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ON THE OSCILLATION OF SOLUTIONS OF Ψ-HILFER

GENERALIZED PROPORTIONAL FRACTIONAL

DIFFERENTIAL EQUATIONS

J. VIJI, V. MUTHULAKSHMI

Abstract. In this piece of work, we establish some sufficient conditions that

lead to oscillation for Ψ-Hilfer generalized proportional fractional differential
equations. Through Young’s inequality and the Volterra integral equation, we

develop new oscillation criteria for the above problem. As a result of this study,

we generalize and regain some existing results in the literature because of the
suitable selection of the kernel Ψ. Additionally, we provide two examples to

demonstrate the usefulness of our findings.

1. Introduction

Nowadays, fractional calculus has become known as a development of classical
calculus. Due to its applications in plenty of fields, fractional calculus has gained
more attention recently, see [18, 21, 13, 25, 8, 22]. Numerous studies over the
past thirty years have concentrated on the qualitative characteristics of differential
equation solutions, like oscillation, existence, uniqueness, stability, etc. Over the
last thirty years, many researchers have focused on the qualitative analysis of dif-
ferential equations. One of the remarkable research area is the study of oscillatory
behavior. The monographs by Ladde [19], Agarwal [5] and Erbe [10] include fur-
ther details regarding the oscillatory behavior of integer order differential equations.

Recently, several new fractional derivatives and integrals have grown because
each operator includes different kernels, which enlarge the number of definitional
possibilities, see [4, 17, 14, 15, 16, 23, 6]. Later, in 2021, Ishfag et al. [20] introduced

2010 Mathematics Subject Classification. 26A33, 34C10.
Key words and phrases. Oscillation criteria; Ψ-Hilfer generalized proportional fractional

derivative; nonoscillatory solution.

Submitted September 1, 2023. Revised October 4, 2023.

1



2 J. VIJI, V. MUTHULAKSHMI JFCA-2024/15(1)

Ψ-Hilfer generalized proportional fractional (Ψ-HGPF) derivative of a function in-
terms of another function, which generalize HGPF derivative provided in [6]. It
combines the Riemann-Liouville type proportional fractional operators and Caputo
type proportional fractional operators interms of another function as described by
the author Jarad et al. [16]. The main benefits of Ψ-HGPF operator is the flex-
ibility in selecting the kernel Ψ and the ability to combine and retrieve previous
discoveries in literature.

Then, in 2012, Grace et al. [11] first suggested the idea of the study on oscillatory
behavior of fractional initial value problem of the form

Dϑ
b y(ω) + f1(ω, y(ω)) = v(ω) + f2(ω, y(ω)), ω > b ≥ 0,

lim
ω→b+

I1−ϑ
b y(ω) = b,

and {
CDϑ

b y(ω) + f1(ω, y(ω)) = v(ω) + f2(ω, y(ω)), ω > b ≥ 0,

y(k)(b) = bj , j = 0, 1, 2, . . . , n− 1,

Here ϑ ∈ (0, 1),Dϑ
b indicates fractional derivative of order ϑ of Riemann-Liouville

type, I1−ϑ
b signifies fractional integral of order 1 − ϑ of Riemann-Liouville type,

CDϑ
b denotes the fractional derivative of order ϑ (ϑ ∈ (n − 1, n]) of Caputo type,

n ≥ 1 is an integer, b ∈ R, fi ∈ C([b,∞)× R,R).

Followed by, many researchers are interested in analysing and establishing oscil-
lation criteria for fractional order differential equations, see [9, 24, 2, 1, 3, 7].

To the best of our knowledge, we have not found any results regarding the oscil-
latory behavior of fractional differential equations via the Ψ-HGPF derivative.

In this study, motivated by the above literature, we investigate the oscillatory
behavior of Ψ-HGPF inital value problem as follows:

Dϑ,φ,γ,Ψ
b+ y(ω) + g1(ω, y) = r(ω) + g2(ω, y), ω > b ≥ 0,

I1−δ,γ,Ψ
b+ y(b) =

m∑
l=1

κl y(ηl), ηl ∈ (b, ω), κl ∈ R,
(1)

where ϑ ∈ (0, 1), φ ∈ [0, 1] and γ ∈ (0, 1], Dϑ,φ,γ,Ψ
b+ represents the left sided Ψ-

HGPF derivative of order ϑ and type φ of the function y interms of another

function Ψ, I1−δ,γ,Ψ
b+ denotes the left GPF integral of order 1 − δ of the func-

tion y interms of another function Ψ with δ = ϑ + φ(1 − φ), ηl ∈ (b, ω) satis-
fying b < η1 < η2 < · · · < ηm < ω for l = 1, 2, · · · ,m, r ∈ C([b,+∞),R),
gj ∈ C([b,+∞)× R,R), j = 1, 2.

A nontrivial function y ∈ C([b,+∞),R) is said to be a solution of problem (1) if

it satisfies (1) for ω > b and Dϑ,φ,γ,Ψ
b+ y ∈ C([b,+∞),R) exists. A solution of prob-

lem (1) is said to be oscillatory if it has arbitrarily large zeros on (0,∞); otherwise
it is called nonoscillatory. An equation is said to be oscillatory if all its solutions
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are oscillatory.

Remaining sections are structured as follows: In Section 2, we present some
basic concepts to demonstrate our main results. In Section 3, we illustrate our
major findings regarding oscillation criteria. In Section 4, we provide a couple
of examples for clarification of the significance of our findings. We highlight the
importance of our primary findings for the specific set of parameters in Section 5,
and describe how they coincide with Grace’s [11] prior findings.

2. Preliminaries

In preliminary, we provide essential concepts to illustrate our main results.

Definition 2.1. [16] For γ ∈ [0, 1], consider ϕ0 : [0, 1]× R → [0,∞) and
ϕ1 : [0, 1]× R → [0,∞) are continuous functions such that ∀ ω ∈ R, we have

lim
γ→0+

ϕ0(γ, ω) = 0, lim
γ→0+

ϕ1(γ, ω) = 1, lim
γ→1−

ϕ0(γ, ω) = 1, lim
γ→1−

ϕ1(γ, ω) = 0.

For γ ∈ (0, 1] and γ ∈ [0, 1), we have

ϕ0(γ, ω) ̸= 0,

ϕ1(γ, ω) ̸= 0.

Let Ψ(ω) be a strictly increasing positive continuous function. Then the proportional
derivative of a function f(ω) of order γ interms of another function Ψ(ω) is given
by

Dγ,Ψf(ω) = ϕ1(γ, ω)f(ω) + ϕ0(γ, ω)
f

′
(ω)

Ψ′(ω)
. (2)

Particularly, if ϕ0(γ, ω) = γ and ϕ1(γ, ω) = 1− γ, then equation (2) becomes

Dγ,Ψf(ω) = (1− γ)f(ω) + γ
f

′
(ω)

Ψ′(ω)
. (3)

The integral operator regarding to proportional derivative (3) is defined by

I1,γ,Ψ
b f(ω) =

1

γ

∫ ω

b

e
γ−1
γ (Ψ(ω)−Ψ(ν))Ψ′(ν)f(ν)dν, (4)

where we assume that I0,γ,Ψ
b f(ω) = f(ω).

The generalized proportional integral operator of order m regarding to propor-
tional derivative Dm,γ,Ψ is expressed as follows:

(Im,γ,Ψ
b f)(ω) =

1

γmΓ(m)

∫ ω

b

e
γ−1
γ (Ψ(ω)−Ψ(ν))(Ψ(ω)−Ψ(ν))m−1Ψ′(ν)f(ν)dν,

where, Dm,γ,Ψ
b = Dγ,Ψ · Dγ,Ψ · Dγ,Ψ · · · Dγ,Ψ︸ ︷︷ ︸

m−times

.

Definition 2.2. [16] The left-sided generalized fractional proportional integral of
order ϑ of the function f interms of another function Ψ is defined as follows:

(Iϑ,γ,Ψ
b+ f)(ω) =

1

γϑΓ(ϑ)

∫ ω

b+
e

γ−1
γ (Ψ(ω)−Ψ(ν))(Ψ(ω)−Ψ(ν))ϑ−1Ψ′(ν)f(ν)dν, ω > b,
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where γ ∈ (0, 1] and ϑ ∈ C with Re(ϑ) > 0.

Definition 2.3. [16] The generalized left proportional fractional derivative of order
ϑ of the function f interms of another function Ψ is defined as follows:

(Dϑ,γ,Ψ
b+ f)(ω) =

Dm,γ,Ψ
ω

γm−ϑΓ(m− ϑ)

∫ ω

b+
e

γ−1
γ (Ψ(ω)−Ψ(ν))(Ψ(ω)−Ψ(ν))m−ϑ−1Ψ′(ν)f(ν)dν,

where γ ∈ (0, 1], ϑ ∈ C, Re(ϑ) ≥ 0, Ψ ∈ C[a, b], Ψ′
(ν) > 0, Γ(·) is the gamma

function and m = [Re(ϑ)] + 1.

Definition 2.4. [20] Let I = [a, b], where −∞ ≤ a < b ≤ ∞ be an interval and
f ∈ Cm[a, b], Ψ ∈ Cm[a, b] be continuous functions such that Ψ is positive, strictly

increasing and Ψ
′
(ω) ̸= 0, for all ω ∈ I. The Ψ-Hilfer generalized proportional

fractional derivatives (left-sided/right-sided) of order ϑ and type φ of f interms of
another function Ψ are defined by

(Dϑ,φ,γ,Ψ
b± f)(ω) =

(
Iφ(m−ϑ),γ,Ψ
b± (Dm,γ,Ψ) I(1−φ)(m−ϑ),γ,Ψ

b± f
)
(ω), (5)

where ϑ ∈ (m− 1,m), φ ∈ [0, 1] with m ∈ N and γ ∈ (0, 1].

Particularly, if m = 1, then ϑ ∈ (0, 1) and φ ∈ [0, 1], so (5) becomes,

(Dϑ,φ,γ,Ψ
b± f)(ω) =

(
Iφ(1−ϑ),γ,Ψ
b± (D1,γ,Ψ) I(1−φ)(1−ϑ),γ,Ψ

b± f
)
(ω).

Theorem 2.1. [20] For ξ ∈ R such that ξ > m, then the image of the function

f(ω) = e
γ−1
γ (Ψ(ω)−Ψ(b))(Ψ(ω)−Ψ(b)))ξ−1 under the operator Dϑ,φ,γ,Ψ

b+ is defined by

Dϑ,φ,γ,Ψ
b+ f(ω) =

γϑΓ(ξ)

Γ(ξ − ϑ)
e

γ−1
γ (Ψ(ω)−Ψ(b))(Ψ(ω)−Ψ(b))ξ−ϑ−1,

where ϑ ∈ (m− 1,m), m ∈ N, φ ∈ [0, 1], γ ∈ (0, 1] and δ = ϑ+ φ(m− ϑ).

Lemma 2.1. [20] If f ∈ Cδ[a, b] and Im−δ,γ,Ψ
b+ f ∈ Cm

δ,Ψ[a, b], then

Iϑ,γ,Ψ
b+ Dϑ,φ,γ,Ψ

b+ f(ω) = f(ω)−
m∑
l=1

e
γ−1
γ (Ψ(ω)−Ψ(b))(Ψ(ω)−Ψ(b))δ−k

γδ−kΓ(δ − l + 1)
(Ik−δ,γ,Ψ

b+ f)(b),

where ϑ ∈ (m − 1,m), m ∈ N, γ ∈ (0, 1], φ ∈ [0, 1], with δ = ϑ + φ(m − ϑ) and
δ ∈ (m− 1,m).

Lemma 2.2. [12] For U ≥ 0 and V > 0, we have

(I) Uλ + (λ− 1)V λ − λUV λ−1 ≥ 0, λ > 1,

(II) Uλ − (1− λ)V λ − λUV λ−1 ≤ 0, λ < 1,

where (I) and (II) holds if and only if U = V .
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3. Main Results

In this section, we established sufficient conditions for the solutions of Ψ-HGPF
problem (1) to be oscillatory. The following notations are used throughout:

Θ(ν) = Ψ(ω)−Ψ(ν),

Z(ν) = Ψ(ηi)−Ψ(ν).

By applying Lemma 2.1, the solution representation of the Ψ-HGPF problem (1)
can be expressed as follows:

y(ω) =
Λ

γϑΓ(ϑ)
e

γ−1
γ (Θ(b))(Θ(b))δ−1

×
m∑
l=1

κl

∫ ηi

b+
e

γ−1
γ (Z(ν))(Z(ν))ϑ−1Ψ′(ν) H(ν) dν

+
1

γϑΓ(ϑ)

∫ M

b+
e

γ−1
γ (Θ(ν))(Θ(ν))ϑ−1Ψ′(ν) H(ν) dν

+
1

γϑΓ(ϑ)

∫ ω

M

e
γ−1
γ (Θ(ν))(Θ(ν))ϑ−1Ψ′(ν) H(ν) dν, (6)

where

Λ =
1

γδ−1Γ(δ)−
∑m

l=1 κl e
γ−1
γ (Z(b))(Z(b))δ−1

and

H(ν) = r(ν) + g2(ν, y)− g1(ν, y).

Let us assume the following conditions to prove our results.

(A1) y.gj(ω, y) > 0, j = 1, 2, y ̸= 0, ω ≥ 0,

(A2) |g1(ω, y)| ≥ q1(ω)|y|µ1 and |g2(ω, y)| ≤ q2(ω)|y|µ2 , ω ≥ 0,

where q1, q2 ∈ C([b,+∞),R+), µ1, µ2 > 0 are real numbers.

For our convenience, we define

Φ(ω) = Λ e
γ−1
γ (Θ(b))(Θ(b))δ−1

×
m∑
l=1

κl

∫ ηi

b+
e

γ−1
γ (Z(ν))(Z(ν))ϑ−1Ψ′(ν) H(ν) dν (7)

and

Ω(ω,M) =

∫ M

b+
e

γ−1
γ (Θ(ν))(Θ(ν))ϑ−1Ψ′(ν) H(ν) dν. (8)
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Theorem 3.2. Let g2 = 0 and the assumption (A1) holds. If

lim
ω→∞

inf(Ψ(ω))1−ϑ

∫ ω

b+
e

γ−1
γ (Θ(ν))(Θ(ν))ϑ−1Ψ′(ν) r(ν) dν = −∞ (9)

and

lim
ω→∞

sup(Ψ(ω))1−ϑ

∫ ω

b+
e

γ−1
γ (Θ(ν))(Θ(ν))ϑ−1Ψ′(ν) r(ν) dν = +∞, (10)

for every sufficiently large M , then every solution of problem (1) is oscillatory.

Proof. By contradiction, let us assume that y(ω) be a nonoscillatory solution of
problem (1) with g2 = 0. Consequently, without loss of generality, we may assume
that M > b be large enough such that y(ω) > 0 for all ω ≥ M . According to the
assumption (A1), it is clearly shows that g1(ω, y) > 0 for ω ≥ M . Then from (6),
we obtain

y(ω) ≤ Λ

γϑΓ(ϑ)
e

γ−1
γ (Θ(b))(Θ(b))δ−1

×
m∑
l=1

κl

∫ ηi

b+
e

γ−1
γ (Z(ν))(Z(ν))ϑ−1Ψ′(ν) H(ν) dν

+
1

γϑΓ(ϑ)

∫ M

b+
e

γ−1
γ (Θ(ν))(Θ(ν))ϑ−1Ψ′(ν) H(ν) dν

+
1

γϑΓ(ϑ)

∫ ω

M

e
γ−1
γ (Θ(ν))(Θ(ν))ϑ−1Ψ′(ν) r(ν) dν. (11)

Multiplying the above inequality (11) by γϑΓ(ϑ)(Ψ(ω))1−ϑ, we get

γϑΓ(ϑ)(Ψ(ω))1−ϑy(ω) ≤ (Ψ(ω))1−ϑΛ e
γ−1
γ (Θ(b))(Θ(b))δ−1

×
m∑
l=1

κl

∫ ηi

b+
e

γ−1
γ (Z(ν))(Z(ν))ϑ−1Ψ′(ν) H(ν) dν

+(Ψ(ω))1−ϑ

∫ M

b+
e

γ−1
γ (Θ(ν))(Θ(ν))ϑ−1Ψ′(ν) H(ν) dν

+(Ψ(ω))1−ϑ

∫ ω

M

e
γ−1
γ (Θ(ν))(Θ(ν))ϑ−1Ψ′(ν) r(ν) dν,

which implies that

0 < γϑΓ(ϑ)(Ψ(ω))1−ϑy(ω) ≤ (Ψ(ω))1−ϑΦ(ω) + (Ψ(ω))1−ϑΩ(ω,M) + (Ψ(ω))1−ϑ

×
∫ ω

M

e
γ−1
γ (Θ(ν))(Θ(ν))ϑ−1 Ψ′(ν) r(ν) dν, (12)

where Φ(ω) and Ω(ω,M) are respectively, defined in (7) and (8).

Take M1 ≥ M .
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Since |e
γ−1
γ (Ψ(ω))| ≤ 1, we have

(Ψ(ω))1−ϑ Φ(ω) ≤ (Ψ(ω))1−ϑ|Λ|
m∑
l=1

κl

∫ ηi

b+
(Z(ν))ϑ−1(Ψ(ν)−Ψ(b))δ−1Ψ′(ν)|H(ν)|dν

= B(δ, ϑ)|Λ| |H(ν)|
m∑
l=1

κl

(
Z(b)

Ψ(ω)

)ϑ−1

for ω ≥ M1,

where B(δ, ϑ) =
∫ 1

0
vδ−1(1− v)ϑ−1dv is the beta function with Re(δ), Re(ϑ) > 0.

Using the monotonicity of Ψ on (b, ω) and h1(ω) =

(
(Θ(b))δ

Ψ(ω)

)ϑ−1

is decreasing

function for 0 < ϑ < 1, we have

(Ψ(ω))1−ϑ Φ(ω) < B(δ, ϑ)|Λ| |H(ν)|
m∑
l=1

κl

((
Θ(b)

)δ
Ψ(ω)

)ϑ−1

≤ B(δ, ϑ)|Λ| |H(ν)|
m∑
l=1

κl

((
Ψ(M1)−Ψ(b)

)δ
Ψ(M1)

)ϑ−1

:= C(M1) for ω ≥ M1. (13)

Again since |e
γ−1
γ (Ψ(ω))| ≤ 1 and h2(ω) =

(
Θ(ν)

Ψ(ω)

)ϑ−1

is decreasing function

for 0 < ϑ < 1, we obtain

(Ψ(ω))1−ϑΩ(ω,M) ≤ (Ψ(ω))1−ϑ

∫ M

b+
(Θ(ν))ϑ−1Ψ′(ν) |H(ν)| dν

=

∫ M

b+

(
Θ(ν)

Ψ(ω)

)ϑ−1

Ψ′(ν) |H(ν)| dν

≤
∫ M

b+

(
Ψ(M1)−Ψ(ν)

Ψ(M1)

)ϑ−1

Ψ′(ν) |H(ν)| dν

:= C(M,M1) for ω ≥ M1. (14)

Substituting (13) and (14) in (12), we obtain for ω ≥ M1,

0 < γϑΓ(ϑ)(Ψ(ω))1−ϑy(ω) ≤ C(M1) + C(M,M1) + (Ψ(ω))1−ϑ

×
∫ ω

M

e
γ−1
γ (Θ(ν))(Θ(ν))ϑ−1Ψ′(ν) r(ν) dν, (15)

which implies that

(Ψ(ω))1−ϑ

∫ ω

M

e
γ−1
γ (Θ(ν))(Θ(ν))ϑ−1Ψ′(ν) r(ν) dν ≥ −[C(M1) + C(M,M1)]

> −∞. (16)
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Taking the limit infimum of both sides of inequality (16) as ω → ∞, we arrive
contradiction to condition (9). Similarly, when y is eventually negative, we get a
contradiction to condition (10). Consequently, proof is completed. □

Theorem 3.3. Let the assumptions (A1) and (A2) hold with µ1 > 1 and µ2 = 1.
If

lim
ω→∞

inf(Ψ(ω))1−ϑ

∫ ω

b+
e

γ−1
γ (Θ(ν))(Θ(ν))ϑ−1Ψ′(ν)

[
r(ν) +Hµ1

(ν)
]
dν = −∞ (17)

and

lim
ω→∞

sup(Ψ(ω))1−ϑ

∫ ω

b+
e

γ−1
γ (Θ(ν))(Θ(ν))ϑ−1Ψ′(ν)

[
r(ν) +Hµ1(ν)

]
dν = +∞, (18)

where

Hµ1(ν) = (µ1 − 1) (µ1)
µ1

(1−µ1) q
1

(1−µ1)

1 (ν) q
µ1

(µ1−1)

2 (ν), (19)

for every sufficiently large M, then every solution of problem (1) is oscillatory.

Proof. By contradiction, let us assume that y(ω) be a nonoscillatory solution of
problem (1). Consequently, without loss of generality, we may assume that M > b
be large enough such that y(ω) > 0 for all ω ≥ M . By using the assumptions (A1)
and (A2) with µ1 > 1 and µ2 = 1, we get

g2(ν, y)− g1(ν, y) ≤ q2(ν)y(ν)− q1(ν)y
µ1(ν). (20)

Applying the inequality (20) in (6), we obtain

y(ω) ≤ Λ

γϑΓ(ϑ)
e

γ−1
γ (Θ(b))(Θ(b))δ−1

×
m∑
l=1

κl

∫ ηi

b+
e

γ−1
γ (Z(ν))(Z(ν))ϑ−1Ψ′(ν) H(ν) dν

+
1

γϑΓ(ϑ)

∫ M

b+
e

γ−1
γ (Θ(ν))(Θ(ν))ϑ−1Ψ′(ν) H(ν) dν

+
1

γϑΓ(ϑ)

∫ ω

M

e
γ−1
γ (Θ(ν))(Θ(ν))ϑ−1Ψ′(ν)

[
r(ν)

]
dν

+
1

γϑΓ(ϑ)

∫ ω

M

e
γ−1
γ (Θ(ν))(Θ(ν))ϑ−1Ψ′(ν)

×
[
q2(ν)y(ν)− q1(ν)y

µ1(ν)
]
dν. (21)

Take

λ = µ1, U = q
1
µ1
1 and V = (q2q

−1
µ1
1 /µ1)

1
(µ1−1) .

Then by using Lemma 2.2 (I), we have

q2(ν)y(ν)− q1(ν)y
µ1(ν) ≤ (µ1 − 1) (µ1)

µ1
1−µ1 q

1
1−µ1
1 (ν) q

µ1
µ1−1

2 (ν). (22)
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Thus, (21) becomes

y(ω) ≤ Λ

γϑΓ(ϑ)
e

γ−1
γ (Θ(b))(Θ(b))δ−1

×
m∑
l=1

κl

∫ ηi

b+
e

γ−1
γ (Z(ν))(Z(ν))ϑ−1Ψ′(ν) H(ν) dν

+
1

γϑΓ(ϑ)

∫ M

b+
e

γ−1
γ (Θ(ν))(Θ(ν))ϑ−1Ψ′(ν) H(ν) dν

+
1

γϑΓ(ϑ)

∫ ω

M

e
γ−1
γ (Θ(ν))(Θ(ν))ϑ−1Ψ′(ν)

[
r(ν)

]
dν

+
1

γϑΓ(ϑ)

∫ ω

M

e
γ−1
γ (Θ(ν))(Θ(ν))ϑ−1Ψ′(ν)

×
[
(µ1 − 1) (µ1)

µ1
1−µ1 q

1
1−µ1
1 (ν) q

µ1
µ1−1

2 (ν)
]
dν.

Multiplying the above inequality by γϑΓ(ϑ)(Ψ(ω))1−ϑ, we have

γϑΓ(ϑ)(Ψ(ω))1−ϑy(ω) ≤ (Ψ(ω))1−ϑΛe
γ−1
γ (Θ(b))(Θ(b))δ−1

×
m∑
l=1

κl

∫ ηi

b+
e

γ−1
γ (Z(ν))(Z(ν))ϑ−1Ψ′(ν) H(ν) dν

+(Ψ(ω))1−ϑ

∫ M

b+
e

γ−1
γ (Θ(ν))(Θ(ν))ϑ−1Ψ′(ν) H(ν) dν

+(Ψ(ω))1−ϑ

∫ ω

M

e
γ−1
γ (Θ(ν))(Θ(ν))ϑ−1Ψ′(ν)

×
[
r(ν) +Hµ1

(ν)
]
dν,

where Hµ1
(ν) is defined in (19). We ignore the remaining proof as it is similar to

the proof of Theorem 3.2. □

Theorem 3.4. Let the assumptions (A1) and (A2) hold with µ1 = 1 and µ2 < 1.
If

lim
ω→∞

inf(Ψ(ω))1−ϑ

∫ ω

b+
e

γ−1
γ (Θ(ν))(Θ(ν))ϑ−1Ψ′(ν)

[
r(ν) +Hµ2

(ν)
]
dν = −∞ (23)

and

lim
ω→∞

sup(Ψ(ω))1−ϑ

∫ ω

b+
e

γ−1
γ (Θ(ν))(Θ(ν))ϑ−1Ψ′(ν)

[
r(ν) +Hµ2(u)

]
dν = +∞, (24)

where

Hµ2
(ν) = (1− µ2) (µ2)

µ2
(1−µ2) q

µ2
(µ2−1)

1 (ν) q
1

(1−µ2)

2 (ν), (25)

for every sufficiently large M, then every solution of problem (1) is oscillatory.
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Proof. By contradiction, let us assume that y(ω) be a nonoscillatory solution of
problem (1). Consequently, without loss of generality, we may assume that M > b
be large enough such that y(ω) > 0 for all ω ≥ M . Applying the assumptions (A1)
and (A2) with µ1 = 1 and µ2 < 1, we get

g2(ν, y)− g1(ν, y) ≤ q2(ν)y
µ2(ν)− q1(ν)y(ν). (26)

Then, using inequality (26) in (6), we obtain

y(ω) ≤ Λ

γϑΓ(ϑ)
e

γ−1
γ (Θ(b))(Θ(b))δ−1

×
m∑
l=1

κl

∫ ηi

b+
e

γ−1
γ (Z(ν))(Z(ν))ϑ−1Ψ′(ν) H(ν) dν

+
1

γϑΓ(ϑ)

∫ M

b+
e

γ−1
γ (Θ(ν))(Θ(ν))ϑ−1Ψ′(ν) H(ν) dν

+
1

γϑΓ(ϑ)

∫ ω

M

e
γ−1
γ (Θ(ν))(Θ(ν))ϑ−1Ψ′(ν)

[
r(ν)

]
dν

+
1

γϑΓ(ϑ)

∫ ω

M

e
γ−1
γ (Θ(ν))(Θ(ν))ϑ−1Ψ′(ν)

×
[
q2(ν)y

µ2(ν)− q1(ν)y(ν)
]
dν. (27)

Take

λ = µ2, U = q
1
µ2
2 and V = (q1q

−1
µ2
2 /µ2)

1
(µ2−1) .

Then by using Lemma 2.2 (II), we get

q2(ν)y(ν)− q1(ν)y
µ1(ν) ≤ (1− µ2) (µ2)

µ2
(1−µ2) q

µ2
(µ2−1)

1 (ν) q
1

(1−µ2)

2 (ν). (28)

Thus, (27) becomes

y(ω) ≤ Λ

γϑΓ(ϑ)
e

γ−1
γ (Θ(b))(Θ(b))δ−1

×
m∑
l=1

κl

∫ ηi

b+
e

γ−1
γ (Z(ν))(Z(ν))ϑ−1Ψ′(ν) H(ν) dν

+
1

γϑΓ(ϑ)

∫ M

b+
e

γ−1
γ (Θ(ν))(Θ(ν))ϑ−1Ψ′(ν) H(ν) dν

+
1

γϑΓ(ϑ)

∫ ω

M

e
γ−1
γ (Θ(ν))(Θ(ν))ϑ−1Ψ′(ν)

[
r(ν)

]
dν

+
1

γϑΓ(ϑ)

∫ ω

M

e
γ−1
γ (Θ(ν))(Θ(ν))ϑ−1Ψ′(ν)

×
[
(1− µ2) (µ2)

µ2
(1−µ2) q

µ2
(µ2−1)

1 (ν) q
1

(1−µ2)

2 (ν)
]
dν.
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Multiplying the above inequality by γϑΓ(ϑ)(Ψ(ω))1−ϑ, we have

γϑΓ(ϑ)(Ψ(ω))1−ϑy(ω) ≤ (Ψ(ω))1−ϑΛe
γ−1
γ (Θ(b))(Θ(b))δ−1

×
m∑
l=1

κl

∫ ηi

b+
e

γ−1
γ (Z(ν))(Z(ν))ϑ−1Ψ′(ν) H(ν) dν

+(Ψ(ω))1−ϑ

∫ M

b+
e

γ−1
γ (Θ(ν))(Θ(ν))ϑ−1Ψ′(ν) H(ν) dν

+(Ψ(ω))1−ϑ

∫ ω

M

e
γ−1
γ (Θ(ν))(Θ(ν))ϑ−1Ψ′(ν)

×
[
r(ν) +Hµ2

(ν)
]
dν.

where Hµ2
(ν) is defined in (25). We ignore the remaining proof as it is similar to

the proof of Theorem 3.2. □

Theorem 3.5. Let the assumptions (A1) and (A2) hold with µ1 > 1 and µ2 < 1.
If

lim
ω→∞

inf(Ψ(ω))1−ϑ

∫ ω

b+
e

γ−1
γ (Θ(ν))(Θ(ν))ϑ−1Ψ′(ν)

[
r(ν) +Hµ1,µ2

(ν)
]
dν = −∞ (29)

and

lim
ω→∞

sup(Ψ(ω))1−ϑ

∫ ω

b+
e

γ−1
γ (Θ(ν))(Θ(ν))ϑ−1Ψ′(ν)

[
r(ν) +Hµ1,µ2

(ν)
]
dν = +∞, (30)

where

Hµ1,µ2
(ν) = (µ1 − 1)(µ1)

µ1
(1−µ1) q

1
(1−µ1)

1 (ν) ζ
µ1

(µ1−1) (ν)

+(1− µ2) (µ2)
µ2

(1−µ2) ζ
µ2

(µ2−1) (ν) q
1

(1−µ2)

2 (ν), (31)

for every sufficiently large M, then every solution of problem (1) is oscillatory.

Proof. By contradiction, let us assume that y(ω) be a nonoscillatory solution of
problem (1). Consequently, without loss of generality, we may assume that M > b
be large enough such that y(ω) > 0 for all ω ≥ M . By using the assumptions (A1)
and (A2) with µ1 > 1 and µ2 < 1, we get

g2(ν, y)− g1(ν, y) ≤ q2(ν)y
µ2(ν)− q1(ν)y

µ1(ν). (32)
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Then by applying the inequality (32) in (6), we obtain

y(ω) ≤ Λ

γϑΓ(ϑ)
e

γ−1
γ (Θ(b))(Θ(b))δ−1

×
m∑
l=1

κl

∫ ηi

b+
e

γ−1
γ (Z(ν))(Z(ν))ϑ−1Ψ′(ν) H(ν) dν

+
1

γϑΓ(ϑ)

∫ M

b+
e

γ−1
γ (Θ(ν))(Θ(ν))ϑ−1Ψ′(ν) H(ν) dν

+
1

γϑΓ(ϑ)

∫ ω

M

e
γ−1
γ (Θ(ν))(Θ(ν))ϑ−1Ψ′(ν)

[
r(ν)

]
dν

+
1

γϑΓ(ϑ)

∫ ω

M

e
γ−1
γ (Θ(ν))(Θ(ν))ϑ−1Ψ′(ν)

[
ζ(ν)y(ν)− q1(ν)y

µ1(ν)
]
dν

+
1

γϑΓ(ϑ)

∫ ω

M

e
γ−1
γ (Θ(ν))(Θ(ν))ϑ−1Ψ′(ν)

[
q2(ν)y

µ2(ν)− ζ(ν)y(ν)
]
dν. (33)

Now, by using the inequality (22) with q2 = ζ, we get

ζ(ν)y(ν)− q1(ν)y
µ1(ν) ≤ (µ1 − 1) (µ1)

µ1
(1−µ1) q

1
(1−µ1)

1 (ν) ζ
µ1

(µ1−1) (ν). (34)

Similarly, by using the inequality (28) with q1 = ζ, we get

q2(ν)y
µ2(ν)− ζ(ν)y(ν) ≤ (1− µ2) (µ2)

µ2
(1−µ2) ζ

µ2
(µ2−1) (ν) q

1
(1−µ2)

2 (ν). (35)

Applying the inequalities (34) and (35) in (33), we have

y(ω) ≤ Λ

γϑΓ(ϑ)
e

γ−1
γ (Θ(b))(Θ(b))δ−1

×
m∑
l=1

κl

∫ ηi

b+
e

γ−1
γ (Z(ν))(Z(ν))ϑ−1Ψ′(ν) H(ν) dν

+
1

γϑΓ(ϑ)

∫ M

b+
e

γ−1
γ (Θ(ν))(Θ(ν))ϑ−1Ψ′(ν) H(ν) dν

+
1

γϑΓ(ϑ)

∫ ω

M

e
γ−1
γ (Θ(ν))(Θ(ν))ϑ−1Ψ′(ν)

[
r(ν)

]
dν

+
1

γϑΓ(ϑ)

∫ ω

M

e
γ−1
γ (Θ(ν))(Θ(ν))ϑ−1Ψ′(ν)

[
(µ1 − 1)(µ1)

µ1
(1−µ1) q

1
(1−µ1)

1 (ν)ζ
µ1

(µ1−1) (ν)

+(1− µ2)(µ2)
µ2

(1−µ2) ζ
µ2

(µ2−1) (ν)q
1

(1−µ2)

2 (ν)
]
dν.
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Multiplying the above inequality by γϑΓ(ϑ)(Ψ(ω))1−ϑ, we have

γϑΓ(ϑ)(Ψ(ω))1−ϑy(ω) ≤ (Ψ(ω))1−ϑΛe
γ−1
γ (Θ(b))(Θ(b))δ−1

×
m∑
l=1

κl

∫ ηi

b+
e

γ−1
γ (Z(ν))(Z(ν))ϑ−1Ψ′(ν) H(ν) dν

+(Ψ(ω))1−ϑ

∫ M

b+
e

γ−1
γ (Θ(ν))(Θ(ν))ϑ−1Ψ′(ν) H(ν) dν

+(Ψ(ω))1−ϑ

∫ ω

M

e
γ−1
γ (Θ(ν))(Θ(ν))ϑ−1Ψ′(ν)

×
[
r(ν) +Hµ1,µ2

(ν)
]
dν,

where Hµ1,µ2
(ν) is defined in (31). We ignore the remaining proof as it is similar

to the proof of Theorem 3.2. □

4. Examples

In this section, we present a couple of examples to highlight its importance of
our findings.

Example 1. Let us take the problem below: D
1
4 ,

3
4 ,1,Ψ

0+ y(ω) + y(ω) = cos(ω), ω ≥ 0,

I1−δ,1,Ψ
0+ x(0) = 0.

(36)

Here, b = 0, ϑ = 1
4 , φ = 3

4 , γ = 1, g1(ω, y) = y(ω), r(ω) = cos(ω), g2(ω, y) = 0,

m = 1, κ1 = 0 and η1 = 1
6 .

By choosing Ψ(ω) = ω, one can verify that

(Ψ(ω))1−ϑ

∫ ω

b+
e

γ−1
γ (Θ(ν))(Θ(ν))ϑ−1Ψ′(ν) r(ν)dν = ω

3
4

(∫ ω

0

(ω − ν)−
3
4 cos(ν)dν

)
.

Therefore,

lim
ω→∞

inf(Ψ(ω))1−ϑ

∫ ω

b+
e

γ−1
γ (Θ(ν))(Θ(ν))ϑ−1Ψ′(ν) r(ν)dν = −∞

and

lim
ω→∞

sup(Ψ(ω))1−ϑ

∫ ω

b+
e

γ−1
γ (Θ(ν))(Θ(ν))ϑ−1Ψ′(ν) r(ν)dν = +∞.

Hence, every solution of the problem (36) is oscillatory, according to Theorem 3.2.

Example 2. Let us take the problem below: D
1
2 ,

3
2 ,1,Ψ

0+ y(ω) + y3(ω)e3ω = 8
3
√
π
ω

3
2 + ω6e3ω − ω2e2ω + y(ω)eω, ω ≥ 0,

I1−δ,γ,Ψ
0+ x(0) = 0.

(37)
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Here, b = 0, ϑ = 1
2 , φ = 3

2 , γ = 1, g1(ω, y) = y3(ω)e3ω, r(ω) = 8
3
√
π
ω

3
2 + ω6e3ω −

ω2e2ω, g2(ω, y) = y(ω)eω, m = 1, κ1 = 0 and η1 = 1
3 .

By choosing µ1 = 3, µ2 = 1, q1(ω) = e3ω and q2(ω) = eω, we get

Hµ1(ν) =
2

3
3
2

.

In addition, let Ψ(ω) = ω. Since v(ω) ≥ 0, one can verify that

(Ψ(ω))1−ϑ

∫ ω

b+
e

γ−1
γ (Θ(ν))(Θ(ν))ϑ−1Ψ′(ν)

[
r(ν) +Hµ1

(ν)
]
dν

= (ω)
1
2

(∫ ω

0

(ω − ν)−
1
2

[ 8

3
√
π
ν

3
2 + ν6e3ν − ν2e2ν +

2

3
3
2

]
dν

)

≥ (ω)
1
2

∫ ω

0

(ω − ν)−
1
2

( 2

3
3
2

)
dν

=
4

3
3
2

ω.

Thus, neither (17) nor (18) is satisfied. Infact, using Theorem 2.1 with ξ = 3, it
is simple to verify that y(ω) = ω2 is a solution of the problem (37) that does not
oscillate.

5. Conclusion

We discussed the oscillatory behavior of Ψ-HGPF initial value problem (1),
and established appropriate conditions to ensure the oscillation of solutions to this
type of problem. Our contributions using the Ψ-HGPF operator covers the findings
mentioned in [11], which are obtained via Riemann-Liouville and Caputo operators.
This is particularly true for the specific choice of the parameter γ = 1 and the kernel
Ψ(ω) = ω. We included additional numerical examples to highlight the importance
of the proposed findings.
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