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Abstract: In this paper, the cosine Fréchet loss (CFrL) distribution is proposed as a modified version
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1. Introduction

The development of more adaptable distributions has received a lot of attention in recent years.
In the recent past, a number of generated families of distributions have been introduced and studied
with real-world data in a variety of application areas, including engineering, economics, medical sci-
ences, biological research, environmental studies, and insurance. It is possible to model phenomena
having extreme values, such as insurance claims and other related events, using extreme value tech-
niques. From the literature, heavy-tailed distributions have demonstrated to be effective models for
extreme-value datasets. Also, researchers have shown a deep concern in the financial sector to study
new heavy-tailed distributions. Among the applicability of the statistical distributions in the applied
area, heavy-tailed distributions have received much attention for modeling financial phenomena.
One of the fundamental distributions in extreme value theory is the Fréchet distribution (Fréchet [1]).
The Fréchet distribution and its applications are used in accelerated life testing, rainfall, earthquakes,
floods, horse racing, wind speeds, finance, and sea waves, among other fields. For additional informa-
tion, see (Kotz and Nadarajah [2]; Mubarak, [3]). The Fréchet distribution has been widely generalized
in the literature. For instance, Mahmoud and Mandouh [6] proposed the transmuted Fréchet, Nadarajah
and Kotz [4] introduced the exponentiated Fréchet, Nadarajah and Gupta [5] studied the beta Fréchet,
Krishna et al. [7] introduced the Marshall-Olkin Fréchet, and Silva et al. [8] introduced the gamma
extended Fréchet, respectively. The Kumaraswamy Fréchet was proposed by Mead and Abd-Eltawab
[9], and the transmuted Marshall-Olkin Fréchet and the Weibull Fréchet were introduced by Afify et al.
[10] and Afify et al. [11]. Ramos et al. [13] developed a novel generalization of the Fréchet distribution
with long-term survival, whereas Mead et al. [12] introduced the beta exponential Fréchet. Tablada
and Cordeiro [14] studied the modified Fréchet, and Abouelmagd et al. [15] introduced the Burr X
Fréchet distribution. Nasiru [16] proposed the extended odd Fréchet family of distributions with the
extended odd Fréchet Nadarajah-Haghighi and extended odd Fréchet Weibull as special distributions.
Harlow [17] showed that the Fréchet distribution is an important distribution for modeling the statisti-
cal behavior of materials properties for a variety of engineering applications.
Moreover, Abonongo et al. [20] introduced the cosine F-Loss (CFL) family of distributions with cu-
mulative distribution function (CDF) given by

G(x;ω) = 1 − cos

π2
1 − σF̄(x;ω)

σ − log
(
F̄(x;ω)

)
 , σ > 0, x ∈ R, (1.1)

where F̄(x;ω) = 1 − F(x;ω) is the survival function of the baseline distribution, ω is a p × 1 vector of
parameters, and σ is a shape parameter.
The probability density function (PDF) is given by

g(x;ω) =
π

2

σ f (x;ω)
[
1 + σ − log(F̄(x;ω))

]
[
σ − log(F̄(x;ω))

]2

 sin

π2
1 − σF̄(x;ω)

σ − log
(
F̄(x;ω)

)
 , x ∈ R. (1.2)

They proposed the cosine Weibull loss, cosine Burr III loss, and cosine Lomax loss as special distribu-
tions.
The purpose of this paper is to improve flexibility of the Fréchet distribution by using a trigonometric
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transformation via the use of the cosine F-Loss family of distributions by Abonongo et al. [20], and
thus create a distribution that can model both monotonic and non-monotonic failure rates. The mo-
tivation is that the trigonometric function ensures that the parameters oscillate with changing values
thereby improving the shapes of the new proposed distribution. From the literature most distributions
have a lot of parameters in the bit to make them flexible but with our proposed distribution, over-
parameterization is checked. Also, most distribution extensions are based on algebraic functions with
few on the use of trigonometric functions. Thus, this has triggered the need to extend existing classical
distributions or develop new ones.
To the best of our knowledge, the Fréchet distribution has not been modified using the cosine F-Loss
family of distributions. Hence, using the cosine F-Loss generator developed by Abonongo et al. [20],
we propose the cosine Fréchet Loss distribution (CFrL) as a modified version of the Fréchet distribu-
tion. In comparison with the traditional Fréchet distribution and other heavy tailed distributions, we
explore and demonstrate the flexible of the CFrL distribution.
The rest of the paper is organized as follows: Section 2 presents the cosine Fréchet Loss distribution.
The impact of changing parameter values is presented in section 3. Useful series expansion of the PDF
of the CFrL distribution is presented in section 4. Some statistical properties are presented in Section
5. In Section 6, we present some actuarial measures, including value at risk, tail value at risk, and
tail variance. In Section 7, we present the parameter estimation of the cosine Fréchet Loss distribution
using maximum likelihood estimation. The behaviors of the estimators are ascertained in Section 8
using Monte Carlo simulations. In Section 9, the usefulness of the new distribution is illustrated using
two insurance loss datasets and the conclusion is presented in Section 10.

2. Cosine Fréchet Loss Distribution

In this section, we introduce a modified version of the traditional Fréchet distribution which is
capable of modeling insurance losses. The proposed model is called cosine Fréchet Loss (CFrL) dis-
tribution.
Consider the Fréchet distribution as the baseline distribution with CDF and PDF defined as F(x) =
e−αx−β and f (x) = βαx−(β+1)e−αx−β for x > 0 and α, β > 0, respectively in Equation (1.1), we obtain the
CFrL distribution. Thus, the CDF of the CFrL is given by

G(x;α, β, σ) = 1 − cos

π2
1 − σ

(
1 − e−αx−β

)
σ − log

(
1 − e−αx−β

)
 , α, β, σ > 0, x > 0, (2.1)

where α is a scale parameter, β and σ > 0 are shape parameters.
The related PDF is given by

g(x;α, β, σ) = παβσ2

 x−(β+1)e−αx−β
[
1+σ−log

(
1−e−αx−β

)]
[
σ−log

(
1−e−αx−β

)]2

 sin
π2 1 − σ

(
1−e−αx−β

)
σ−log

(
1−e−αx−β

)
 , x > 0. (2.2)

The hazard rate function is given by

h(x;α, β, σ) =
παβσ

[
x−(β+1)e−αx−β

[
1+σ−log

(
1−e−αx−β

)]]
2
[
σ−log

(
1−e−αx−β

)]2 tan
π2 1 − σ

(
1−e−αx−β

)
σ−log

(
1−e−αx−β

)
 , x > 0.
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3. Impact of Changing Parameter Values

In this section, the impact of changing parameter values on the plots of the PDF and hazard rate
function of the CFrL distribution is studied. From Figure 1, the density plots exhibits decreasing and
right skewed shapes for different parameter values.

The plots of the hazard rate function as shown in Figure 2 exhibit reversed-J, increasing-constant-

Figure 1. Plots for the density function of the CFrL distribution

decreasing, bathtub, and upside-down-bathtub shapes for different parameter values.

Figure 2. Plots for the hazard rate function of the CFrL distribution

4. Useful Series Expansion

We present useful series expansion of the PDF of the CFrL distribution in this section.
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Lemma 1. The PDF of the CFrL distribution has a mixture representation of the form

g(x;α, β, σ) = αβ
∞∑

j,k=0

i∑
m=0

2k∑
i=0

Dimk jA jtw( j + m + t)x−(β+1)(e−αx−β) j+m+t, (4.1)

where Dimk j =
(−1)i+ j+k+m( π2 )2k(2k

i )(i+ j−1
j )( i

m)
2k!σ j and A jtw = j

∑∞
t=0

(
t− j

t

)∑t
w=0

(−1)t+w

j−w

(
t
w

)
Pw,t.

Proof. Using the Taylor series expansion of cosine function; cos(x) =
∑∞

k=0
(−1)k

(2k)! x2k, the generalized

binomial expansion; (1 − t)z =
∑z

i=0(−1)i
(

z
i

)
ti, |t| ≤ 1 and (1 + v)−z =

∑∞
l=0(−1) j

(
z+ j−1

j

)
v j, |v| ≤ 1 and the

fact that 0 < σF̄(x;ω)
σ−log F̄(x;ω) < 1, the CDF of the CFL in Equation (1) can be rewritten as

G(x;ω) = 1 −
∞∑

k=0

2k∑
i=0

(−1)k+i(π2 )2k

2k!

(
2k
i

) [
σF̄(x;ω)

σ − log(F̄(x;ω))

]i

= 1 −
∞∑

k=0

2k∑
i=0

(−1)k+i(π2 )2k

2k!

(
2k
i

)
F̄(x;ω)i[

1 − log(F̄(x;ω))
σ

]i .

Letting v = − log(F̄(x;ω))
σ

, we have

G(x;ω) = 1 −
∞∑

j,k=0

2k∑
i=0

(−1)i+ j+k(π2 )2k

2k!

(
2k
i

)(
i + j − 1

j

)
F̄(x;ω)i

[
−

log(F̄(x;ω))
σ

] j

.

Also, using F̄(x;ω)i =
∑i

m=0(−1)m
(

i
m

)
F(x;ω)m, we get

G(x;ω) = 1 −
∞∑

j,k=0

i∑
m=0

2k∑
i=0

(−1)i+ j+k(π2 )2k

2k!σ j

(
2k
i

)(
i + j − 1

j

)(
i
m

)
F(x;ω)m

[
− log(F̄(x;ω))

] j
.

Making use of the expansion (− log(1 − x))n = n
∑∞

t=0

(
t−n

t

)∑t
w=0

(−1)t+w

n−w

(
t
w

)
Pw,t, xn+t, where n > 0 is

any real value. The constants Pw,t can be estimated recursively by, Pw,t =
1
t

∑t
a=0

aw+a−w
a+1 Pw,t−a for

t = 1, 2, 3, ... and Pw,0 = 1.

G(x;ω) = 1−
∞∑

j,k=0

i∑
m=0

2k∑
i=0

(−1)i+ j+k(π2 )2k

2k!σ j

(
2k
i

)(
i + j − 1

j

)(
i
m

)
F(x;ω)m

× j
∞∑

t=0

(
t − j

t

) t∑
w=0

(−1)t+w

j − w

(
t
w

)
Pw,tF(x;ω) j+t.

Then, we can write

G(x;ω) = 1 −
∞∑

j,k=0

i∑
m=0

2k∑
i=0

Dimk jA jtwF(x;ω) j+m+t, (4.2)
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where Dimk j =
(−1)i+ j+k+m( π2 )2k(2k

i )(i+ j−1
j )( i

m)
2k!σ j and A jtw = j

∑∞
t=0

(
t− j

t

)∑t
w=0

(−1)t+w

j−w

(
t
w

)
Pw,t. From Equation

(4.2), we have

g(x;ω) =
∞∑

j,k=0

i∑
m=0

2k∑
i=0

Dimk jA jtw( j + m + t) f (x;ω)F(x;ω) j+m+t−1. (4.3)

Therefore, substituting the CDF and PDF of the Fréchet distribution into Equation (4.3), we get the
mixture representation of the PDF of the CFrL distribution as

g(x;α, β, σ) =
∞∑

j,k=0

i∑
m=0

2k∑
i=0

αβDimk jA jtw( j + m + t)x−(β+1)(e−αx−β) j+m+t.

5. Statistical Properties

In this section, some statistical properties of the CFrL distribution including the quantile function,
generating functions, inequality measures, order statistics, mean and median deviations, moments and
incomplete moments are presented.

5.1. Quantile Function

The quantile function is vital in describing the random variable of a distribution. It helps in sim-
ulating random samples which are useful in simulations. It can also be used to compute measures of
shape such as skewness and kurtosis.
Lemma 2. The quantile function of the CFrL distribution for u ∈ (0, 1) is defined by

xu = Q(u) = G−1(u) (5.1)

which is obtained by the solution of the equation;
[
1 −

(
2
π

arccos(1 − u)
)] [
σ − log

(
1 − e−αx−β

)]
−

σ
(
1 − e−αx−β

)
= 0 . The first quartile, the median, and the upper quartile are obtained by substituting

u = 0.25, 0.5, and 0.75 respectively, into Equation (5.1).

5.2. Moments

The moments of a distribution is important in estimating measures of variation like the variance,
standard deviation, coefficient of variation, mean deviation, median deviation, kurtosis, skewness
amongst others.
Proposition 1. The rth non-central moment of the CFrL distribution is given by

µ
′

r =

∞∑
j,k=0

i∑
m=0

2k∑
i=0

αr/βDimk jA jtw( j + m + t)r/βΓ

(
1 −

r
β

)
, r < β. (5.2)

Proof. By definition the rth non-central moment is given by

µ
′

r =

∫ ∞

0
xrg(x)dx.
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This implies that,

µ
′

r =

∞∑
j,k=0

i∑
m=0

2k∑
i=0

Dimk jA jtw( j + m + t)
∫ ∞

0
αβxr.x−β−1

(
e−αx−β

) j+m+t
dx.

Letting y = α( j + m + t)x−β. This implies, x =
(

y
α( j+m+t)

)−1/β
. Also, dx = − dy

αβ( j+m+t)x−β−1 . Thus,

µ
′

r =

∞∑
j,k=0

i∑
m=0

2k∑
i=0

αr/βDimk jA jtw( j + m + t)( j + m + t)r/β−1
∫ ∞

0
y−r/β+1−1e−ydy

=

∞∑
j,k=0

i∑
m=0

2k∑
i=0

αr/βDimk jA jtw( j + m + t)r/βΓ

(
1 −

r
β

)
, r < β,

where Γ(s) =
∫ ∞

0
ys−1e−ydy and r = 1, 2, 3...,. The values for the first four moments, standard deviation

(SD), coefficient of variation (CV), coefficient of skewness (CS), and coefficient of kurtosis (CK) of
the CFrL distribution for selected values of the parameters are shown in Table 1. The values of the first
four moments are obtained by using numerical integration. The standard deviation (SD), coefficient of
variation (CV), coefficient of skewness (CS), and coefficient of kurtosis (CK) are defined as

S D =
√
µ
′

2 − (µ′1)2, CV = σ

µ
′

1
, CS = µ

′

3−3µ
′

1µ
′

2+2(µ
′

1)3

σ3 , and CK = µ
′

4−4µ
′

1µ
′

3+6(µ
′

1)2µ
′

2−3(µ
′

1)4

σ4 respectively.

Table 1. First four moments, SD, CV, CS and CK of the CFrL distribution for some
parameter values
µ
′

r α = 0.1, β = 1.7, σ = 0.2 α = 0.14, β = 1.42, σ = 0.25 α = 0.2, β = 1.5, σ = 0.12
µ
′

1 0.261 0.293 0.304
µ
′

2 1.105 1.561 1.541
µ
′

3 7.014 11.233 10.382
µ
′

4 34.256 55.338 50.881
SD 1.018 1.2156 1.204
CV 3.901 4.145 3.961
CS 5.862 5.263 5.175
CK 25.459 19.740 18.626

Remark 1. By substituting r = 1 into Equation (5.2), we can get the mean of the CFrL distribution.

µ
′

1 =

∞∑
j,k=0

i∑
m=0

2k∑
i=0

α1/βDimk jA jtw( j + m + t)1/βΓ

(
1 −

1
β

)
, β > 1.

Figures 3 and 4 show the mean and variance, skewness and kurtosis plots of the CFrL distribution for
σ = 6.1, and a range of values for α and β respectively. From Figure 3, the mean and variance are
increasing. Also, in Figure 4, it can be seen that the skewness is positive, an indication that the CFrL is
right skewed and the kurtosis is increasing; meaning CFrL distribution is leptokurtic and heavy-tailed.
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Figure 3. Mean and variance plots of the CFrL distribution

Figure 4. Skewness and kurtosis plots of the CFrL distribution
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5.3. Generating Functions

The moment generating function (MGF), characteristic function, and cumulant generating function
of the CFrL distribution are derived in this section.
Proposition 2. The MGF of the CFrL distribution is given by

MX(z) = αr/β( j + m + t)r/β
∞∑

j,k,r=0

i∑
m=0

2k∑
i=0

ZrDimk jA jtw

r!

×Γ

(
1 −

r
β

)
, r < β, (5.3)

where Γ(., .) is the upper incomplete gamma function and r = 1, 2, 3, ...
Proof. By definition the MGF is given as;

MX(z) = E(ezx) =
∫ ∞

0
ezxg(x)dx.

Using series expansion,

MX(z) = E

 ∞∑
r=0

zrXr

r!

 = ∞∑
r=0

zr

r!
E(Xr),

MX(z) =
∞∑

r=0

zr

r!
µ
′

r.

Therefore,

MX(z) = αr/β( j + m + t)r/β
∞∑

j,k,r=0

i∑
m=0

2k∑
i=0

zrDimk jA jtw

r!

×Γ

(
1 −

r
β

)
, r < β.

Proposition 3. The characteristic function of the CFrL distribution is given by

ΘX(z) = αr/β( j + m + t)r/β
∞∑

j,k,r=0

i∑
m=0

2k∑
i=0

(iz)rDimk jA jtw

r!

×Γ

(
1 −

r
β

)
, r < β. (5.4)

Proof. By definition the characteristic function is given as;

ΘX(z) = E(eizX) =
∞∑

r=0

(iz)r

r!
µ
′

r, i =
√
−1.

Therefore,
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ΘX(z) = αr/β( j + m + t)r/β
∞∑

j,k,r=0

i∑
m=0

2k∑
i=0

(iz)rDimk jA jtw

r!

×Γ

(
1 −

r
β

)
, r < β.

Proposition 4. The cumulant generating function of the CFrL distribution is given by

κX(z) = r/β log(α) + r/β log( j + m + t) + log
∞∑

j,k,r=0

i∑
m=0

2k∑
i=0

(iz)rDimk jA jtw

r!

×Γ

(
1 −

r
β

)
, r < β. (5.5)

Proof. By definition,
κX(z) = log(ΘX(z)).

Therefore,

κX(z) = r/β log(α) + r/β log( j + m + t) + log
∞∑

j,k,r=0

i∑
m=0

2k∑
i=0

(iz)rDimk jA jtw

r!

×Γ

(
1 −

r
β

)
, r < β.

5.4. Incomplete Moment

The incomplete moment is vital in estimating the mean deviation, median deviation, and measures
of inequalities like Bonferroni and Lorenz curves.
Proposition 5. The rth incomplete moment of the CFrL distribution is given by

Mr(x) = αr/β( j + m + t)r/β
∞∑

j,k=0

i∑
m=0

2k∑
i=0

Dimk jA jtw

×Γ
(
1 − r/β, α( j + m + t)x−β

)
, r < β, (5.6)

where Γ(., .) is the lower incomplete gamma function and r = 1, 2, 3, ....
Proof. Using the identity,

Γ(a, y) =
∫ y

0
xa−1e−xdx.

and the concept in proving the moment, the incomplete moment of the CFrL distribution is

Mr(y) =
∫ y

0
urg(u)du

=

∞∑
j,k=0

i∑
m=0

2k∑
i=0

Dimk jA jtw( j + m + t)
∫ y

0
αβxr x−(β+1)

(
e−αx−β

) j+m+t
dx.

Computational Journal of Mathematical and Statistical Sciences Volume 3, Issue 1, 1–32
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Hence,

Mr(y) = αr/β( j + m + t)r/β
∞∑

j,k=0

i∑
m=0

2k∑
i=0

Dimk jA jtw

×Γ
(
1 − r/β, α( j + m + t)y−β

)
, r < β.

5.5. Mean and Median Deviations

The totality of the deviations from the mean and median can be used to estimate the variation in a
population with some certainty. If the random variable X follows the CFrL distribution, then the mean
and median deviations are given by the following propositions.
Proposition 6. The expected value of the absolute deviation of a random variable X having the CFrL
distribution from its mean is

δ1(x) = 2µG(µ) − 2α1/β( j + m + t)1/β−1
∞∑

j,k=0

i∑
m=0

2k∑
i=0

Dimk jA jtw (5.7)

×Γ
(
1 − 1/β, α( j + m + t)x−β

)
, β > 1,

where µ = µ
′

1 is the mean of X.
Proof. By definition,

δ1(x) =
∫ ∞

0
|x − µ|g(x)dx

=

∫ µ

0
(µ − x)g(x)dx +

∫ ∞

µ

(µ − x)g(x)dx

= 2µG(µ) − 2
∫ µ

0
xg(x)dx

= 2µG(µ) − 2α1/β( j + m + t)1/β
∞∑

j,k=0

i∑
m=0

2k∑
i=0

Dimk jA jtw

×Γ
(
1 − 1/β, α( j + m + t)x−β

)
, β > 1,

where
∫ µ

0
xg(x)dx is simplified using the first incomplete moment.

Proposition 7. The expected value of the absolute deviation of a random variable X having the CFrL
distribution from its median is

δ2(x) = µ − 2α1/β( j + m + t)1/β
∞∑

j,k=0

i∑
m=0

2k∑
i=0

Dimk jA jtw (5.8)

×Γ (1 − 1/β, a∗) , β > 1,

where a∗ = α( j + m + t)M−β, and M is the median of X.
Proof. By definition,

δ2(x) =
∫ ∞

0
|x − M|g(x)dx
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=

∫ µ

0
(M − x)g(x)dx +

∫ ∞

M
(M − x)g(x)dx

= µ − 2
∫ M

0
xg(x)dx

= µ − 2α1/β( j + m + t)1/β
∞∑

j,k=0

i∑
m=0

2k∑
i=0

Dimk jA jtw

×Γ (1 − 1/β, a∗) , β > 1,

where
∫ M

0
xg(x)dx is simplified using the first incomplete moment.

5.6. Inequality Measures

The Lorenz and Bonferroni curves are frequently used to assess the level of economic inequality in
a population. The Bonferroni curve, BG(x), is the scaled conditional mean curve, which is the ratio of
the group mean income of the population. The Lorenz curve, LG(x), indicates the proportion of total
income volume accumulated by those units with income lower than or equal to volume x.
Proposition 8. If X ∼ CFrL(α, β, σ), then the Lorenz curve LG(x) is given by

LG(x) =
α1/β( j + m + t)1/β

µ

∞∑
j,k=0

i∑
m=0

2k∑
i=0

Dimk jA jtw (5.9)

×Γ
(
1 − 1/β, α( j + m + t)x−β

)
, β > 1.

Proof. By definition,

LG(x) =
1
µ

∫ x

0
yg(y)dy

=
α1/β( j + m + t)1/β

µ

∞∑
j,k=0

i∑
m=0

2k∑
i=0

Dimk jA jtw

×Γ
(
1 − 1/β, α( j + m + t)x−β

)
, β > 1.

Proposition 9. If X ∼ CFrL(α, β, σ), then the Bonferroni curve BG(x) is given by

BG(x) =
α1/β( j + m + t)1/β

µG(x)

∞∑
j,k=0

i∑
m=0

2k∑
i=0

Dimk jA jtw (5.10)

×Γ
(
1 − 1/β, α( j + m + t)x−β

)
, β > 1.

Proof. By definition,

BG(x) =
LG(x)
G(x)

=
α1/β( j + m + t)1/β

µG(x)

∞∑
j,k=0

i∑
m=0

2k∑
i=0

Dimk jA jtw

×Γ
(
1 − 1/β, α( j + m + t)x−β

)
, β > 1.
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5.7. Order Statistics

For estimating summary statistics like a dataset’s minimum, maximum, and range, order statistics
are crucial. Additionally, they are utilized in reliability and quality control testing to predict future item
failure based on a small number of early failures. Let X1, X2, . . . , Xn be a sample of size n from the
CFrL distribution and X1:n ≤ X2:n ≤ . . . ≤ Xn:n denote the order statistics of the sample.
The PDF of the ith order statistics gi:n(x) is defined as

gi:n(x) =
n!

(i − 1)!(n − i)!
[G(x)]i−1[1 −G(x)]n−ig(x). (5.11)

Using the binomial series expansion, we have

[1 −G(x)]n−i =

n−i∑
w=0

(−1)w

(
n − i

w

)
[G(x)]w.

That is, Equation (5.11) becomes

gi:n(x) =
n!

(i − 1)!(n − i)!
g(x)

n−i∑
w=0

(−1)w

(
n − i

w

)
[G(x)]w+i−1. (5.12)

Substituting the CDF and PDF of the CFrL distribution into Equation (5.12), we get the ith order
statistics as

gi:n(x) =
πσαβx−(β+1)e−αx−β

[
1 + σ − log

(
1 − e−αx−β

)]
sin

π2 1 − σ
(
1−e−αx−β

)
σ−log

(
1−e−αx−β

)
 n!

2[σ − log(1 − e−αx−β)]2(i − 1)!(n − i)!

×

n−i∑
w=0

(−1)w

(
n − i

w

) 1 − cos

π2
1 − σ

(
1 − e−αx−β

)
σ − log

(
1 − e−αx−β

)



w+i−1

.

The first order statistics is defined by

g1:n(x) = n[1 −G(x)]n−1g(x). (5.13)

Substituting the CDF and PDF of the CFrL distribution into Equation (5.13), we get the PDF of the
first-order statistics as

g1:n(x) = n

cos

π2
1 − σ

(
1 − e−αx−β

)
σ − log

(
1 − e−αx−β

)



n−1

×
παβσ

2

 x−(β+1)e−αx−β
[
1 + σ − log

(
1 − e−αx−β

)]
[
σ − log

(
1 − e−αx−β

)]2

 (5.14)

× sin

π2
1 − σ

(
1 − e−αx−β

)
σ − log

(
1 − e−αx−β

)
 .
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Additionally, the PDF of the nth order statistics is defined as

gn:n(x) = n[G(x)]n−1g(x). (5.15)

Substituting the CDF and PDF of the CFrL distribution into Equation (5.15), we get the PDF of the
nth order statistics as

gn:n(x) =n

1 − cos

π2
1 − σ

(
1 − e−αx−β

)
σ − log

(
1 − e−αx−β

)



n−1

×
παβσ

2

 x−(β+1)e−αx−β
[
1 + σ − log

(
1 − e−αx−β

)]
[
σ − log

(
1 − e−αx−β

)]2

 (5.16)

× sin

π2
1 − σ

(
1 − e−αx−β

)
σ − log

(
1 − e−αx−β

)
 .

6. Actuarial Measures

In this section, actuarial measures of the CFrL distribution such as the value at risk, tail value at
risk, and tail variance are derived and studied.

6.1. Value at Risk

For any insurance company, risk exposure is an inevitable occurrence. The Value at Risk (VaR)
evaluates the amount a set of investments could lose and establishes the risk of a potential loss for the
insurance company with a given likelihood. That is, VaR represents the percentage of loss in a portfolio
value that will be equaled or exceeded only X percent of the time.
Proposition 10. The VaR of the CFrL distribution is defined by

xq = G−1(q) (6.1)

which is obtained by the solution of the equation;
[
1 −

(
2
π

arccos(1 − q)
)] [
σ − log

(
1 − e−αx−β

)]
−

σ
(
1 − e−αx−β

)
= 0, q ∈ (0, 1).

6.2. Tail Value at Risk

The tail value at risk (TVaR) is also called the tail conditional expectation (TCE) or conditional tail
expectation (CTE) and is used for determining the average loss beyond a given probability level.
Proposition 11. If X ∼ CFrL(α, β, σ), then, the TVaRq(x) of the CFrL distribution is given by

TVaRq(x) =
1

1 − q

∞∑
j,k=0

i∑
m=0

2k∑
i=0

Dimk jA jtw

Γ
(
1 − 1/β, α( j + m + t)VaR−βq

)
α−1/β( j + m + t)−1/β , β > 1, (6.2)
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where Γ(., .) is the upper incomplete gamma function and r = 1, 2, 3, ....
Proof. By definition,

TVaRq(x) =
1

1 − q

∫ ∞

VaRq

xg(x)dx.

This implies that,

TVaRq(x) =
1

1 − q

∞∑
j,k=0

i∑
m=0

2k∑
i=0

Dimk jA jtw( j + m + t)
∫ ∞

VaRq

αβx.x−β−1e−α( j+m+t)x−βdx.

Letting z = α( j + m + t)x−β, implies that if x → VaRq, z = α( j + m + t)VaR−βq , z → 0, x → 0,

x =
(

z
α( j+m+t)

)−1/β
, and dx = − dz

αβ( j+m+t)x−β−1 . After some algebraic manipulations, and making use of the
incomplete gamma function of the form Γ(a, q) =

∫ q

0
xs−1e−xdx, we have,

TVaRq(x) =
1

1 − q

∞∑
j,k=0

i∑
m=0

2k∑
i=0

Dimk jA jtw

Γ
(
1 − 1/β, α( j + m + t)VaR−βq

)
α−1/β( j + m + t)−1/β , β > 1.

6.3. Tail Variance

Tail variance (TV) is an important risk measure in insurance sciences. It is vital in determining the
risk level at the tails.
Proposition 12. If X ∼ CFrL(α, β, σ), the TVq(x) of the CFrL distribution is given by

TVq(x) =
1

1 − q

∞∑
j,k=0

i∑
m=0

2k∑
i=0

Dimk jA jtw

Γ
(
1 − 2/β, α( j + m + t)VaR−βq

)
α−2/β( j + m + t)−2/β (6.3)

−

 1
1 − q

∞∑
j,k=0

i∑
m=0

2k∑
i=0

Dimk jA jtw

Γ
(
1 − 1/β, α( j + m + t)VaR−βq

)
α−1/β( j + m + t)−1/β


2

.

Proof. By definition,

TVq(x) = E(X2|X > xq) − (TVaRq)2.

Considering,

E(X2|X > xq) =
1

1 − q

∫ ∞

VaRq

x2g(x)dx.

This implies that,

E(X2|X > xq) =
1

1 − q

∞∑
j,k=0

i∑
m=0

2k∑
i=0

Dimk jA jtw( j + m + t)
∫ ∞

VaRq

αβx2.x−β−1e−α( j+m+t)x−βdx.
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On solving,

E(X2|X > xq) =
1

1 − q

∞∑
j,k=0

i∑
m=0

2k∑
i=0

Dimk jA jtw

Γ
(
1 − 2/β, α( j + m + t)VaR−βq

)
α−2/β( j + m + t)−2/β , β > 2.

Therefore,

TVq(x) =
1

1 − q

∞∑
j,k=0

i∑
m=0

2k∑
i=0

Dimk jA jtw

Γ
(
1 − 2/β, α( j + m + t)VaR−βq

)
α−2/β( j + m + t)−2/β

−

 1
1 − q

∞∑
j,k=0

i∑
m=0

2k∑
i=0

Dimk jA jtw

Γ
(
1 − 1/β, α( j + m + t)VaR−βq

)
α−1/β( j + m + t)−1/β


2

.

Table 2 shows the numerical results of the actuarial measures for set I : α = 0.3, β = 1.74, σ = 1.8
and set II: α = 0.5, β = 1.65, σ = 1.3 and a range of confidence levels for the CFrL distribution. This
is displayed graphically in Figures 5 to 7. It is evident that increasing confidence levels are linked
to increasing VaR, TVaR and TV. In the insurance business, if more funds are channeled towards
managing risk, then a company is likely to remain solvent or operational. Also, increasing values of
the actuarial measures are indications that the CFrL distribution is a heavy-tailed distribution. The
simulation steps are as follows:

1. Random sample of size n = 150 is generated from the CFrL distribution and parameters estimated
via maximum likelihood method.

2. 1000 repetitions are made to calculate the VaR, TVaR and TV for the CFrL distribution.
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Table 2. Simulation results of the actuarial measures for CFrL distribution
Parameters Confidence Level VaR TVaR TV

0.710 0.573 6.821 43.013

0.750 0.576 7.417 46.274

α = 0.3 0.790 0.580 7.545 47.296

β = 1.74 0.820 0.582 7.625 48.159

σ = 1.8 0.860 0.585 7.690 48.371

0.900 0.591 7.783 48.864

0.950 0.592 8.544 53.446

0.970 0.595 9.591 60.781
0.710 0.585 6.694 54.784

0.750 0.588 6.856 55.888

α = 0.5 0.790 0.592 7.267 59.346

β = 1.65 0.820 0.597 7.415 60.388

σ = 1.3 0.860 0.598 8.306 68.106

0.900 0.600 8.550 70.385

0.950 0.605 9.077 74.368

0.970 0.609 9.273 76.237
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Figure 5. Plot for VaR of the CFrL distribution

Figure 6. Plot for TVaR of the CFrL distribution
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Figure 7. Plot for TV of the CFrL distribution

7. Parameter Estimation

In this section the unknown parameters of the CFrL are estimated using the maximum likelihood
estimation (MLE) technique.

7.1. Maximum Likelihood Estimation

The MLE is used in estimating the parameters of the CFrL distribution. If X1, X2, ..., Xn are n random
sample from the CFrL distribution and θ = (σ, α, β)T , then the log-likelihood function, ℓ = ℓ(θ), is
given by

ℓ = n
(
log

(
παβσ

2

))
− (β + 1)

n∑
i=1

log(xi) − α
n∑

i=1

x−βi

+

n∑
i=1

log
[
1 + σ − log

(
1 − e−αx−βi

)]
− 2

n∑
i=1

log
[
σ − log

(
1 − e−αx−βi

)]

+

n∑
i=1

log

sin

π2
1 − σ

(
1 − e−αx−βi

)
σ − log

(
1 − e−αx−βi

)

 . (7.1)

The log-likelihood function in Equation (7.1) is differentiated with respect to each parameter to obtain
the score function, U(θ) =

(
∂ℓ
∂σ
, ∂ℓ
∂α
, ∂ℓ
∂β

)T
. The elements of the score function are given by

∂ℓ

∂σ
=

n
σ
− 2

n∑
i=1

1

σ − log
[
1 − e−αx−βi

] + n∑
i=1

1

1 + σ − log
[
1 − e−αx−βi

]
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+
π

2

n∑
i=1

cot

π2
1 − σ

(
1 − e−αx−βi

)
σ − log

(
1 − e−αx−βi

)
 (7.2)

×

 σ
(
1 − e−αx−βi

)
(
σ − log

(
1 − e−αx−βi

))2 −
1 − e−αx−βi

σ − log
(
1 − e−αx−βi

)
 ,

∂ℓ

∂α
=

n
α
−

n∑
i=1

x−βi + 2
n∑

i=1

e−αx−βi x−βi(
1 − e−αx−βi

) (
σ − log

(
1 − e−αx−βi

))
−

n∑
i=1

e−αx−βi x−βi(
e−αx−βi x−βi

) (
1 + σ − log

(
e−αx−βi x−βi

)) (7.3)

+
π

2

n∑
i=1

cot

π2
1 − σ

(
1 − e−αx−βi

)
σ − log

(
1 − e−αx−βi

)


×

 −σe−αx−βi x−βi(
σ − log

(
1 − e−αx−βi

))2 −
σe−αx−βi x−βi

σ − log
(
1 − e−αx−βi

)


and

∂ℓ

∂β
=

n
β
−

n∑
i=1

log xi + α

n∑
i=1

x−βi log xi − 2
n∑

i=1

e−αx−βi x−βi α log xi(
1 − e−αx−βi

) (
σ − log

(
1 − e−αx−βi

))
+

n∑
i=1

e−αx−βi α log xi(
1 − e−αx−βi

) (
1 + σ − log

(
1 − e−αx−βi

)) (7.4)

+
π

2

n∑
i=1

cot

π2
1 − σ

(
1 − e−αx−βi

)
σ − log

(
1 − e−αx−βi

)


×

 e−αx−βi x−βi ασ log xi(
σ − log

(
1 − e−αx−βi

))2 +
e−αx−βi x−βi ασ log xi

σ − log
(
1 − e−αx−βi

)
 .

The estimates for the parameters α, β and σ are obtained by equating the score functions to zero and
solving the system of non-linear equations numerically.

8. Monte Carlo Simulation

In this section, the simulation results are presented in examining the properties of the maximum
likelihood estimators for the parameters of the CFrL distribution. The nlminb function in the R program
is used in the simulation. The function uses the L-BFGS-B optimization method. Table 3 shows the
simulation results for the CFrL distribution. It can be observed that, as the sample size increases,
the AB and RMSE for the estimators of the parameters decrease . This shows that the estimators are
consistent. The simulation steps are as follows:
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1. Generate N = 1000 sample of size n = 50, 100, 150, 200, 400 from the quantile function of the
CFrL distribution.

2. Find the maximum likelihood estimates for the parameters.
3. Repeat steps i-ii for 1000 times.
4. For each parameter estimate, calculate the average baise (AB) and root mean square error (RMSE)

defined as

AB =
1
N

N∑
i=1

(ω̂i − ωi)

and

RMS E =

√√
1
N

N∑
i=1

(ω̂i − ωi)2

for ω = (α, β, σ), respectively.
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Table 3. Monte Carlo Simulation Results: AB and RMSE for the Parameters of the
CFrL distribution

n Parameter value AB RMSE

50

100

150

200

400

α β σ

2.8 2.2 1.1

2.8 2.2 1.1

2.8 2.2 1.1

2.8 2.2 1.1

2.8 2.2 1.1

α β σ

0.800 0.488 0.900

0.510 0.481 0.813

0.328 0.404 0.730

0.019 0.062 0.211

0.011 0.030 0.092

α β σ

0.640 0.254 0.810

0.640 0.246 0.810

0.582 0.243 0.708

0.240 0.102 0.380

0.099 0.042 0.141
50

100

150

200

400

1.6 1.5 1.2

1.6 1.5 1.2

1.6 1.5 1.2

1.6 1.5 1.2

1.6 1.5 1.2

0.237 0.165 0.721

0.234 0.147 0.714

0.231 0.134 0.688

0.070 0.033 0.084

0.022 0.016 0.051

0.076 0.042 0.551

0.075 0.030 0.534

0.073 0.025 0.507

0.072 0.024 0.201

0.034 0.016 0.117
50

100

150

200

400

3.3 2.1 1.5

3.3 2.1 1.5

3.3 2.1 1.5

3.3 2.1 1.5

3.3 2.1 1.5

1.308 0.699 0.520

1.300 0.698 0.511

0.284 0.697 0.502

0.251 0.694 0.428

0.160 0.217 0.183

1.691 0.501 0.250

1.672 0.493 0.246

1.640 0.490 0.218

0.859 0.489 0.197

0.181 0.130 0.082
50

100

150

200

400

1.2 2 2.1

1.2 2 2.1

1.2 2 2.1

1.2 2 2.1

1.2 2 2.1

0.339 0.242 1.096

0.285 0.218 1.096

0.262 0.208 0.966

0.245 0.205 0.910

0.099 0.162 0.280

0.218 0.119 1.768

0.175 0.102 1.558

0.154 0.093 1.452

0.145 0.090 1.355

0.064 0.029 0.125
50

100

150

200

400

4.9 1.8 5.1

4.9 1.8 5.1

4.9 1.8 5.1

4.9 1.8 5.1

4.9 1.8 5.1

2.970 1.008 3.100

2.901 1.005 3.060

2.660 1.003 3.001

1.583 1.001 1.894

0.923 0.081 0.537

1.410 1.018 0.610

1.402 1.013 0.388

1.296 1.011 0.047

1.013 1.008 0.005

1.009 1.002 0.001
50

100

150

200

400

0.01 0.9 0.02

0.01 0.9 0.02

0.01 0.9 0.02

0.01 0.9 0.02

0.01 0.9 0.02

0.047 0.404 0.259

0.020 0.343 0.184

0.015 0.298 0.138

0.012 0.297 0.126

0.009 0.172 0.116

0.069 0.275 0.355

0.013 0.206 0.217

0.002 0.158 0.159

0.001 0.156 0.122

0.001 0.045 0.091
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9. Applications

This section illustrates the usefulness and flexibility of the CFrL distribution using two insurance
loss datasets. This is done using the R software. The performance of the CFrL distribution is compared
with other loss distributions. The performance of the distributions about providing proper parametric
fit to the dataset was compared using the AIC, BIC, HQIC, and K-S statistics. The distribution with
the least of these measures provides a reasonable fit to the dataset. The fit for CFrL is compared with
other heavy-tailed distributions, including the 2-parameter Weibull, Weibull-Loss (W-Loss), Fréchet,
Lomax, Power-Lomax, exponentiated Weibull (EW), Dagum, 2-parameter Burr XII (BXII), and sine
inverse Lomax Fréchet (SILF). The distribution functions of the W-Loss, Fréchet, Weibull, Dagum,
Power-Lomax, SILF, BXII, Lomax, and EW are :

F(x;σ, α, γ) = 1 −
σe−γxα

σ + γxα
, x ≥ 0, σ, α, γ > 0,

F(x;α, β) = e−αx−β , x ≥ 0, α, β > 0,

F(x;α, γ) = 1 − e−γxα , x ≥ 0, α, γ > 0,

F(x;α, β, λ) = (1 + λx−α)−β, x ≥ 0, α, β, λ > 0,

F(x;α, β, λ) = 1 − λα
(
xβ + λ

)−α
, x ≥ 0, α, β, λ > 0,

F(x;α, γ, β) = sin
(
π

2
e−α(

γ
x )
β
)
, x ≥ 0, α, γ, β > 0,

F(x; c, k) = 1 − (1 + xc)−k, x ≥ 0, c, k > 0,

F(x;α, λ) = 1 −
(
1 +

x
λ

)−α
, x ≥ 0, α, λ > 0

and

F(x; λ, α, γ) =
(
1 − e−γxα

)λ
, x ≥ 0, λ, α, γ > 0.

respectively.

9.1. Belgium Fire Loss

The first dataset consists of 1,823 fire losses in thousand of Danish krones (DKK). This data is
available in CASdataset of R package (Dutang and Charpentier [19]).
Table 4 shows the descriptive statistics of the Belgium fire losses. It can be seen that the losses are
right skewed and leptokurtic, with a long right tail.
Figure 8 shows the TTT-transform plot for the Belgium Fire Loss dataset. The data exhibits a de-
creasing hazard rate since the curve is convex below the 45 degree line. Table 5 shows the maximum
likelihood estimates for the parameters of the fitted distributions with their corresponding errors in
brackets. The parameters of all the distributions fitted are significant at the 5% with the exception of
Dagum distribution which had β and λ to be significant at 10%.
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Table 4. Descriptive Statistics of the Belgium Fire Losses
No. of Claims Mean Std. Skewness Kurtosis Min. Max.
1,823 363.460 4868.259 33.903 1289.322 10.150 90541.700

Figure 8. TTT-transform plot for Belgium fire losses

Table 6 shows the information criteria and goodness-of-fit of the fitted distributions. It can be seen that
the CFrL distribution is the best distribution providing a reasonable fit to the dataset among the other
heavy tailed distributions fitted since it has the least AIC, BIC, HQIC, K-S, and −2l values compared
with all the competing distributions.
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Table 5. Maximum likelihood estimates of the parameters and standard errors for
Belgium fire Loss dataset

Model α̂ β̂ σ̂ γ̂ ĉ k̂ λ̂

CFrL 2.882 0.569 4.730

(0.364) (0.025) (2.554)
BXII 0.097 3.919

(0.007) (0.264)
Dagum 0.681 18.960 0.176

(0.014) (5.852) (0.058)
EW 0.094 5.389 5.952

(0.002) (0.026) (0.004)
Fréchet 4.193 0.461

(0.145) (0.108)
Lomax 0.680 6.098

(0.025) (0.435)
Power-Lomax 0.220 2.262 5.282

(0.186) (0.144) (0.484)
SILF 2.988 1.238 0.458

(0.029) (0.032) (0.008)
Weibull 0.411 0.221

(0.006) (0.009)
W-Loss 0.733 0.015 0.002

(0.430) (0.003) (0.001)

Figures 9 and 10 show the plots of the empirical density, the fitted density, the empirical CDF, and the
PDF of the fitted distributions respectively. It is evident that the CFrL distribution is also among the
distributions that provide reasonable fit to the data.
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Figure 9. Empirical and CDF plots of Belgium fire loss

Figure 10. Empirical and PDF plots of Belgium fire loss
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Table 6. Information Criteria and Goodness-of-fit of Belgium fire loss dataset
Model −2l AIC BIC HQIC K-S(p-value)
CFrL 15972.500 15976.500 15987.520 15980.560 0.026(0.682)

BXII 17004.730 28920.660 28931.680 28924.720 0.883(0.184)

Dagum 16801.950 16807.950 16824.470 16884.530 0.044(0.601)

EW 16903.150 16909.150 16925.680 16915.250 0.049(0.508)

Fréchet 16795.820 17395.430 17411.960 17401.530 0.214(0.242)

Lomax 17002.060 17006.060 17017.070 17010.120 0.492(0.287)

Power-Lomax 16806.170 16812.170 16828.700 16818.270 0.042(0.659)

SILF 16876.720 16882.720 16899.240 16888.810 0.055(0.510)

Weibull 17994.820 17998.820 18009.830 18002.880 0.166(0.318)

W-Loss 17271.590 17277.590 17294.110 17283.680 0.105(0.483)

9.2. Vehicle Insurance Loss

The second dataset consists of a one-year vehicle insurance policies. There are 67,856 policies of
which 4,624 (6.8%) made at least one claim. This data is available at
http://www.businessandeconomics.mq.edu.au. This data was also studied by Ahmad et al. [18].
Table 7 shows the descriptive statistics of the vehicle insurance loss dataset. It can be seen that the data
is right-skewed and leptokurtic depicting a typical feature of insurance loss data.

Table 7. Descriptive Statistics of Vehicle Insurance Loss
No. of Claims Mean Std. Skewness Kurtosis Min. Max.
4,624 2014.400 3549.489 5.040 43.205 200.000 55,922.130

Figure 11 shows the TTT-transform plot for the vehicle insurance loss dataset. The data exhibits a
decreasing hazard rate since the curve is convex below the 45 degree line.
Table 8 shows the maximum likelihood estimates for the parameters of the fitted distributions with
their corresponding errors in brackets. The parameters of all the distributions fitted are significant at
the 5%.
Table 9 shows the information criteria and goodness-of-fit of the fitted distributions. It can be seen
that, the CFrL distribution is best distribution providing reasonable fit to the dataset among the other
heavy tailed distributions fitted since it has the least AIC, BIC, HQIC, K-S, and −2l values compared
with all the competing distributions. Figures 12 and ?? shows the plots of the empirical density, the
fitted density, the empirical CDF and the PDF of the fitted distributions respectively. It is evident that,
the CFrL distribution is also among the distributions that provide reasonable fit to the data.
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Figure 11. TTT-transform plot for vehicle insurance loss dataset

10. Conclusions, Limitations and Future Research

In this paper, we have proposed a modified version of the Fréchet distribution known as the cosine
Fréchet Loss distribution using the cosine F-Loss generator. This distribution is flexible and able
to model varying shapes of the hazard rate compared with the traditional two parameter Fréchet
distribution. The density exhibits different kinds of decreasing, and right-skewed shapes. The hazard
rate function show different kinds of increasing-constant-decreasing, reversed-J, bathtub, and upside
down bathtub shapes. The statistical properties including quantile function, generating functions,
inequality measures, order statistics, mean and median deviations, moments and incomplete moments
are studied. Using numerical integration, the first four moments of the CFrL distribution were
obtained. These moments were then used in estimating the SD, CV, CS, and CK. The skewness is
always positive and the kurtosis is increasing. This is evident in the skewness and kurtosis plots.
Actuarial measures including VaR, TVaR, and TV are derived and studied. The numerical values
of the actuarial measures show that increasing confidence levels are associated with increasing VaR,
TVaR, and TV. This is evident in the VaR, TVaR, and TV plots. This shows that the CFrL is a
heavy tailed distribution. The maximum likelihood estimators are studied and simulations carried
out to ascertain the behavior of the estimators. It is observed that the estimators are consistent since
increasing sample size was associated with decreasing AB and RMSE estimates. The usefulness of the
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Figure 12. Empirical and CDF plots of vehicle insurance loss

Figure 13. Empirical and PDF plots of vehicle insurance loss
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Table 8. Maximum likelihood estimates of the parameters and standard errors for
vehicle insurance loss dataset

Model α̂ β̂ σ̂ γ̂ ĉ k̂ λ̂

CFrL 292.247 1.002 270.504

(4.095) (0.012) (0.013)
BXII 0.074 1.972

(0.028) (0.745)
Dagum 1.074 29.039 28.973

(0.016) (11.067) (13.088)
EW 0.156 2.321 4.990

(0.002) (0.025) (0.004)
Fréchet 5.276 0.650

(9.626) (0.010)
Lomax 1.200 987.405

(0.032) (39.069)
Power-Lomax 1.264 0.984 9.108

(0.061) (0.010) (0.001)
SILF 44.170 4.859 0.723

(0.039) (0.258) (0.008)
Weibull 0.765 0.003

(0.008) (0.002)
W-Loss 7.519 4.798 0.004

(0.009) (0.002) (0.003)

proposed distribution was investigated using two insurance loss datasets namely the Belgium Fire Loss
and vehicle insurance loss and the performance compared with other known classical heavy-tailed
distributions. The results showed that the proposed model provide a better parametric fit compared to
the other heavy-tailed distributions.
The limitations of this study has to do with choosing initial values to include in the simulations so as
achieve convergence. In the future a pricing model could be developed using the proposed model.
Also, a regression model could be developed for the CFrL distribution.

Data Availability: The data that support the findings of this study are available from the corre-
sponding author.

Conflict of Interest: There is no conflict of interest.
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Table 9. Information Criteria and Goodness-of-fit of vehicle insurance loss dataset
Model −2l AIC BIC HQIC K-S(p-value)
CFrL 76179.360 76183.360 76196.240 76187.310 0.084(0.852)

BXII 89930.440 89934.440 89947.320 89938.970 0.541(0.429)

Dagum 77184.080 77190.080 77209.400 77196.970 0.088(0.803)

EW 77307.260 77313.260 77332.580 77320.060 0.094(0.710)

Fréchet 77177.030 77183.560 77202.870 77190.350 0.094(0.710)

Lomax 78514.300 78518.300 78531.180 78522.830 0.910(0.226)

Power-Lomax 78549.520 78555.520 78574.830 78562.310 0.207(0.364)

SILF 77311.480 77317.480 77336.790 77324.270 0.095(0.694)

Weibull 78955.570 78967.570 78972.950 78731.760 0.087(0.813)

W-Loss 78966.050 78972.050 78991.370 78978.850 0.187(0.311)
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ical Statistics, 14:15-24.

6. Mahmoud, M. R. and Mandouh, R. M. (2013). On the transmuted Fréchet distribution. Journal of
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life model: the gamma extended Fréchet distribution. Journal of Statistical Theory and Applica-
tions, 12:39-54.

9. Mead, M. E. and Abd-Eltawab, A. R. (2014). A note on Kumaraswamy Fréchet distribution. Aus-
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