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Abstract:
The unsteady magnetohydrodynamic (MHD) Couette flow with heat transfer of an
electrically conducting, viscous, incompressible fluid bounded by two parallel insulating
porous plates is studied in the presence of uniform suction and injection and a heat
source considering the Hall effect.  An externally applied uniform magnetic field as well
as a uniform suction and injection are applied in the direction perpendicular to the
plates.  A uniform and constant pressure gradient is imposed in the axial direction.  The
two plates are kept at different but constant temperatures while the Joule and viscous
dissipations are included in the energy equation.  The effect of the Hall current and the
uniform suction and injection on both the velocity and temperature distributions is
investigated and interesting results are presented for different values of the parameters
of the problem.
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1. Introduction:

The magnetohydrodynamic (MHD) flow between two parallel plates, known as
Hartmann flow, is a classical problem that has many applications in MHD power
generators, MHD pumps, accelerators, aerodynamic heating, electrostatic precipitation,
polymer technology, petroleum industry, purification of crude oil and fluid droplets and
sprays. Hartmann and Lazarus [1] studied the influence of a transverse uniform
magnetic field on the flow of a conducting fluid between two infinite parallel, stationary,
and insulated plates.  Then, a lot of research work concerning the Hartmann flow has
been obtained under different physical effects [2-10]. In most cases the Hall and ion slip
terms were ignored in applying Ohm's law as they have no marked effect for small and
moderate values of the magnetic field.  However, the current trend for the application of
MHD is towards a strong magnetic field, so that the influence of electromagnetic force is
noticeable [5]. Under these conditions, the Hall current and ion slip are important and
they have a marked effect on the magnitude and direction of the current density and
consequently on the magnetic force term.  Tani [7] studied the Hall effect on the steady
motion of electrically conducting and viscous fluids in channels. Soudalgekar et al. [8-
9] studied the effect of the Hall currents on the steady MHD Couette flow with heat
transfer.  The temperatures of the two plates were assumed either to be constant [8] or to
vary linearly along the plates in the direction of the flow [9]. Abo-El-Dahab [10] studied
the effect of Hall current on the steady Hartmann flow subjected to a uniform suction
and injection at the bounding plates. Later, Attia [11] extended the problem to the
unsteady state with heat transfer, with constant pressure gradient applied.

In the present paper, the unsteady Couette flow and heat transfer of an
incompressible, viscous, electrically conducting fluid between two infinite insulating
horizontal porous plates are studied with the consideration of the Hall current and in the
presence of a heat source.  The upper plate is moving with a uniform velocity while the
lower plate remains stationary. The fluid is acted upon by a constant pressure gradient, a
uniform suction and injection and a uniform magnetic field perpendicular to the plates.
The induced magnetic field is neglected by assuming a very small magnetic Reynolds
number [4, 5]. The two plates are maintained at two different but constant temperatures.
This configuration is a good approximation of some practical situations such as heat
exchangers, flow meters, and pipes that connect system components.  The cooling of
these devices can be achieved by utilizing a porous surface through which a coolant,
either a liquid or gas, is forced.  Therefore, the results obtained here are important for the
design of the wall and the cooling arrangements of these devices.  A numerical solution
for the governing equations including the Joule and viscous dissipations is developed.
The effect of the magnetic field, the Hall current and the suction and injection on both
the velocity and temperature distributions is reported.
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2. Governing Equations:

The two insulating plates are located at the y=±h planes and extend from x=-∞ to ∞ and
z=-∞ to ∞.  The upper plate is moving with a uniform velocity Uo while the lower plate
remains fixed.  The lower and upper plates are kept at the two constant temperatures T1

and T2, respectively, where T2>T1 and a heat source is included.  The fluid flows
between the two plates under the effect of a constant pressure gradient dP/dx in the axial
x-direction, and a uniform suction from above and injection from below which are
applied at t=0 with velocity ov .  The whole system is subjected to a uniform magnetic
field Bo in the positive y-direction.  This is the total magnetic field acting on the fluid
since the induced magnetic field is neglected.  From the geometry of the problem, it is
evident that all quantities are independent of x and z-coordinates apart from the pressure
gradient dP/dx.  The existence of the Hall term results in a z-component of the velocity.
Thus, the velocity vector of the fluid is

ktywjvityutyv o ),(),(),( ++=
The initial and boundary conditions are: u=w=0 at t≤0, u=w=0 at y=-h for t>0 and u=Uo

and w=0 at y=h for t>0. The temperature T(y,t) at any point in the fluid satisfies both
the initial and boundary conditions T=T1 at t≤0, T=T2 at y=+h, and T=T1 at y=-h for t>0.
The fluid flow is governed by the momentum equation

oBJPv
Dt
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If the Hall term is retained, the current density J is given by
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This equation may be solved in J yielding
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where oBm = , is the Hall parameter [4]. Thus, in terms of Eq. (2), the two components
of Eq. (1) read [12]
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The temperature distribution is governed by the energy equation [12]
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The second and third terms on the right side represent the viscous and Joule
dissipations, respectively.  Introducing the following non-dimensional quantities
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 /Re ohU= , is the Reynolds number,
,/ oo UvS =  is the suction parameter,

kc p /Pr = , is the Prandtl number,

)(/ 12
2 TTcUEc po −= ,  is the Eckert number,

 /222 hBHa o= , where Ha is the Hartmann number,

)/(ˆ
0 phcQUQ = is the dimensionless heat generation coefficient

the basic Eqs. (3)-(5) are written as (the hats are dropped for convenience)
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The initial and boundary conditions for the velocity become

,1,0,1,1,0:0,0:0 ===−===>==≤ ywuywutwut         (9)
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and the initial and boundary conditions for the temperature are given by

.1,0,1,1:0,0:0 −==+==>=≤ yTyTtTt                                    (10)

3. Results and Discussion:

Equations (6)-(8) are solved numerically using finite differences [13] under the initial
and boundary conditions (9) and (10) to determine the velocity and temperature
distributions for different values of the parameters Ha and S.  The Crank-Nicolson
implicit method is applied and the finite difference equations are written at the mid-
point of the computational cell and the different terms are replaced by their second-
order central difference approximations in the y-direction.  The diffusion term is
replaced by the average of the central differences at two successive time levels.  The
viscous and Joule dissipation terms are evaluated using the velocity components and
their derivatives in the y-direction which are obtained from the exact solution.  Finally,
the block tri-diagonal system is solved using Thomas' algorithm. All computations are
carried out for dP/dx=3, Re=1, Pr=1 and Ec=0.2.

Figure 1 presents the profiles of the velocity components u and w and the
temperature T for different values of time t and for Ha=1, m=3, S=1 and Q=0.1. It is
seen that the velocity components and temperature reaches the steady state
monotonically with time.  Also the velocity component u reaches the steady state faster
than w which, in turn, reaches the steady state faster than T because u is the source of w,
while both u and w act as sources for the temperature.

Figure 2 indicates that the time progression of u and w at the centre of the channel
y=0 for different values of the Hall parameter m and for Ha=1, S=0 and Q=0.1. It is
clear from Fig. 2a that increasing the parameter m increases u because the effective
conductivity ( )1/( 2m+ ) decreases with increasing m which reduces the magnetic
resistive force on u. In Fig. 2b, the velocity component w increases with increasing the
parameter m slightly (m=0 to 1), since increasing m increases the driving force term
( )1/( 22 mumHa + ) in Eq. (7) which pumps the flow in the z-direction.  However,
increasing m more decreases the effective conductivity that results in a reduced driving
force and then, decreases w. It is clear from Fig. 2c that increasing m decreases T for
all t due to decreasing the effect of the Joule dissipation.

Figure 3 presents the time progression of u, w and T at the centre of the channel
for different values of the Hartmann number Ha and for m=3, S=0 and Q=0.1. Figure
3a indicates that increasing Ha decreases u as a result of increasing the damping force
on u. Figure 3b indicates that increasing Ha increases w since it increases the driving
force on w.  Figure 3c depicts that for small t, increasing Ha increases T due to the
increment in the Joule dissipation.  But, for large t, increasing Ha decreases T as a result
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of decreasing the velocities u and w and consequently decreases the viscous and Joule
dissipations.

Figure 4 presents the time progression of u, w and T at the centre of the channel
for different values of the suction parameter S and for Ha=1, m=3 and Q=0.1. Figures
4a and 4b indicate that increasing the suction decreases both u and w due to the
convection of the fluid from regions in the lower half to the centre which has higher
fluid speed. Figure 4c shows that increasing S decreases the temperature at the centre of
the channel  due to the influence of convection in pumping the fluid from the cold lower
half towards the centre of the channel.

Figure 5 presents the time progression of T at the centre of the channel for
different values of the parameter Q and for Ha=1, m=3 and S=0. The figure indicates
that increasing Q increases the temperature at the centre of the channel and its steady
state time. Table 1 presents the variation of the Nusselt number at the lower plate with
time for various values of the parameters S and Q and for Ha=1 and m=3. It is clear that
increasing Q increases the Nusselt number for all values of the suction parameter S and
for all time.  On the other hand, increasing the suction parameter S decreases the Nusselt
number for all values of Q and the time t.
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Figure (1): Time development of the profile of: (a) u; (b) w; and (c) T (Ha=1, m=3,
S=1 and Q=0.1)
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Figure (2): Effect of m on the time variation of: (a) u at y=0; (b) w at y=0 and (c) T at
y=0. (Ha=1 and S=0, Q=0.1)
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Figure (3): Effect of Ha on the time variation of: (a) u at y=0; (b) w at y=0 and (c) T at
y=0.(m=3 and S=0, Q=0.1)
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Figure (4): Effect of m on the time variation of: (a) u at y=0; (b) w at y=0; and (c) T at
y=0. (Ha=1 and m=3)
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Figure (5): Effect of Q on the time variation of: T at y=0. (S=1, Ha=1 and m=3)

6. Conclusions:

The unsteady MHD Couette flow with heat transfer in an electrically conducting fluid
under the influence of an applied uniform magnetic field has been studied considering
the Hall effect in the presence of uniform suction and injection and an external heat
source.  Introducing the Hall term gives rise to a velocity component w in the z-direction
which affects the main velocity u in the x-direction.  The effect of the magnetic field, the
Hall parameter and the suction and injection velocity on the velocity and temperature
distributions are investigated.  As time develops, increasing the Hall parameter m
increases the velocity component u.  On the other hand, increasing m increases the
velocity component w for small m but decreases it for large m.  It is also found, that the
effect of both parameters Ha and m on the temperature T depends on time.
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Nomenclatures:

ρ …
σ …
β …
μ …

Bo …
cp…
Ec...

Ha…
J ...
k…
m…
Pr…
Re…
S…
t…
T…
T1…
T2…
u…
w…

the density of the fluid
the fluid electrical conductivity
the Hall factor
the viscosity of the fluid
the magnetic field
the specific heat capacity
the Eckert number
 the Hartmann number
the current density
the thermal conductivity of the fluid.
the Hall parameter
the Prandtl number
the Reynolds number
the suction parameter

Time
the temperature
The lower constant temperature
The upper constant temperature
the fluid velocity in direction x
the fluid velocity in direction z


