1. First scenario: performance evaluation. 

Parameters 
Investigated techniques 

C1 C2 C (proposed)  

 4.1 s 7.5 s 2.9 s 

 24 s 24 s 11 s 

 18% 5% 9% 

 

6.2. Second Scenario 

In this case, the dynamic response of the EF temperature system with the different controllers is 

examined with a step change in the desired temperature at 20 s. The dynamic responses of the EF 

temperature system with C, C2, and C1 are compared as presented in Figure 11. The dynamic response 

with the C1 yields a maximum kick at 23 s, with the C2 provides a slow response, and the proposed C 

generates the best response, which is the fast performance with minimum undershoot at 25 s and 

reaches steady state at 30 s as explained in Table 2.  
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Figure 11.  The dynamic performance of the EF under a step change in the 

desired temperature 

 

Table 2. Second scenario: performance evaluation. 

Parameters 
Investigated techniques 

C1 C2 C (proposed) 

 7.1 s 4 s 3.2 s 

 20 s 20 s 10 s 

Undershoot 49% - 9% 

 

6.3. Third Scenario 

The performance of the EF temperature system is surveyed under a step disturbance as shown in 

Figure 12. The performances of the studied system vary between 0.79 p.u. and 1.19 p.u. with C1, 0.85 

p.u. and 1.12 p.u. with C2, 0.82 p.u. and 1.15 p.u. with the proposed C. In Figure 13, the dynamic 

performances of the studied system are explained, as where the best and fastest dynamic performance 

in tracking the desired value is with the proposed C.   

 

Figure 12. Step disturbance. 
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Figure 13.   The dynamic performance of the EF under a step disturbance 

6.4. Fourth Scenario 

The dynamic response of the EF temperature system with the different controllers is examined with 

a random change in the desired temperature as shown in Figure 14. In Figure 15, the dynamic 

performances of the studied system are explained, as where the best performance is with the proposed 

C.   

 

 

Figure 14.  Random reference temperature 

 

Figure 15. The dynamic performance of the EF with the three techniques under 

random 
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7. Conclusions 

In industrial engineering applications, automatic control systems are typically tuned via a heuristic 

method that relies on the control engineer's knowledge and iterations of trial and error. In the end, EF's 

performance is acceptable but not ideal. In this sense, the primary purpose of this article is the design 

and validation of an advanced control strategy at the early design stage of the EF to achieve three 

objectives: (1) to reduce controller tuning time during EF commissioning, (2) to enhance EF performance 

in comparison to conventional industrial controllers, and (3) to lower system energy costs. Three control 

schemes (C, C1, and C2) are compared in MATLAB Simulink to validate the performance of C. Both C1 

and C2 are chosen due to their industrial use. 

The C method demonstrates the best performance and actuation balance when four simulation tests 

are taken into account, and C2 is superior to C1. Using a data set from the EF setup case results in a 

significant offset from the target, which results in excessive tracking errors in both tests. Finally, it can 

be concluded that, in comparison to C1 and C2, C enhances temperature tracking performance with the 

minimum overshoot, rise time, and settling time. 
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