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Abstract: To effectively detect and identify the anomaly data in massive satellite telemetry data 

sets, the novel detection and identification method based on the Auto-regressive integrated 

moving average (ARIMA), Prophet, Long Short Term Memory (LSTM), and Auto-encoder 

algorithms were proposed in this paper. The proposed model is used to find anomalous events 

by comparing the actual observed values with the predicted intervals of telemetry data. 

First, preprocessing for the raw telemetry data were Handled for the missing values using 

linear interpolation. Second, Down-casting to reduce the memory storage.  Based on this 

symbolization, the pseudo-period of the data was extracted. Third, the Data Transformation and 

Scaling to normalize the data within a particular range to helps in speeding up the calculations 

were applied. Finally, the experimental results for the Prophet model show predictions with high 

efficiency, stable when detecting anomalies, and requires little computational time. The results of 

Prophet compared with other  applied algorithms, demonstrate the effectiveness and superiority 

of the proposed model. 

 

I. INTRODUCTION 

Satellite consists of many subsystems like Power subsystem, Command and data handling 
subsystem CDHS, Communication subsystem, Thermal control subsystem, attitude 
determination and control subsystem, Telemetry, tracking, and command (TT&C), Propulsion 
subsystem and payload subsystem. 

Current anomaly detection methods for spacecraft telemetry primarily consist of tiered 
alarms indicating when values stray out- side of pre-defined limits and manual analysis of 
visualizations and aggregate channel statistics. Expert systems and nearest neighbor- based 
approaches have also been implemented for a small number of spacecraft [13]. These 
approaches have well-documented limitations – extensive expert knowledge and human 
capital are needed to define and update nominal ranges and perform ongoing analysis of 
telemetry. Statistical and limit-based or density-based approaches are also prone to missing 
anomalies that occur within defined limits or those characterized by a temporal element [9]. 

The massive amounts of telemetry data transmitted by an in-orbit satellite are the sole 
observational basis of the satellite’s operation. Through the analysis of telemetry data, ground 
telemetry, track, and command stations can determine the satellite’s operational state and detect 
possible anomalies in a timely fashion, assisting the normal operation of the in-orbit satellite.  

Challenges central to anomaly detection in multivariate time series data also hold for 
spacecraft telemetry. A lack of labeled anomalies necessitates the use of unsupervised or semi-
supervised approaches. Real-world systems are usually highly non-stationary and dependent on 
current context. Data being monitored are often heterogeneous, noisy, and high-dimensional. In 
scenarios where anomaly detection is being used as a diagnostic tool, a degree of interpretability 
is required. 

The breadth and depth of research in anomaly detection offers numerous definitions of 
anomaly types, but with regard to time- series data it is useful to consider three categories of 



anomalies – point, contextual, and collective [9]. Point anomalies are single values that fall 
within low-density regions of values, collective anomalies indicate that a sequence of values is 
anomalous rather than any single value by itself, and contextual anomalies are single values that 
do not fall within low-density regions yet are anomalous with regard to local values. 

Simple forms of anomaly detection consist of out-of-limits (OOL) approaches which use 
predefined thresholds and raw data values to detect anomalies. However, due to the influence of 
complex noise in the actual telemetry data, the fixed threshold method is prone to producing false 
alarms in the detection. In addition, the method cannot detect anomalies within the threshold. A 
myriad of other anomaly detection techniques has been introduced and explored as potential 
improvements over OOL approaches, such as clustering-based approaches [15, 24, 28], nearest 
neighbors approaches [3, 6, 23, 25],  expert systems [7, 34, 36, 43], and dimensionality reduction 
approaches [14, 39, 45], among others. These approaches represent a general improvement over 
OOL approaches and have been shown to be effective in a variety of use cases, yet each has its 
own disadvantages related to parameter specification, interpretability, generalizability, or 
computational expense [9, 16] (see [9] for a survey of anomaly detection approaches). Recently, 
RNNs have demonstrated  state-of-the-art performance on a variety of sequence-to-sequence 
learning benchmarks and have shown effectiveness across a variety of domains [38]. In the 
following sections, we discuss the shortcomings of prior approaches in aerospace applications 
and demonstrate RNN’s capacity to help address these challenges. 

 
Historical telemetry data have been used for modeling, with the measured data compared 

with the predicted data of the proposed model in order to achieve the anomaly detection and 
identification of the measured data [3–5]. The performance of this method is directly related to 
the modeling accuracy. When the data type changes, the data model must be updated. Based 
on the threshold method, Song [6] used the semi-major axis change method (SACM) to extract 
the mean and standard deviation of telemetry data in different periods as the migration 
variables for anomaly detection and identification. However, this method showed limited 
accuracy for anomaly identification. To diagnose the satellite faults, Sherr [7] used empirical 
mode decomposition to extract the telemetry data features from the time-frequency domain. 
However, the characteristic frequencies of each component in the data must be determined 
first, which is difficult in practical application. 

Due to their limited feasibility in use for the diagnosis of anomalous satellite telemetry data, 
the methods described above cannot meet engineering requirements.  

 
This paper proposes a development of a software for telemetry-data analysis and 

forecasting to provide progressive solutions for better satellite management which improves 
the use of satellite resources and increases satellite lifetime.  

 

II. TIME SERIES MODELS 

A time series is a sequence where a metric is recorded over regular time intervals. 
Depending on the frequency, a time series can be of yearly, quarterly, monthly, weekly, daily, 
hourly, minutes and even seconds wise. 
 
A. ARIMA 

ARIMA stands for "Auto-Regressive Integrated Moving Average". ARIMA models provide 
an approach to time series prediction and provide complementary approaches to the problem. 
It refers to a set of models that explain a time series based on its past values, that is, its lag 
and lagging prediction errors so that this equation can be used to predict future values. It aims 
to describe automatic correlations in the data. ARIMA models can be used to model any non-
seasonal time series that have patterns and are not random white noise. It’s characterized by 
three terms: p, d, q. Before introducing ARIMA models in detail, it must first discuss the concept 
of Stationarity and the technique of time-series Differencing. 
A stationary time series is a series whose statistical properties do not depend on the time at 

which the series is observed, that is, its mean and variance. Hence, trends or seasonal time 

series are not stationary. The trend and seasonality will affect the time series value at different 



times. The stationary is very important because it is easy to make predictions on a stationary 

series as we can assume that future statistical properties will not differ from those currently 

observed. Future projections will be wrong if the original series were not stationary. 

Differencing is a statistical approach to making a time series dataset stationary by 

transforming it. It can be used to remove the series dependence on time, so-called temporal 

dependence. Trends and seasonality are examples of such structures. By removing variations 

in the level of a time series, differencing can assist in stabilizing the mean of the time series, 

hence eliminating (or reducing) trend and seasonality. 

B. Prophet 

Prophet is a procedure for forecasting time series data based on an additive model where non-
linear trends are fit with yearly, weekly, and daily seasonality, plus holiday effects. It’s a curve-
fitting algorithm to build time series, forecasting models. It is open-source software released 
by Facebook's Core Data Science team. It designed for ease of use without expert knowledge 
on time series forecasting or statistics. It Builds a model by finding the best smooth line which 
can be represented as the sum of three component; Overall growth trend, Yearly seasonality 
and Weekly seasonality. 

Prophet library was launched by Facebook as an API for carrying out the forecasting related 
things for time series data. The library is so powerful that it has the capability of handling 
stationarity within the data and seasonality-related components.   

C. Long Short-Term Memory 

Long Short-Term Memory networks – usually just called “LSTMs” – are a special kind of RNN, 

capable of learning long-term dependencies. They were introduced by Hoch Reiter & Schmid 

Huber (1997) and were refined and popularized by many people in the following work. The 

Long Short-Term Memory network, or LSTM network, is a recurrent neural network that is 

trained using Backpropagation Through Time and overcomes the vanishing gradient problem.  

As such, it can be used to create large recurrent networks that in turn can be used to address 

difficult sequence problems in machine learning and achieve state-of-the-art results. 

Instead of neurons, LSTM networks have memory blocks that are connected through layers. 

A block has components that make it smarter than a classical neuron and a memory for recent 

sequences. A block contains gates that manage the block’s state and output. 

 

D. Auto Encoder 
Auto-encoders are neural networks. the defining aspect of an auto-encoder is that the input 

layers contain exactly as much information and have the exact same number of units as the 

output layer. The reason is that an auto-encoder aims to replicate the input data. It outputs a 

copy of the data after analyzing it and reconstructing it in an unsupervised technique. Auto-

encoders operate by taking in data, compressing, and encoding the data, and then 

reconstructing the data from the encoding representation. The model is trained until the loss is 

minimized and the data is reproduced as closely as possible. Through this process, an auto-

encoder can learn the important features of the data. The data that moves through an auto-

encoder is not just mapped straight from input to output, meaning that the network does not 

just copy the input data. 

III. PROPOSED SYSTEM 

This paper proposes an automated anomaly detection for satellite telemetry data using Artificial 

Intelligence techniques that depend on time-series analysis to detect possible future problems 

for handling them. The proposed system will predict the anomaly in satellite subsystems by 

monitoring and analysis the satellite telemetry data to protect the satellite system from any 



harm that could happen. The proposed system detects the pattern of satellite telemetry stream 

then simulate the satellite data streaming process. 

Received telemetry data contain two types of data must get rid of them which are outlier data 

(Extreme values) and anomaly (referred to the identification of events that do not conform to 

an expected pattern). 

However, if the data collected includes, for example, tensor (multi-way) structure, space-time 

measurement values, such as the measurement of satellite subsystems, some significant 

anomalies may stay hidden. Considering that the proposed system aims to manage satellite 

telemetry data, so an anomaly/outlier detection system is necessary to monitor and 

characterize the telemetry data. 

The system is being developed to capture data from satellites, considering the cadence of the 

data (the regular frequency at which measurements are taken) is one measurement every T 

minutes. The developed system aimed to forecast time series data and detect anomalies. 

A. System Design 
The design of proposed system went through, software architecture design and user interface 

design. 

The Satellite Anomaly Detection system receives the telemetry data from the satellite 

in the LEO and then provides feedback/status to the FCC based on the input, in this case, to 

give a warning that something may go wrong. Using an adapted time series model that detect 

normal pattern then classify anomalies based on prediction error. Also, the Satellite Anomaly 

Detection system can forecast future telemetry values for a specified period in the future. 

 

Figure 1.System architecture 

The designed user interface included control card of the model to represent the  capture 

interval (daily, weekly, or yearly seasonal) and represent the selected  interval: week, month, 

or year to updates the model and data. 

It is also designed data streaming card to plot telemetry data points in real-time and to 

give a clear visualization of data patterns, and anomalies with their impacts, also to visualize 

model forecasts. Finally, design dashboard interface to summarize all operations of the 

proposed system. 



B.  implementation 
The implementation process is to study a satellite data in low earth orbit then developing a 

real-time dashboard that can detect anomalies in real time. The implementation, including 

code, system architecture as well as graphs and results. 

• Dataset comes from NASA's satellite in low earth orbit that is using sensors for studying 

purposes. This satellite lifetime around 20 years, data have been collected over this period, 

which is just a value of subsystem measurements called Telemetry Data. This research 

chooses the most critical subsystem datasets the influence directly in the satellite life time. 

The chosen datasets are battery temperature, total spacecraft bus, bus voltage and 

reaction wheel RPM.  

Battery Temperature Dataset: It is a univariate time series with 1,518,180 readings for 

battery temperature recorded over roughly 15 years. “Univariate” means that it tracks only 

one variable’s values over time. The cadence of the data is one measurement every 5 

minutes. 

Total Spacecraft Bus Current Dataset: A satellite bus or spacecraft bus is a general 
model on which multiple-production satellite spacecraft are often based. The bus is the 
infrastructure of the spacecraft, usually providing locations for the payload. 

Bus Voltage Dataset: It is a univariate time series with 1,838,088 readings for bus 
voltage recorded over roughly 18 years. The cadence of the data is one measurement 
every 5 minutes. 
Reaction Wheel RPM Dataset: It is a univariate time series with 48,865,494 readings 
for RPM recorded over roughly 10 years. The cadence of the data is one measurement 
every second. A reaction wheel is sometimes operated as (and referred to as) a momentum 
wheel, by operating it at a constant (or near-constant) rotation speed, to imbue a satellite 
with a large amount of stored angular momentum. 

• Data Preprocessing 
The dataset sometimes not complete due to not all subsystems are working all the time (like 

reaction wheel), or weakness of signal or loss of communications. 

Linear interpolation is the simplest method of getting values at positions in between the data 

points. The points are simply joined by straight line segments. Know the formula for the 

linear interpolation process. The formula is  

𝑦(𝑥) = 𝑦1 + (𝑥 − 𝑥1)
(𝑦2 − 𝑦1)

(𝑥2 − 𝑥1)
 

where x is the known value, y is the unknown value, x1 and y1 are the coordinates that are 

below the known x value, and x2 and y2 are the coordinates that are above the x value. In 

the mathematical field of numerical analysis, interpolation is a method of constructing new 

data points within the range of a discrete set of known data points. A few data points from 

the original function can be interpolated to produce a simpler function that is still fairly close 

to the original. 

Due to the high sampling rates of physical sensors, a time series reduction is applied. 

Resampling and Peak Detection approaches have been applied to solve this problem while 

the key characteristics of the data remain unchanged. 

• Modeling 

This phase was for implementing and applying the different time series models: ARIMA, 
prophet, LSTM and Autoencoder models on the data set for different satellite subsystems.  

 
 
 



Arima model on Reaction Wheel Temperature Data Set 
 

Figure  2   ARIMA Model on Data stream 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure  3  Residuals 

 
 

• Dashboard implementation 
The implemented dashboard is to perform a comparison between the real streaming 
from the satellite and the database. 
 

                        

   

  

 

 

         

 

   

 

                    

    

 
  

  
 

  
 

 
 

  
  

  
  

  
  

 



C. Testing  

• Stationarity Test 

Stationarity Test by using Plotting Rolling Statistics to find rolling mean and variance to 

check stationary. Another way to check stationarity by using Dickey-Fuller Test. 

-Results for Dickey-Fuller Test 

Figure 4 Rolling statistics plot for reaction wheel RPM  Figure 5 Rolling statistics for total spacecraft bus current 

 
 

 
Figure 6 Rolling statistics for battery Temp                                            Figure 7 Rolling statistics for wheel temp 

 

Figure 8 Rolling statistics for bus voltage 
    

• Train test split 

Splitting dataset into training and testing subsets. The model can be prepared on 
the training dataset and predictions can be made and evaluated for the test dataset. 
This can be done by selecting an arbitrary split point in the ordered list of 
observations and creating two new datasets. 

 

            

   

  

 

 

          

            

           

                                       

        

  
 

 
  

   
 

                    

     

    

 

   

    
              

            

           

                                      

        

 
 

 
 

 
 

  
  

 
 

 
 

            

   

  

 

 

  

          

            

           

                                        

        

 
 

 
 

 
  

  
 

            

   

   

   

 

  

  

  
          

            

           

                                        

        

  
  

  
   

 

            

   

   

   

  

 

 

  

  

            

            

           

                                              

        

 
 

 
 

 
 

  
 

 



• Multi Train Test Split 

A repetition of the process of splitting the time series into train and test sets multiple times 

will require multiple models to be trained and evaluated, but this additional computational 

expense will provide a more robust estimate of the expected performance of the chosen 

method and configuration on unseen data. This can done manually by repeating the 

process described in the previous section with different split points. 

 

D. EXPERIMENTAL WORK 

For many spacecrafts, current anomaly detection systems are difficult to assess. The 

precision and recall of alarms aren’t captured and telemetry assessments are often 

performed manually. At this section we do some experiments using the proposed model on 

data like (Reaction Wheel Temperature, Battery Temperature, Reaction Wheel Temperature, 

Bus Voltage and Reaction Wheel RPM), and Observed Anomalies/Outliers . 

Experiment 1 Reaction Wheel Temperature 

Table 1. model parameters and results reaction wheel temperature 

Training 
Size 

Test 
Size 

Valid 
Size 

Cadence Model Time 
Consumed 

 Scaler Optimizer Loss Epochs 

689 76 0 Week ARIMA 56min None AIC MSE None 
4811 535 0 Day Prophet 8.45 s None Stan MSE None 
3849 535 962 Day LSTM 30min 41s MinMaxScaler Adam MSE 25 
3367 535 1443 Day Autoencoder 3min MinMaxScaler Adam MSE 25 

 

 

 

 

                                                

 

 

  

  

  

  

                     

          

     

       

    

           

                     

        

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

  

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

  
 

 
  

 
  

  
  

  
  

 
  

  
  

  
  

 
  

  
  

  

 
 

 
  

  
 

  
 

 
 

   
 

 
 

 
  

  
  

 
 

  
  

 
 

Figure 91. Reaction Wheel Temperature Forecast 



Model Error 

 

Experiment 2 Battery Temperature 

Table 2. model parameters and results battery temperature 

Training 
Size 

Test 
Size 

Valid 
Size 

Cadence Model Time 
Consumed 

Scaler Optimizer Loss Epochs 

689 76 0 Week ARIMA 1h 9min 
50s 

None AIC MSE None 

4811 535 0 Day Prophet 8.9 s None Stan MSE None 
3849 535 962 Day LSTM 34min 25s MinMaxScaler Adam MSE 25 
3340 535 1431 Day Autoencoder  2min 6s MinMaxScaler Adam MSE 25 

     
     

     

     

          

     

     

     

     

     

     

                           
 

 

 

 

 

 

 

 

      

   

  

   

                                          

     

 
  

 
  

Figure 2.Reaction Wheel Temperature Forecast Error 

                                                
 

 

  

  

                   

          

     

       

    

           

                     

        

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

  

 
 

 
 

 
 

 
 

 
 

  
 

 
  

 
  

  
  

  
  

 
  

  
  

  
  

 
  

  
  

  

 
 
  

 
  

  
 

 
 

 
  

  
  

 
 

  
  

 
 

Figure 11.Battery Temperature Forecast 



Model Error    

                                                                    

 Figure 12.Battery Temperature Forecast 

Experiment 3 Reaction Wheel RPM   

Training 
Size 

Test 
Size 

Valid 
Size 

Cadence Model Time 
Consumed 

Scaler Optimizer Loss Epochs 

441 49 0 Week ARIMA 55min 23s None AIC MSE None 
3079 342 0 Day Prophet 8.85 s None Stan MSE None 
2463 342 616 Day LSTM 22.6 s MinMaxScaler Adam MSE 25 
2128 342 911 Day AE 1min 11s MinMaxScaler Adam MSE 25 

 

 

Figure 13. Reaction wheel RPM Forecase 

     

     

    

     

     

     

     

    

     

     

     

     

                           
 

   

 

   

 

   

 

   

      

   

  

   

                                          

     

 
 

  
  

                                                

    

 

   

    

    

    
                   

              

     

       

    

           

                     

        

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 

 
 

 
 

 

 
 

 
 

 

 
 

 
 

 

 
 

 
 

  

 
 

 
 

 
 

 
 

 
 

 
 

 
 

  
  

 
 

 
 

  
 

  
  

  
  

  
 

  
  

  
  

  
 

  
  

  
  

 
 

 
  

  
 

  
 

 
 

   
 

 

 
 

  
  

 
 



Model Error 

 

Figure 3. Reaction wheel RPM Forecase Error 

Experiment 4 Total Spacecraft Bus Current  

Training 
Size 

Test 
Size 

Valid 
Size 

Cadence Model Time 
Consumed 

Scaler Optimizer Loss Epochs 

689 76 0 Week ARIMA 1h 8min 
11s 

None AIC MSE None 

4811 535 0 Day Prophet 12.3 s  None Stan MSE None 
3849 535 962 Day LSTM 3min 6s MinMaxScaler Adam MSE 25 
3367 535 1443 Day AE 2min 2s MinMaxScaler Adam MSE 7 

 

 

 

 

 

 

 

 

 

Figure15.Total Spacecraft Bus Current  Forecast 

Model Error 
 

 

                                                 

         

         

          

           

                           

 

    

    

    

    

  

    

    

    

          

   

  

   

                                          

     

 
 

  
  

                                                

 

 

 

 

 

  

  

                   

          

     

       

    

           

                     

        

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

     

 
 

 
 

 
 

 
 

 
  
  

 
  

 
  

  
  

  
  

 
  

  
  

  
  

 
  

  
  

  

 
 

  
   

 
 
  

  
 
  

  
 

  
 

 
  

 
 

 

 
 

  
  

 
 



 

 

 

 

 

 

 

 

 

 

Figure 16.Total Spacecraft Bus Current  Forecast Error 

 

Experiment 5 Bus Voltage 

Training 
Size 

Test 
Size 

Valid 
Size 

Cadence Model Time 
Consumed 

Scaler Optimizer Loss Epochs 

689 76 0 Week ARIMA 1h 30min 
36s 

None AIC MSE None 

5818 646 0 Day Prophet 13.4 s None Stan MSE None 
4654 1164 646 Day LSTM 43.4 s MinMaxScaler Adam MSE 5 
4045 646 1733 Day AE 5min 34s MinMaxScaler Adam MSE 20 

 

Figure 17.Bus Voltage Forecast 

 

Model Error 

 

 

     

     

     

     

     

     

     

     

     

     

     

     

                           
 

   

 

   

 

      

   

  

   

                                          

     

 
  

 
  

                                

 

  

  

  

  

  

  
                   

          

     

       

    

           

                     

        

 
 

 
 

 
 

 
 

 
 

 
 

 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

  
 

 
  

 
  

  
  

  
  

 
  

  
  

  
  

 
  

  
  

  

 
 

  
 

 
  

 
 
 

 
 

  
  

 
 



 

 

 

 

 

 

 

 

 

 

 

 

 

Observed Anomalies/Outliers  

Classified Results 
 Total 

Observations 
Normal 
Observations 

Anomaly 
Impact 1 

Anomaly 
Impact 2 

Anomaly 
Impact 3 

TCPV6T (C) 5346 5056 247 43 0 
ADW1SDIR (RPM) 3421 3331 55 20 15 

TRW1MT (C) 5346 5243 29 67 7 
PWBUSV (V) 6464 6322 53 52 37 
PWBUSI (A) 5346 5214 49 76 7 

 

Reaction Wheel Temperature 

 

            

 

 

  

  

  

  

  

                

                                         

                                              

                          

              

 
 

 
 

 
 

  
 

 

            

 

 

  

  

  

  

  

                

                                         

                                              

                                    

              

 
 

 
 

 
 

  
 

 

          
         

                    

     

     

     

     

                           
 

 

 

 

 

 

 

 

 

 

      

   

  

   

                                          

     

 
 

  
  

Figure 18.Bus Voltage Forecast 

Figure 19. Observed Anomalies/Outliers Reaction Wheel Temperature 



Battery Temperature 

 

Reaction Wheel RPM 

 

Figure 4Observed Anomalies/Outliers Reaction Wheel RPM 

 

 

 

 

 

 

 

            

 

 

  

  

                

                                         

                       

                   

              

 
 

 
 
 

 
  

 
 

                    

     

     

 

    

                

                                         

                                              

                  

              

 
 

 
 

 
 

  
  

 
 

 
 

Figure 20. Observed Anomalies/Outliers Battery Temperature 



Total Spacecraft Bus Current  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 22 Observed Advanced Anomalies/outliers Spacecraft Bus Current 

Bus Voltage 
 

 

 

 

 

 

 

 

 

Figure 23 Observed Anomalies/Outliers Bus Voltage 

 

 

D. Observation  

Statistical Model  

ARIMA generalizes well in most cases, so it is a powerful model for forecasting. But it takes a 

lot of computational time, and it needs hyper-parameter tuning that requires predefine the 

parameters, so it needs supervision and requires high hardware for huge datasets. 

            

 

 

  

  

                

                                         

                                              

                            

              

 
 

 
 

 
  

  
 

                

 

  

  

  

  

                

                                         

                                              

           

              

 
 

 
 

 
 

  
 

 



Deep Learning Models: 
LSTM and Autoencoder tend to be overfitting and sensitive to outliers. 

Prophet Model: 
Prophet model is robust to missing data and shifts in the trend, and typically handles outliers 

well. The final selected model will be the Prophet model, which is not just because it can 

perfectly predict the data pattern, but it is very fast compared to ARIMA and less sensitive to 

outliers. 

CONCLUSION 

Time series analysis is one of the many big computational processes created 

specifically for longitudinal data analysis over the last thirty years. we can only obtain 

the operational status and health status of an in-orbit satellite through satellite 

telemetry data. The pattern mining and extraction of satellite telemetry data are of high 

significance for automatic judgment and anomaly detection. This paper is devoted to 

time-series strategies for analyzing satellite telemetry data and detecting outliers. This 

paper discusses various time-series modeling approaches (ARIMA, Facebook 

Prophet, Long Short-Term Memory, Auto Encoder). We introduced some statistical 

approaches and supervised and unsupervised machine learning methods 

(classification, clustering), to summarize telemetry data and give the most significant 

information in it for monitoring the health state of various subsystems.  Experiments 

conducted on the time series telemetry of the data set have proven the superiority and 

effectiveness of the machine learning algorithm for data mining in predicting the 

expected values. 
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