
Journal of Fractional Calculus and Applications
Vol. 15(1) Jan. 2024, No. 2
Online ISSN: 2090-5858.
Print ISSN: 2090-584X
http://jfca.journals.ekb.eg/

ZEROS AND WEIGHTED VALUE SHARING OF q-SHIFT

DIFFERENCE-DIFFERENTIAL POLYNOMIALS OF ENTIRE

AND MEROMORPHIC FUNCTIONS

NAVEENKUMAR B. N., HARINA P. WAGHAMORE

Abstract. In this research work, we investigate the uniqueness problems and
distribution of zeroes of q-shift difference-differential polynomials of entire and

meromorphic functions having zero order in the complex plane C of the form

(fnP (f)∆q(f))(k) and (gnP (g)∆q(g))(k), where P (f) is a polynomial with con-
stant coefficients of degree m, which is given in Lemma 2.2 and ∆q(f) is a

q-difference operator defined as ∆q(f) = f(qz+ c)− f(qz), which share a small

function φ(z),∞ CM. By considering the concept of weighted sharing intro-
duced by I. Lahiri (Nagoya Math. J. 161 (2001), 193–206), we also investigate

the uniqueness problem of q-shift difference-differential polynomials sharing a

small function φ(z) with weight L, for the cases L ≥ 2,L = 1 and L = 0 for
a zero ordered entire functions. Our results improve, generalize, and extend

earlier results due to Zhao and Zhang (J. Contemp. Math. Anal. 50 (2),

63–69). We have also given suitable examples to justify our results.

1. Introduction and Main Results

We assume the reader is familiar with standard symbols and fundamental results
of Nevanlinna’s theory [9]. A meromorphic function f(z) in the complex plane C is
a function that is analytic in C except for the set of isolated points, which are poles
of the function. If no poles occur, then f(z) is an entire function. Let f and g be
two meromorphic functions and a point a in C∪ {∞}. We say that f and g share a
IM (Ignoring Multiplicity) when f − a and g − a have the same zeros. If f − a and
g − a have the same zeros with the same multiplicities, then we say that f and g
share a CM (Counting Multiplicity).
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Given a meromorphic function f(z), recall that φ(z) ̸≡ 0,∞, is a small function
with respect to f(z), if T (r, φ) = S(r, f), where S(r, f) denotes any quantity sat-
isfying S(r, f) = o(T (r, f)) as r → ∞ outside a possible exceptional set of finite
logarithmic measures.

For convenience, we assume that S(f) includes all constant functions and S̃(f) =
S(f) ∪ {∞}. For φ ∈ S̃(f) and S ⊂ S̃, we define

E(S, f) = ∪φ∈S{z : f(z)− φ(z) = 0, counting multiplicity},
E(S, f) = ∪φ∈S{z : f(z)− φ(z) = 0, ignoring multiplicity}.

We now explain the following definitions and notations used in the paper.

Definition 1.1. [13] Let k ∈ N∪{0}∪{∞}. For a ∈ C∪{∞} we denote by Ek(a; f)
the set of all a-points of f where an a-point of multiplicity m is counted m times if
m ≤ k and k + 1 times if m > k. If Ek(a; f) = Ek(a; g), we say that f, g share the
value a with weight k.

The definition implies that if f, g share a value a with weight k, then z0 is an
a-point of f with multiplicity m(≤ k) if and only if it is an a-point of g with
multiplicity m(≤ k) and z0 is an a-point of f with multiplicity m(> k) if and only if
it is an a-point of g with multiplicity n(> k), where m is not necessarily equal to n.
We write f, g share (a, k) to mean that f, g share the value a with weight k. If f, g
share (a, k), then f, g share (a, p) for any integer p, 0 ≤ p < k. Also, we note that
f, g share a value a IM or CM if and only if f, g share (a, 0) or (a,∞) respectively.

Definition 1.2. [14] Let f, g share the value a IM. We denote by N∗(r, a; f, g) the
reduced counting function of those a-points of f whose multiplicities differ from the
corresponding a-points of g.

Clearly, N∗(r, a; f, g) ≡ N∗(r, a; g, f) and N∗(r, a; f, g) ≡ NL(r, a; f)+NL(r, a; g).

Definition 1.3. [12] Let p be a positive integer and a ∈ C ∪ {∞}.

(i) N(r, a; f| ≥ p)(N(r, a; f| ≥ p)) denotes the counting function (reduced
counting function) of those a-points of f whose multiplicities are not less
than p.

(ii) N(r, a; f| ≤ p)(N(r, a; f| ≤ p) denotes the counting function (reduced count-
ing function) of those a-points of f whose multiplicities are not greater than
p.

In 1959, it was shown by Hayman [9] that if meromorphic function f and its
derivative f′ take every non-zero complex value infinitely often if n ≥ 3. Yang and
Hua [30] obtained some results about the uniqueness problems for entire functions.
Since then, the difference has become a subject of significant interest (see [17, 21,
22, 23, 31, 32]).

Recently, many mathematicians have been working on difference equations, the
difference product, and the q-difference analogues of the value distribution of entire
and meromorphic functions in the complex plane ([4, 5, 6, 10, 16, 19, 24, 25, 26,
33]). In 2006, Halburd and Korhonen [7] established a difference analogue of the
Logarithmic Derivative Lemma, and then applying it, many results on meromorphic
solutions of complex difference equations have been proved. After that, Barnett,
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Halburd, Korhonen, and Morgan [3] also established a q-difference analogue of the
Logarithmic Derivative Lemma.

In 2011, Liu and Cao [21] obtained results on the uniqueness and value distribu-
tions of q-shift difference polynomials. Here, we only state some results.

Theorem A. [[21], Theorem 1.1] Let f(z) be a transcendental meromorphic (resp.
entire) function with zero order and letm,n be positive integers and a, q be non-zero
complex constants. If n ≥ 6 (resp. n ≥ 2), then (f(z)n(f(z)m − a)f(qz + c))− φ(z)
has infinitely many zeros, where φ(z) is a non-zero small function with respect to
f(z). In particular, if f(z) is a transcendental entire function and φ(z) is a non-zero
rational function, then m and n can be any positive integers.

Theorem B. [[21], Theorem 1.5] Let f(z) and g(z) be transcendental entire func-
tions with zero order. If n ≥ m+5, and f(z)n(f(z)m−a)f(qz+c) and g(z)n(g(z)m−
a)g(qz + c) share a non-zero polynomial p(z) CM, then f(z) ≡ g(z).

Recently, Zhao and Zhang [34], based on Theorems A and B, studied the kth

derivative of q-shift difference polynomials and obtained the following results.

Theorem C. Let f(z) be a transcendental meromorphic function with zero order,
and let n, k be positive integers. If n > k + 5, then (f(z)nf(qz + c))(k) − 1 has
infinitely many zeros.

Theorem D. Let f(z) be a transcendental entire function with zero order and let
n, k be positive integers, then (f(z)nf(qz + c))(k) − 1 has infinitely many zeros.

Theorem E. Let f(z) and g(z) be transcendental entire functions with zero or-
der and let n, k be positive integers. If n > 2k + 5, and (f(z)nf(qz + c))(k) and
(g(z)ng(qz + c))(k) share z CM, then f ≡ tg for a constant t with tn+1 = 1.

Theorem F. Let f(z) and g(z) be transcendental entire functions with zero or-
der, and let n, k be positive integers. If n > 2k + 5, and (f(z)nf(qz + c))(k) and
(g(z)ng(qz + c))(k) share 1 CM, then f ≡ tg for a constant t with tn+1 = 1.

When sharing a single value IM, they proved the following two results.

Theorem G. Let f(z) and g(z) be transcendental entire functions with zero order
and let n, k be positive integers. If n > 5k + 11, and (f(z)nf(qz + c))(k) and
(g(z)ng(qz + c))(k) share z IM, then f ≡ tg for a constant t with tn+1 = 1.

Theorem H. Let f(z) and g(z) be transcendental entire functions with zero order
and let n, k be positive integers. If n > 5k + 11, and (f(z)nf(qz + c))(k) and
(g(z)ng(qz + c))(k) share 1 IM, then f ≡ tg for a constant t with tn+1 = 1.

For a meromorphic (entire) function f(z) and a non-zero complex constant c,
for n ∈ N, we define its q-shift by f(qz + c) and q-difference operator by ∆q(f) =
f(qz + c)− f(qz).

It is quite interesting to check the uniqueness of f(z) and g(z) when one can
replace f(qz+ c) with ∆q(f). Therefore, asking the following question in the above-
stated Theorems C-H is inevitable.

Question 1.1. What can be said about the uniqueness of f(z) and g(z) if one
replace (f(z)nf(qz+ c))(k) by the difference polynomial (f(z)nP (f)∆q(f))(k) in The-
orems C-H?

In this article, we generalize Theorems C-H to the case of difference-differential
polynomials defined above. We now present the following theorems, which are the
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main results of this paper.

Theorem 1.1. Let f(z) be a transcendental meromorphic function of zero order
such that ∆q(f) ̸≡ 0 and φ(z) be a small function with respect to f(z). If n > k+7,

then the difference-differential polynomial (f(z)nP (f)∆q(f))(k) −φ(z) has infinitely
many zeros.

Theorem 1.2. Let f(z) be a transcendental entire function with zero order, and let
n,m, k be positive integers such that ∆q(f) ̸≡ 0 and φ(z) be a small function with

respect to f(z), then the difference-differential polynomial (f(z)nP (f)∆q(f))(k) −
φ(z) has infinitely many zeros.

Theorem 1.3. Let f(z) and g(z) be transcendental meromorphic (resp. entire)
functions of zero order, and n, k,m be three positive integers. Suppose that c is a
non-zero complex constant such that ∆q(f) ̸≡ 0 and ∆q(g) ̸≡ 0. If n > 2k+m+10

(resp. n > 2k + m + 4) and (f(z)nP (f)∆q(f))(k) and (g(z)nP (g)∆q(g))(k) share
φ(z),∞ CM, then one of the following two results holds:

(a) f(z) ≡ tg(z), where t is a constant such that td = 1, d = gcd(Υ0,Υ1, . . . ,Υm),
where Υ′

is are defined by

Υi =

{
n+ i+ 1, if ai ̸= 0

n+m+ 1, if ai = 0
i = 0, 1, . . . ,m.

(b) f and g satisfy the algebraic equation R(ω1, ω2) = 0, where R(ω1, ω2) is
given by

R(ω1, ω2) = ωn
1P (ω1)∆q(ω1)− ωn

2P (ω2)∆q(ω2).

We also proved the following result by using weighted sharing for transcendental
entire functions of zero order.

Theorem 1.4. Let f(z) and g(z) be transcendental entire functions of zero or-
der, and let n, k,m be three positive integers. Suppose that c is a non-zero com-
plex constant such that ∆q(f) ̸≡ 0 and ∆q(g) ̸≡ 0. Let (f(z)nP (f)∆q(f))(k) and

(g(z)nP (g)∆q(g))(k) share (φ(z),L) and one of the following conditions hold:

(i) L ≥ 2 and n > 2k +m+ 5.
(ii) L = 1 and n > 5k+4m

2 + 6.
(iii) L = 0 and n > 5k + 4m+ 11.

Then the conclusion of Theorem 1.3 holds:
The following examples show that the conclusions of Theorems 1.3 and 1.4 occur.

Example 1.1. Let f(z) = sin(z), g(z) = cos(z) and P (z) = (z − 1)6(z + 1)6.
Take c = π, q = 1, k = 0, then it is easy to verify that (f(z)nP (f)∆q(f))(k) and

(g(z)nP (g)∆q(g))(k) share φ(z),∞ CM. Here f(z) and g(z) satisfy the algebraic
equation R(f, g) = 0,
i.e.,

(f(z)nP (f)∆q(f))
(k) − (g(z)nP (g)∆q(g))

(k) = 0.

Clearly, f(z) and g(z) satisfies the conclusion (b) of Theorems 1.3 and 1.4.

Example 1.2. Let P (z) = amzm, φ(z) = 1, q = 1, k = 0, f(z) = ez, g(z) = tez,
where tn+m+1 = 1, n,m ∈ N. Then it is easy to verify that (f(z)nP (f)∆q(f))(k) and
(g(z)nP (g)∆q(g))(k) share φ(z) CM. Clearly, f(z) and g(z) satisfy the conclusions
of Theorem 1.3 and 1.4.
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To further generalize ∆q(f), we now define the Linear q-difference operator of a
meromorphic (entire) function f as Lq(f) = f(qz + c) + c0f(qz), where c0 is a non-
zero complex constant. Clearly, for the particular choice of the constant c0 = −1,
we get Lq(f) = ∆q(f). Hence the following corollaries are the easy consequences of
the above four theorems.

Corollary 1.1. Let f(z) be a transcendental meromorphic function of zero order
such that Lq(f) ̸≡ 0 and φ(z) be a small function with respect to f(z). If n > k+7,

then the difference-differential polynomial (f(z)nP (f)Lq(f))(k) −φ(z) has infinitely
many zeros.

Corollary 1.2. Let f(z) be a transcendental entire function with zero order, and
let n,m, k be positive integers such that Lq(f) ̸≡ 0 and φ(z) be a small function with

respect to f(z), then the difference-differential polynomial (f(z)nP (f)Lq(f))(k)−φ(z)
has infinitely many zeros.

Corollary 1.3. Let f(z) and g(z) be transcendental meromorphic (resp. entire)
functions of zero order, and n, k,m be three positive integers. Suppose that c is a
non-zero complex constant such that Lq(f) ̸≡ 0 and Lq(g) ̸≡ 0. If n > 2k +m+ 10

(resp. n > 2k + m + 4) and (f(z)nP (f)Lq(f))(k) and (g(z)nP (g)Lq(g))(k) share
φ(z),∞ CM, then one of the following two results holds:

(a) f(z) ≡ tg(z), where t is a constant such that td = 1,d = gcd(Υ0,Υ1, . . . ,Υm),
where Υ′

is are defined by

Υi =

{
n+ i+ 1, if ai ̸= 0

n+m+ 1, if ai = 0
i = 0, 1, . . . ,m.

(b) f and g satisfy the algebraic equation R(ω1, ω2) = 0, where R(ω1, ω2) is
given by

R(ω1, ω2) = ωn
1P (ω1)Lq(ω1)− ωn

2P (ω2)Lq(ω2).

Corollary 1.4. Let f(z) and g(z) be transcendental entire functions of zero or-
der, and let n, k,m be three positive integers. Suppose that c is a non-zero com-
plex constant such that Lq(f) ̸= 0 and Lq(g) ̸= 0. Let (f(z)nP (f)Lq(f))(k) and

(g(z)nP (g)Lq(g))(k) share (φ(z),L) and one of the following conditions hold:

(i) L ≥ 2 and n > 2k +m+ 5.
(ii) L = 1 and n > 5k+4m

2 + 6.
(iii) L = 0 and n > 5k + 4m+ 11.

Then the conclusion of Corollary 1.3 holds:

2. Some Lemmas

For two non-constant meromorphic (entire) functions F and G, what follows H
represents the following function.

H =

(
F′′

F′ − 2F′

F − 1

)
−
(

G′′

G′ − 2G′′

G − 1

)
(2.1)

Lemma 2.1 [20] Let f(z) be a meromorphic function of zero order. Then on a set
of logarithmic density 1

m

(
r,

f(qz + c)

f(z)

)
= o (T (r, f)) .
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Lemma 2.2 [29] Let f(z) be a non-constant meromorphic function, and an( ̸=
0), an−1, . . . , a0 be small functions with respect to f. Then

T (r, anfn + an−1fn−1 + . . .+ a1f + a0) = T (r, P (f)) = nT (r, f) + S(r, f).

Lemma 2.3 [27] Let f(z) be a non-constant meromorphic function of zero order,
and let c and q be two non-zero complex numbers. Then

T (r, f(qz + c)) = T (r, f(z)) + S(r, f),

on a set of logarithmic density 1.

Lemma 2.4 [28] Let f be a meromorphic function with zero order and c and q be
two non-zero complex numbers. Then

N(r, 0; f(qz + c)) ≤ N(r, 0; f(z)) + S(r, f),

N(r,∞; f(qz + c)) ≤ N(r,∞; f(z)) + S(r, f),

N(r, 0; f(qz + c)) ≤ N(r, 0; f(z)) + S(r, f),

N(r,∞; f(qz + c)) ≤ N(r,∞; f(z)) + S(r, f),

outside of a possible exceptional set E with finite logarithmic measure.

Lemma 2.5 [18] Let f(z) be a non-constant meromorphic function, and p, k, be
positive integers. Then

NP

(
r, 1; f(k)

)
≤ T

(
r, f(k)

)
− T (r, f) +NP+k (r, 1; f) + S(r, f), (2.2)

NP (r, 1; f
(k)) ≤ kN(r, f) +NP+k(r, 1; f). (2.3)

Lemma 2.6 [15] If N(r, 0; f(k)|f ̸= 0) denotes the counting function of those zeros
of f(k) which are not the zeros of f, where the zero of f(k) is counted according to
its multiplicity, then

N(r, 0; f(k)|f ̸= 0) ≤ kN(r,∞; f) +N(r, 0; f| < k) + kN(r, 0; f| ≥ k) + S(r, f).

Lemma 2.7 [5] Let f(z) be a meromorphic function of finite order σ, and let
c ∈ C\{0} be fixed. Then for each ϵ > 0, we have

m

(
r,

f(qz + c)

f(z)

)
+m

(
r,

f(z)
f(qz + c)

)
= o(rσ−1+ϵ) = S(r, f).

Lemma 2.8 Let f(z) be a transcendental entire function of zero order, c ∈ C−{0} be
finite complex constants and n ∈ N. Let F1(z) = (fnP (f)∆q(f)) , where ∆q(f) ̸≡ 0.
Then we have

(n+m)T (r, f) ≤ T (r,F1(z))−N(r, 0;∆q(f)) + S(r, f).

Proof. Using the same arguments as in Lemma 2.7 [8], we can quickly obtain
Lemma 2.8.

Lemma 2.9 [1] If f(z), g(z) be two non-constant meromorphic functions such that
they share (1,1). Then

2NL(r, 1; f) + 2NL(r, 1; g) +N
(2

E (r, 1; f)−N f>2(r, 1; g) ≤ N(r, 1; g)−N(r, 1; g).

Lemma 2.10 [2] Let f(z), g(z) share (1,1). Then

N f>2(r, 1; g) ≤
1

2
N(r, 0; f) +

1

2
N(r,∞; f)− 1

2
N0(r, 0; f

′) + S(r, f),
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where N0(r, 0; f′) is the counting function of those zeros of f′ which are not the
zeros of f(f − 1).

Lemma 2.11 [2] Let f(z) and g(z) be two non-constant meromorphic functions
sharing (1,0). Then

NL(r, 1; f) + 2NL(r, 1; g) +N
(2

E (r, 1; f)−N f>1(r, 1; g)−Ng>1(r, 1; f)

≤ N(r, 1; g)−N(r, 1; g).

Lemma 2.12 [2] Let f(z), g(z) share (1,0). Then

NL(r, 1; f) ≤ N(r, 0; f) +N(r,∞; f) + S(r, f).

Lemma 2.13 [2] Let f(z), g(z) share (1,0). Then

(i) N f>1(r, 1; g) ≤ N(r, 0; f) +N(r,∞; f) +N0(r, 0; f′).
(ii) Ng>1(r, 1; f) ≤ N(r, 0; g) +N(r,∞; g) +N0(r, 0; g′).

Lemma 2.14 [11] Let f(z) be a nonconstant meromorphic function of zero order,
and q ∈ C\{0}. Then

N(r, 0; f(qz)) ≤ N(r, 0; f(z)) + S(r, f),

N(r,∞; f(qz)) ≤ N(r,∞; f(z)) + S(r, f),

N(r, 0; f(qz)) ≤ N(r, 0; f(z)) + S(r, f),

N(r,∞; f(qz)) ≤ N(r,∞; f(z)) + S(r, f),

on a set of logarithmic density 1.

3. Proof of Theorems

Proof of Theorem 1.1. Let F(z) =
(fnP (f)∆q(f))

(k)

φ(z) = (F1(z))
(k)

φ(z) where, F1(z) =

fnP (f)∆q(f). Using the second fundamental theorem of Nevanlinna, we obtain

T (r,F) ≤ N(r, 0;F) +N(r,∞;F) +N(r, 0;F − φ(z)) + S(r,F).

From inequality (2.2) of Lemma 2.5, we get

T (r,F) ≤ N(r, 0;F − φ(z)) + T (r,F)− T (r,F1) +N(r,∞;F) +Nk+1(r, 0;F1)

+ S(r,F).

Thus the above inequality implies,

T (r,F1) ≤ N(r, 0;F − φ(z)) +Nk+1(r, 0;F1) +N(r,∞;F) + S(r,F)

≤ N(r, 0;F − φ(z)) +Nk+1(r, 0; f
nP (f)∆q(f))

+N
(
r,∞; (fnP (f)∆q(f))

(k)
)
+ S(r,F)

≤ N(r, 0;F − φ(z)) + (k + 1)N(r, 0; f) +N(r, 0;P (f)) +N(r, 0;∆q(f))

+N
(
r,∞; [fnP (f)(f(qz + c)− f(qz))](k)

)
+ S(r, f)

≤ N(r, 0;F − φ(z)) + (k +m+ 5)T (r, f) + S(r, f) (3.1)
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On the other hand, from Lemma 2.1, we get

(n+m+ 1)T (r, f) = T
(
r, fn+m+1

)
= m

(
r, fn+m+1

)
+N

(
r, fn+m+1

)
≤ m

(
r,

fn+m+1∆q(f)
∆q(f)

)
+N

(
r,

fn+m+1∆q(f)
∆q(f)

)
+ S(r, f)

≤ T (r,F1) + T

(
r,
∆q(f)
f(z)

)
+ S(r, f)

≤ T (r,F1) +m

(
r,
∆q(f)
f(z)

)
+N

(
r,
∆q(f)
f(z)

)
+ S(r, f)

≤ T (r,F1) + 3T (r, f) + S(r, f)

(n+m− 2)T (r, f) ≤ T (r,F1) + S(r, f). (3.2)

From (3.1) and (3.2), we obtain

(n+m− 2)T (r, f) ≤ N(r, 0;F − φ(z)) + (k +m+ 5)T (r, f) + S(r, f)

(n− k − 7)T (r, f) ≤ N(r, 0;F − φ(z)) + S(r, f).

Noting that n > k + 7, we conclude that F − φ(z) has infinitely many zeros. This
completes the proof of Theorem 1.1.
Proof of Theorem 1.2. Let the functions F(z) and F1(z) as in the proof of
Theorem 1.1. Assume the opposite, that F(z) − φ(z) has only a finite number of
zeros. Since, by assumption, f is a transcendental entire function with zero order,
there exists a polynomial P (z) such that F(z)−φ(z) = P (z). By integrating k times,
we get from the above equation that F(z) = Q(z), where Q(z) is a polynomial, given
by Q(z) = (fnP (f)∆q(f))(k). Obviously, Q(z) ̸≡ 0. Hence, we can write

(n+m+ 1)T (r, f) = T
(
r, fn+m+1

)
= m

(
r, fn+m+1

)
≤ m

(
r,

fn+m+1∆q(f)
∆q(f)

)
+ S(r, f)

≤ T (r,F1) +m

(
r,

f(z)
∆q(f)

)
+ S(r, f)

≤ T (r,F1) + S(r, f)

≤ T (r,Q(z)) + S(r, f), (3.3)

which is impossible. Therefore F(z)−φ(z) (or) (F1(z))
(k)−φ(z) has infinitely many

zeros. This completes the proof of Theorem 1.2.

Proof of Theorem 1.3. Let F(z) = (F1(z))
(k)

φ(z) and G(z) = (G1(z))
(k)

φ(z) where, F1(z) =

(fnP (f)∆q(f)) and G1(z) = (gnP (g)∆q(g)). Since F(z) and G(z) share φ(z),∞ CM,
there exists an entire function α(z) such that

(fnP (f)∆q(f))(k)/φ(z)− 1

(gnP (g)∆q(g))(k)/φ(z)− 1
= eα(z). (3.4)

We denote that eα(z) ≡ constant, say c, since f(z) and g(z) are both meromorphic
functions of zero order. Rewriting (3.4), we obtain

c(gnP (g)∆q(g))
(k)/φ(z) = (fnP (f)∆q(f))

(k)/φ(z)− 1 + c. (3.5)

Therefore, from (3.5), we have

F(z)− 1 = c(G(z)− 1).
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We assert that c = 1.
If c ̸= 1, f(z) and g(z) are meromorphic functions of zero order, then we may apply
the second fundamental theorem of Nevanlinna, Lemma 2.14, and (3.5) to obtain

T (r,F) ≤ N(r, 0;F) +N(r,∞;F) +N(r, 0;F − 1 + c) + S(r,F)

≤ N(r, 0;F) +N(r,∞;F) +N(r, 0;G) + S(r,F) + S(r,G)

≤ T (r,F)− T (r,F1) +Nk+1(r, 0;F1) +Nk+1(r, 0;G1) +N(r,∞;F)

+ S(r,F) + S(r,G),

Thus,

T (r,F1) ≤ Nk+1(r, 0;F1) +Nk+1(r, 0;G1) +N(r,∞;F) + S(r,F) + S(r,G)

≤ (k +m+ 3)T (r, f) +N
(
r,∞; [fnP (f)(f(qz + c)− f(qz))](k)

)
+ (k +m+ 3)T (r, g) + S(r, f) + S(r, g)

≤ (k +m+ 5)T (r, f) + (k +m+ 3)T (r, g) + S(r, f) + S(r, g). (3.6)

Now, from inequality (3.2),

(n+m− 2)T (r, f) ≤ T (r,F1) + S(r, f). (3.7)

Substituting (3.7) into (3.6), we obtain that

(n+m− 2)T (r, f) ≤ (k +m+ 5)T (r, f) + (k +m+ 3)T (r, g) + S(r, f) + S(r, g).
(3.8)

Similarly, we have

(n+m− 2)T (r, g) ≤ (k +m+ 5)T (r, g) + (k +m+ 3)T (r, f) + S(r, f) + S(r, g).
(3.9)

By combining inequalities (3.8) and (3.9), we get

(n−m− 2k − 10)[T (r, f) + T (r, g)] ≤ S(r, f) + S(r, g),

a contradiction, since n > 2k +m+ 10.
If c ̸= 1, f(z) and g(z) are entire functions of zero order, then we may apply the
second fundamental theorem of Nevanlinna, Lemma 2.14, and (3.5) to obtain

T (r,F) ≤ N(r, 0;F) +N(r, 0;F − 1 + c) + S(r,F)

≤ N(r, 0;F) +N(r, 0;G) + S(r,F) + S(r,G)

≤ T (r,F)− T (r,F1) +Nk+1(r, 0;F1) +Nk+1(r, 0;G1) + S(r,F) + S(r,G),

Thus,

T (r,F1) ≤ Nk+1(r, 0;F1) +Nk+1(r, 0;G1) + S(r,F) + S(r,G)

≤ (k +m+ 1)T (r, f) + T (r,∆q(f)) + (k +m+ 1)T (r, g) + T (r,∆q(g))

+ S(r, f) + S(r, g)

≤ (k +m+ 1)T (r, f) +m

(
r,
∆q(f)

f

)
+m(r, f) + (k +m+ 1)T (r, g)

+m

(
r,
∆q(g)

g

)
+m(r, g) + S(r, f) + S(r, g)

≤ (k +m+ 2)[T (r, f) + T (r, g)] + S(r, f) + S(r, g). (3.10)
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Taking use of the Valiron-Mohon’ko lemma, Lemma 2.1, Lemma 2.14, and above
inequality, we deduce that

(n+m+ 1)T (r, f) = T (r, fn+mf(qz)) + S(r, f)

= T

(
r,

fn+m∆q(f)f(qz)
∆q(f)

)
+ S(r, f)

≤ T (r, fnP (f)∆q(f)) + T

(
r,

f(qz)
∆q(f)

)
+ S(r, f)

≤ T (r,F1) +N

(
r,
∆q(f)
f(qz)

)
+m

(
r,
∆q(f)
f(qz)

)
+ S(r, f)

≤ T (r,F1) +N (r, 0; f(qz)) + S(r, f)

≤ T (r,F1) + T (r, f(qz)) + S(r, f)

(n+m+ 1)T (r, f) ≤ T (r,F1) + T (r, f(z)) + S(r, f).

Therefore,

(n+m)T (r, f) ≤ T (r,F1) + S(r, f). (3.11)

Substituting (3.10) into (3.11), we conclude that

(n+m)T (r, f) ≤ (k +m+ 2)[T (r, f) + T (r, g)] + S(r, f) + S(r, g). (3.12)

Similarly, we have

(n+m)T (r, g) ≤ (k +m+ 2)[T (r, f) + T (r, g)] + S(r, f) + S(r, g). (3.13)

By combining the above two equations (3.12) and (3.13), we get

(n−m− 2k − 4)[T (r, f) + T (r, g)] ≤ S(r, f) + S(r, g),

a contradiction, since n > 2k +m+ 4.
Thus, c = 1 and (3.5) turn into

(fnP (f)∆q(f))
(k)

= (gnP (g)∆q(g))
(k)

.

By integrating the above inequality, we have

(fnP (f)∆q(f))
(k−1)

= (gnP (g)∆q(g))
(k−1)

+ ρ(z),

where ρ(z) is a polynomial of degree at most (k − 1). If ρ(z) ̸≡ 0, then from the
second fundamental theorem of Nevanlinna for the small function and (3.7), we get

(n+m− 2)T (r, f) ≤ T (r,F1) + S(r,F1)

≤ N(r, 0;F) +N(r, 0;G) + S(r,F) + S(r,G)

(n+m− 2)T (r, f) ≤ (k +m+ 2)[T (r, f) + T (r, g)] + S(r, g).

Similarly, we have

(n+m− 2)T (r, g) ≤ (k +m+ 2)[T (r, f) + T (r, g)] + S(r, g).

Combining the above two, we can get

(n−m− 2k − 6)[T (r, f) + T (r, g)] ≤ S(r, f) + S(r, g),

a contradiction, since n > 2k +m+ 6.
Thus ρ(z) ≡ 0, which implies

fnP (f)∆q(f) = gnP (g)∆q(g).
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i.e.,

fn(amfm + am−1fm−1 + . . .+ a1f + a0)(f(qz + c)− f(qz))

≡ gn(amgm + am−1gm−1 + . . .+ a1g + a0)(g(qz + c)− g(qz)). (3.14)

Let h = f
g . Then, the above inequality (3.14) can be written as

[amgm(hn+mh(qz + c)− 1) + am−1gm−1(hn+m−1h(qz + c)− 1) + . . .+

a0(h
nh(qz + c)− 1)]g(qz + c) + [amgm(hn+m+1 − 1) + am−1gm−1(hn+m − 1)

+ . . .+ a0(h
n+1 − 1)]g(qz) ≡ 0.

If ‘h′ is constant, then the above inequality can be written as

[amgm(hn+m+1 − 1) + am−1gm−1(hn+m − 1) + . . .+ a0(h
n+1 − 1)]∆q(g) ≡ 0.

Since ∆q(g) ̸≡ 0, we must have

am(hn+m+1 − 1)gm + am−1(h
n+m − 1)gm−1 + . . .+ a0(h

n+1 − 1) = 0.

Then by a similar argument as in Case 2 in the proof of Theorem 11 [29], we obtain
f(z) ≡ tg(z), where ′t′ is a constant such that td = 1, d = gcd(Υ0,Υ1, . . . ,Υm),
where Υ′

is are defined by

Υi =

{
n+ i+ 1, if ai ̸= 0

n+m+ 1, if ai = 0
i = 0, 1, . . . ,m.

If ‘h′ is not a constant, then it follows that f and g satisfy the algebraic equation
R(ω1, ω2) = 0, where R(ω1, ω2) is given by

R(ω1, ω2) = ωn
1P (ω1)∆q(ω1)− ωn

2P (ω2)∆q(ω2).

Proof of Theorem 1.4. Let F(z) = (F1(z))
(k)

φ(z) and G(z) = (G1(z))
(k)

φ(z) . Where,

F1(z) = (fnP (f)∆q(f)) and G1(z) = (gnP (g)∆q(g)). Then F(z) and G(z) are two
transcendental meromorphic functions that share (φ(z),L) except the zeros and
poles of φ(z).
Case 1. Let H ̸≡ 0.
Subcase 1.1. L ≥ 1. From (2.1), it can be easily calculated that the possible poles
of H occur at (i) multiple zeros of F(z) and G(z), (ii) those 1-points of F(z) and
G(z) whose multiplicities are different, (iii) zeros of F′(G′) which are not the zeros
of F(F − 1)(G(G − 1)).
Since H has only simple poles, we get

N(r,∞;H) ≤ N∗(r, 1;F,G) +N(r, 0;F| ≥ 2) +N(r, 0;G| ≥ 2) +N0(r, 0;F
′)

+N0(r, 0;G
′), (3.15)

where N0(r, 0;F′) is the reduced counting function of those zeros of F′ which are
not the zeros of F(F − 1) and N0(r, 0;G′) is similarly defined.
Let z0 be a simple zero of F − 1. Then z0 is a simple zero of G − 1 and a zero of H.
So

N(r, 1;F| = 1) ≤ N(r, 0;H) +N(r,∞;H) + S(r,F) + S(r,G). (3.16)
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While L ≥ 2, using (3.15) and (3.16), we get

N(r, 1;F) ≤ N(r, 1;F| = 1) +N(r, 0;F| ≥ 2)

≤ N(r, 0;F| ≥ 2) +N(r, 0;G| ≥ 2) +N∗(r, 1;F,G) +N0(r, 0;F
′)

+N0(r, 0;G
′) + S(r, f) + S(r, g). (3.17)

Now in view of Lemma 2.6, we get

N0(r, 0;G
′) +N(r, 0;F| ≥ 2) +N∗(r, 1;F,G)

≤ N0(r, 0;G
′) +N(r, 0;F| ≥ 2) +N(r, 0;F| ≥ 3)

= N0(r, 0;G
′) +N(r, 0;G| ≥ 2) +N(r, 0;G| ≥ 3)

≤ N0(r, 0;G
′) +N(r, 1;G)−N(r, 1;G)

≤ N0(r, 0;G
′|G ̸= 0) ≤ N(r, 1;G) + S(r, g). (3.18)

Hence using (3.17), (3.18), Lemmas 2.5, 2.7, 2.8, and 2.14, we get that from the
second fundamental theorem of Nevanlinna,

(n+m)T (r, f) ≤ T (r,F1)−N(r, 0;∆q(f)) + S(r, f)

≤ T (r,F) +Nk+2(r, 0;F1)−N2(r, 0;F)−N(r, 0;∆q(f)) + S(r, f)

≤ N(r, 0;F) +N(r, 0;F1) +Nk+2(r, 0;F1)−N2(r, 0;F)

−N(r, 0;∆q(f))−N0(r, 0;F
′) + S(r, f)

≤ N(r, 0;F) +Nk+2(r, 0;F1) +N(r, 0;F| ≥ 2) +N(r, 0;G| ≥ 2)

+N(r, 1;F| ≥ 2) +N∗(r, 1;F,G) +N0(r, 0;G
′)−N(r, 0;∆q(f))

−N2(r, 0;F) + S(r, f) + S(r, g)

≤ Nk+2(r, 0;F1) +N2(r, 0;G)−N(r, 0;∆q(f)) + S(r, f) + S(r, g)

≤ Nk+2(r, 0;F1) +Nk+2(r, 0;G1)−N(r, 0;∆q(f)) + S(r, f) + S(r, g)

≤ (k + 2)N(r, 0; f) +N(r, 0;P (f)) +N(r, 0;∆q(f))

+ (k + 2)N(r, 0; g) +N(r, 0;P (g)) +N(r, 0;∆q(g))

−N(r, 0;∆q(f)) + S(r, f) + S(r, g)

≤ (k +m+ 2)T (r, f) + (k +m+ 2)T (r, g) + T (r,∆q(g)) + S(r, f)

+ S(r, g)

≤ (k +m+ 2)T (r, f) + (k +m+ 2)T (r, g) +m(r,∆q(g)) + S(r, f)

+ S(r, g)

≤ (k +m+ 2)T (r, f) + (k +m+ 2)T (r, g) +m

(
r,
∆q(g)
g(qz)

)
+m(r, g(qz)) + S(r, f) + S(r, g)

(n+m)T (r, f) ≤ (k +m+ 2)T (r, f) + (k +m+ 3)T (r, g) + S(r, f) + S(r, g).
(3.19)

In a similar way, we can obtain

(n+m)T (r, g) ≤ (k +m+ 2)T (r, g) + (k +m+ 3)T (r, f) + S(r, f) + S(r, g).
(3.20)
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Combining (3.19) and (3.20), we see that

(n− 2k −m− 5)[T (r, f) + T (r, g)] ≤ S(r, f) + S(r, g),

a contradiction, since n > 2k +m+ 5.
While L = 1, using (3.15), (3.16), and Lemmas 2.6, 2.9, 2.10, we get

N(r, 1;F) ≤ N(r, 1;F| = 1) +NL(r, 1;F) +NL(r, 1;G) +N
(2

E (r, 1;F)

≤ N(r, 0;F| ≥ 2) +N(r, 0;G| ≥ 2) +N∗(r, 1;F,G) +NL(r, 1;F)

+NL(r, 1;G) +N
(2

E (r, 1;F) +N0(r, 0;F
′) +N0(r, 0;G

′) + S(r, f)

+ S(r, g)

≤ N(r, 0;F| ≥ 2) +N(r, 0;G| ≥ 2) + 2NL(r, 1;F) + 2NL(r, 1;G)

+N
(2

E (r, 1;F) +N0(r, 0;F
′) +N0(r, 0;G

′) + S(r, f) + S(r, g)

≤ N(r, 0;F| ≥ 2) +N(r, 0;G| ≥ 2) + 2NF>2(r, 1;G) +N(r, 1;G)

−N(r, 1;G) +N0(r, 0;F
′) +N0(r, 0;G

′) + S(r, f) + S(r, g)

≤ N(r, 0;F| ≥ 2) +
1

2
N(r, 0;F) +N(r, 0;G| ≥ 2) +N(r, 1;G)

−N(r, 1;G) +N0(r, 0;F
′) +N0(r, 0;G

′) + S(r, f) + S(r, g)

≤ N(r, 0;F| ≥ 2) +
1

2
N(r, 0;F) +N(r, 0;G| ≥ 2) +N(r, 0;G′|G ̸= 0)

+N0(r, 0;F
′) + S(r, f) + S(r, g)

≤ N(r, 0;F| ≥ 2) +
1

2
N(r, 0;F) +N2(r, 0;G) +N0(r, 0;F

′) + S(r, f)

+ S(r, g). (3.21)

Hence using (3.21), Lemmas 2.5, 2.7, 2.8, 2.14, and from the second fundamental
theorem of Nevanlinna, we get

(n+m)T (r, f) ≤ T (r,F1)−N(r, 0;∆q(f)) + S(r, f)

≤ T (r,F) +Nk+2(r, 0;F1)−N2(r, 0;F)−N(r, 0;∆q(f)) + S(r, f)

≤ N(r, 0;F) +N(r, 1;F) +Nk+2(r, 0;F1)−N2(r, 0;F)−N0(r, 0;F
′)

−N(r, 0;∆q(f)) + S(r, f)

≤ N2(r, 0;F) +
1

2
N(r, 0;F) +Nk+2(r, 0;F1) +N2(r, 0;G)

−N2(r, 0;F)−N(r, 0;∆q(f)) + S(r, f) + S(r, g)

≤ Nk+2(r, 0;F1) +
1

2
N(r, 0;F) +N2(r, 0;G)−N(r, 0;∆q(f))

+ S(r, f) + S(r, g)

≤ Nk+2(r, 0;F1) +Nk+2(r, 0;G1) +
1

2
Nk+1(r, 0;F1)−N(r, 0;∆q(f))

+ S(r, f) + S(r, g)
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≤ (k + 2)N(r, 0; f) +N(r, 0;P (f)) +N(r, 0;∆q(f))

+
(k + 1)

2
N(r, 0; f) +

1

2
N(r, 0;P (f)) +

1

2
N(r, 0;∆q(f))

+ (k + 2)N(r, 0; g) +N(r, 0;P (g)) +N(r, 0;∆q(g))

−N(r, 0;∆q(f)) + S(r, f) + S(r, g)

≤
(
3k + 3m+ 5

2

)
T (r, f) + (k +m+ 2)T (r, g) +

1

2
T (r,∆q(f))

+ T (r,∆q(g)) + S(r, f) + S(r, g)

≤
(
3k + 3m+ 5

2

)
T (r, f) + (k +m+ 2)T (r, g) +

1

2
m

(
r,
∆q(f)
f(qz)

)
+

1

2
m(r, f(qz)) +m

(
r,
∆q(g)
g(qz)

)
+m(r, g(qz)) + S(r, f) + S(r, g)

(n+m)T (r, f) ≤
(
3k + 3m+ 6

2

)
T (r, f) + (k +m+ 3)T (r, g) + S(r, f) + S(r, g)

(3.22)

In a similar way, we can obtain

(n+m)T (r, g) ≤
(
3k + 3m+ 6

2

)
T (r, g) + (k +m+ 3)T (r, f) + S(r, f) + S(r, g)

(3.23)

Combining (3.22) and (3.23), we see that(
n−

(
5k + 4m

2

)
− 6

)
[T (r, f) + T (r, g)] ≤ S(r, f) + S(r, g),

a contradiction, since n > 5k+4m
2 + 6.

Subcase 1.2. While L = 0. Here (3.16) changes to

N
1)

E (r, 1;F| = 1) ≤ N(r, 0;H) +N(r,∞;H) + S(r,F) + S(r,G) (3.24)

Using (3.15), (3.24), Lemmas 2.6, 2.11, 2.12, and 2.13, we get

N(r, 1;F) ≤ N
1)

E (r, 1;F) +NL(r, 1;F) +NL(r, 1;G) +N
(2

E (r, 1;F)

≤ N(r, 0;F| ≥ 2) +N(r, 0;G| ≥ 2) +N∗(r, 1;F,G) +NL(r, 1;F)

+NL(r, 1;G) +N
(2

E (r, 1;F) +N0(r, 0;F
′) +N0(r, 0;G

′) + S(r, f)

+ S(r, g)

≤ N(r, 0;F| ≥ 2) +N(r, 0;G| ≥ 2) + 2NL(r, 1;F) + 2NL(r, 1;G)

+N
(2

E (r, 1;F) +N0(r, 0;F
′) +N0(r, 0;G

′) + S(r, f) + S(r, g)

≤ N(r, 0;F| ≥ 2) +N(r, 0;G| ≥ 2) +NF>1(r, 1;G) +NG>1(r, 1;F)

+NL(r, 1;F) +N(r, 1;G)−N(r, 1;G) +N0(r, 0;F
′) +N0(r, 0;G

′)

+ S(r, f) + S(r, g)

≤ N2(r, 0;F) +N(r, 0;F) +N2(r, 0;G) +N(r, 1;G)−N(r, 1;G)

+N0(r, 0;F
′) +N0(r, 0;G

′) + S(r, f) + S(r, g)
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≤ N2(r, 0;F) +N(r, 0;F) +N2(r, 0;G) +N(r, 0;G′|G ̸= 0) +N0(r, 0;F
′)

+ S(r, f) + S(r, g)

N(r, 1;F) ≤ N2(r, 0;F) +N(r, 0;F) +N2(r, 0;G) +N(r, 0;G) +N0(r, 0;F
′)

+ S(r, f) + S(r, g). (3.25)

Hence using (3.25), Lemmas 2.5, 2.7, 2.8, and 2.14, we get from the second funda-
mental theorem that

(n+m)T (r, f) ≤ T (r,F1)−N(r, 0;∆q(f)) + S(r, f)

≤ T (r,F) +Nk+2(r, 0;F1)−N2(r, 0;F)−N(r, 0;∆q(f)) + S(r, f)

≤ N(r, 0;F) +Nk+2(r, 0;F1) +N(r, 1;F)−N2(r, 0;F) +N(r, 0;G)

−N0(r, 0;F
′)−N(r, 0;∆q(f)) + S(r, f)

≤ N2(r, 0;F) + 2N(r, 0;F) +Nk+2(r, 0;F1) +N2(r, 0;G) +N(r, 0;G)

−N2(r, 0;F)−N(r, 0;∆q(f)) + S(r, f) + S(r, g)

≤ Nk+2(r, 0;F1) + 2N(r, 0;F) +N2(r, 0;G) +N(r, 0;G)

−N(r, 0;∆q(f)) + S(r, f)

≤ Nk+2(r, 0;F1) + 2Nk+1(r, 0;F1) +Nk+2(r, 0;G1) +Nk+1(r, 0;G1)

−N(r, 0;∆q(f)) + S(r, f) + S(r, g)

≤ (k + 2)N(r, 0; f) +N(r, 0;P (f)) +N(r, 0;∆q(f))

+ 2(k + 1)N(r, 0; f) + 2N(r, 0;P (f)) + 2N(r, 0;∆q(f))

+ (k + 2)N(r, 0; g) +N(r, 0;P (g)) +N(r, 0;∆q(g))

+ (k + 1)N(r, 0; g) +N(r, 0;P (g)) +N(r, 0;∆q(g))

−N(r, 0;∆q(f)) + S(r, f) + S(r, g)

≤ (3k + 3m+ 4)T (r, f) + 2N(r, 0;∆q(f))

+ (2k + 2m+ 3)T (r, g) + 2N(r, 0;∆q(g)) + S(r, f)

+ S(r, g)

≤ (3k + 3m+ 4)T (r, f) + (2k + 2m+ 3)T (r, g) + 2T (r,∆q(f))

+ 2T (r,∆q(g)) + S(r, f) + S(r, g)

≤ (3k + 3m+ 4)T (r, f) + (2k + 2m+ 3)T (r, g) + 2m

(
r,
∆q(f)
f(qz)

)
+ 2m(r, f(qz)) + 2m

(
r,
∆q(g)
g(qz)

)
+ 2m(r, g(qz)) + S(r, f)

+ S(r, g)

≤ (3k + 3m+ 6)T (r, f) + (2k + 2m+ 5)T (r, g) + S(r, f) + S(r, g).
(3.26)

In a similar way, we can obtain

(n+m)T (r, g) ≤ (3k + 3m+ 6)T (r, g) + (2k + 2m+ 5)T (r, f) + S(r, f) + S(r, g).
(3.27)
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Combining (3.26) and (3.27), we see that

(n− 5k − 4m− 11)[T (r, f) + T (r, g)] ≤ S(r, f) + S(r, g),

a contradiction, since n > 5k + 4m+ 11.
Case 2. We now assume that H ≡ 0, integrating (2.1), we get

1

F − 1
=

bG + a− b

G − 1
, (3.28)

where a( ̸= 0), b are constants. From (3.28), it is clear that F and G share (1,∞).
We now discuss the following three subcases separately.
Subcase 2.1. Suppose that b ̸= 0 and a ̸= b. If b = −1, then from (3.28), we have

F ≡ −a

G − a− 1
.

Therefore,

N(r, a+ 1;G) = N(r,∞;F) = S(r,F).

So in view of Lemmas 2.5, 2.8, 2.14, and the second fundamental theorem of Nevan-
linna, we get

(n+m)T (r, g) ≤ T (r,G1)−N(r, 0;∆q(g)) + S(r, g)

≤ T (r,G) +Nk+1(r, 0;G1)−N(r, 0;G)−N(r, 0;∆q(g)) + S(r, g)

≤ N(r, 0;G) +N(r, a+ 1;G) +Nk+1(r, 0;G1)−N(r, 0;G)

−N(r, 0;∆q(g)) + S(r, g)

≤ Nk+1(r, 0;G1)−N(r, 0;G)−N(r, 0;∆q(g)) + S(r, g)

≤ (k + 1)N(r, 0; gn) +N(r, 0;P (g)) +N(r, 0;∆q(g))

−N(r, 0;∆q(g) + S(r, g)

≤ (k +m+ 1)T (r, g) + S(r, g),

a contradiction, since n > k + 1.
If b ̸= −1, from (3.28), we obtain that

F −
(
1 +

1

b

)
≡ −a

b2
(
G + a−b

b

)
So,

N

(
r,
b− a

b
;G

)
= N(r,∞;F).

Using Lemmas 2.5, 2.8 and with the same arguments as used in the Case for b = −1,
we can get a contradiction.
Subcase 2.2. Let b ̸= 0 and a = b. If b = −1, then from (3.28), we have

F.G ≡ 1,

i.e.,

(fnP (f)∆q(f))
(k)

(gnP (g)∆q(g))
(k) ≡ φ2(z).

If b ̸= −1, from (3.28), we have

1

F
≡ bG

(1 + b)G − 1
.
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Therefore,

N

(
r,

1

1 + b
;G

)
= N(r, 0;F).

So in view of Lemma 2.5, 2.7, 2.8, 2.14, and using the second fundamental theorem
of Nevanlinna, we get

(n+m)T (r, g) ≤ T (r,G1)−N(r, 0;∆q(g)) + S(r, g)

≤ T (r,G) +Nk+1(r, 0;G1)−N(r, 0;G)−N(r, 0;∆q(g)) + S(r, g)

≤ N(r, 0;G) +N

(
r,

1

1 + b
;G

)
+Nk+1(r, 0;G1)−N(r, 0;G)

−N(r, 0;∆q(g)) + S(r, g)

≤ N(r, 0;F) +Nk+1(r, 0;G1)−N(r, 0;∆q(g)) + S(r, g)

≤ Nk+1(r, 0;F1) +Nk+1(r, 0;G1)−N(r, 0;∆q(g)) + S(r, g)

≤ (k + 1)N(r, 0; fn) +N(r, 0;P (f)) +N(r, 0;∆q(f))

+ (k + 1)N(r, 0; gn) +N(r, 0;P (g)) +N(r, 0;∆q(g))

−N(r, 0;∆q(g) + S(r, g)

≤ (k +m+ 1)T (r, f) + (k +m+ 1)T (r, g) + T (r,∆q(f)) + S(r, f)

+ S(r, g)

≤ (k +m+ 1)T (r, f) + (k +m+ 1)T (r, g) +m

(
r,
∆q(f)

f

)
+m(r, f) + S(r, f) + S(r, g)

(n+m)T (r, g) ≤ (k +m+ 2)T (r, f) + (k +m+ 1)T (r, g) + S(r, f) + S(r, g).

In a similar way, we can obtain

(n+m)T (r, f) ≤ (k +m+ 2)T (r, g) + (k +m+ 1)T (r, f) + S(r, f) + S(r, g)

Adding the above two inequalities, we get

(n− 2k −m− 3)[T (r, f) + T (r, g)] ≤ S(r, f) + S(r, g),

a contradiction, since n > 2k +m+ 3.
Subcase 2.3. Let b = 0, from (3.28), we have

F ≡ G + a− 1

a
. (3.29)

If a ̸= 1, then from (3.29), we obtain

N(r, 1− a;G) = N(r, 0;G).

So, using the same arguments used in case 1.2. for b ̸= −1, we can similarly deduce
a contradiction. Therefore a = 1 and from (3.29), we obtain F ≡ G,
i.e.,

(fnP (f)∆q(f))
(k) ≡ (gnP (g)∆q(g))

(k)
.

Integrating, we have

fnP (f)∆q(f) ≡ gnP (g)∆q(g) + ρ(z),
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where ρ(z) is a polynomial of degree at most (k − 1).
If ρ(z) ̸≡ 0, now in view of Lemmas 2.7, 2.8, 2.14, and the second fundamental
theorem of Nevanlinna, we have

(n+m)T (r, f) ≤ T (r,F1)−N(r, 0;∆q(f)) + S(r, f)

≤ N(r, 0;F1) +N(r,∞;F1) +N(r, 1;F1)−N(r, 0;∆q(f)) + S(r, g)

≤ N(r, 0; f) +N(r, 0;∆q(f)) +N(r, 0; g) +N(r, 0;∆q(g))

−N(r, 0;∆q(f)) + S(r, f) + S(r, g)

≤ N(r, 0; f) +N(r, 0; g) +N(r, 0;∆q(g)) + S(r, f) + S(r, g)

≤ T (r, f) + T (r, g) + T (r,∆q(g)) + S(r, f) + S(r, g)

≤ T (r, f) + T (r, g) +m

(
r,
∆q(g)

g

)
+m(r, g) + S(r, f) + S(r, g)

(n+m)T (r, f) ≤ T (r, f) + 2T (r, g) + S(r, f) + S(r, g).

Similarly, we have

(n+m)T (r, g) ≤ T (r, g) + 2T (r, f) + S(r, f) + S(r, g).

Combining the above two inequalities, we can get

(n+m− 3)[T (r, f) + T (r, g)] ≤ S(r, f) + S(r, g),

a contradiction, since n > 3−m.
Thus ρ(z) ≡ 0, which implies

fnP (f)∆q(f) ≡ gnP (g)∆q(g)

i.e.,

fn(amfm + am−1fm−1 + . . .+ a1f + a0)(f(qz + c)− f(qz))

≡ gn(amgm + am−1gm−1 + . . .+ a1g + a0)(g(qz + c)− g(qz)).

By using similar arguments as in Theorem 1.3 (from inequality (3.14) onwards), we
can easily prove Theorem 1.4.

Using similar arguments as in Theorem 1.1-1.4, we can quickly obtain Corollary
1.1-1.4, respectively.
Conclusion: In this paper, we investigate the uniqueness problems and distribu-
tion of zeroes of q-shift difference-differential polynomials of meromorphic (entire)
functions having zero order. Also, by using the concept of weighted sharing, we
investigate the uniqueness problem of q-shift difference-differential polynomials of
meromorphic (entire) functions having zero order, sharing a small function with
finite weight. The results of this paper are helpful in investigating the behavior of
meromorphic (entire) functions in different contexts. Some of the applications of
such results can be seen in signal processing, communication networks, design of
filters and controllers for systems with complex dynamics. Also, understanding the
properties of these functions is essential for solving difference-differential equations,
analyzing complex systems, and studying mathematical physics phenomena.

Continuing further research, we can pose the following open questions.
Open questions:

(1) Can the condition for the lower bound n in Theorems 1.1-1.4 be reduced
any further?
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(2) What happens to Theorems 1.1-1.4, if we replace the q-difference operator

∆qf by the product of q-difference
∏l

j=1(∆
u
q,c(f))

µj , where u, µj are positive
integers and q, c are non-zero complex constants?

(3) What happens to Theorems 1.1-1.4, if we replace the q-difference operator
∆q(f) by the linear q-difference polynomial Lk(f,Eq) and its q-difference
operator of the form Lk(f,∆) as in [23]?

(4) What happens to Theorems 1.1-1.4 if we study them using the concepts
of weakly weighted sharing, and truncated sharing, which are weaker than
weighted sharing?

Acknowledgments: The authors are grateful to the editor and referee(s) for care-
fully observing the manuscript and making several valuable suggestions to improve
the paper readability.
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