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Abstract:

Transmission in wavelength division multiplexing (WDM) optical communication
system is mainly impaired and ultimately limited by group velocity dispersion (GVD)
and cross-phase modulation (XPM). In this paper, we analytically determine and
compare the impact of XPM in a WDM system in presence of first- and second order
GVD for standard single mode fiber (SSMF) and dispersion shifted fiber (DSF). Even at
high bit rate in a first order GVD compensated system, the second order GVD plays a
critical role in limiting the distance of optical signal. The results show that XPM
crosstalk penalty due to second order GVD is 16 dB more in DSF than that of SSMF for
0.8 nm channel spacing at 10 GHz modulation frequency. It is also found that the
spectral characteristics are strongly dependent on the channel spacing and dispersion of
the fiber.
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1. Introduction:

Optical transmission is a preferred medium for long distance, high bandwidth
communication system running at speeds in the range of gigabit per second or higher.
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The process towards ever increasing speeds encounters an obstacle in the form of the
group velocity dispersion (GVD) in the optical fiber that restricts bit rates [1]-[2]. On
the other hand, the progress towards longer lengths of transmission has led to increasing
input power and at higher power, nonlinear effect is introduced in the optical fiber that
in turn also limits the transmission distance of optical signal [3]-[4]. In late 1990s
wavelength division multiplexing (WDM) systems have been widely deployed as a
solution for higher bit rate transmission. With the increasing demands on the capacity of
WDM systems, crosstalk due to nonlinearity become important and cross-phase
modulation (XPM) is one of the most significant nonlinear effects that impact the
system performance[5]-[6]-[7]. GVD is a linear and XPM is a nonlinear phenomenon in
optical fibers only when two or more optical channels are transmitted through the fiber
simultaneously. As a result, the combined effects of GVD and XPM may cause further
deterioration of transmission performance in a WDM system. However due to the
presence of Group velocity dispersion of the fiber, the phase modulation can be
converted into intensity fluctuations and thus can degrade the performance of intensity
modulation- direct detection (IM-DD) systems.

Karfaa et.al. [8], simulate the effect of Cross-phase Modulation crosstalk in WDM
Networks on Received power and number of Channels for various fiber types. Abdul-
Rashid et al. [9], investigate the system performance limitation due to XPM and GVD
in a sub-carrier multiplexing WDM passive optical network in terms of power penalty.
Rongqing, et al [10] investigated spectral characteristics of cross-phase modulation in
multi-span intensity modulation direct detection systems both theoretically and
experimentally. It was shown that interference between XPM induced crosstalk
components created in different amplified spans had strong impact on overall frequency
response of XPM crosstalk in the system. However, the impact of second order
dispersion was ignored. Since second order GVD plays a critical role in limiting the
distance of optical signal at high bit rate. In this paper, we have extended results
reported in Rongqing, et al [10] by investigating the intensity fluctuations characteristics
of WDM systems including second order dispersion effects.

2. Theoretical Analysis:

Using the slowly-varying envelope approximation, the propagation of the channels
along the transmission medium is governed by the nonlinear Schrödinger equation
(NLS). For this analysis, we consider only the attenuation factor, the first– and second-
order GVD, as well as the SPM and XPM effects in the NLS equation given for an
arbitrary channel k as follows:

,
,1

22

3

3

32

2

2 2
6
1

2
1

2 k

N

kjj
kkk

k
k

k
k

k

gk
k

kk AAAi
t

A

t

Ai

t

A

v
A

z

A























 



        (1)



Proceedings of the 7th ICEENG Conference, 25-27 May, 2010 EE132- 3

where k is the current channel under consideration, N is the total number of channels, αk

represents the attenuation parameter, β2k and β3k are the first -and second-order GVD
parameter, respectively, γk is the nonlinearity coefficient and vjk is the group velocity.

The first two terms on the right-hand side of Eq. (1) are the nonlinearity factors that
arise due to the nonlinear refractive index of the fiber. The XPM effect is modeled in the
same way as the SPM effect by introducing another term on the nonlinear part of the
NLS equation. This term sums the effect of the XPM caused by all other channels. The
effective nonlinear refractive index n2 of the XPM effect is twice that of the SPM
effect. This leads to a factor of 2 applied to the magnitude of the sum.

In order to simplify the analysis and focus our attention on the effect of XPM induced
inter channel crosstalk, we neglect the interaction between SPM and XPM and pretend
that these two act independently. We will assume that the probe signal is operated in
continuous wave (CW), whereas the pump signal is modulated with a sinusoidal wave at
a frequency Ω. Although the effect of SPM for both the probe and the pump channels
are neglected in this XPM calculation, a complete system performance evaluation must
take into account the effect of SPM and other nonlinear effects separately. This
approximation is valid as long as the pump signal waveform is not appreciably changed
by the SPM induced distortion before its optical power is significantly reduced by the
fiber attenuation. Using the substitutions T=t-z/vk and

)2/exp(),(),( zzTEztA kk                                                                        (2)
we have,
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where )/1()/1( kjjk vvd   is the relative walk-off between the probe and the pump. Using a

linear approximation, the walk-off jkd  can be expressed as jkjk Dd  , where
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 , jk  and  are the wavelength spacing and the average

wavelength between the probe and pump, respectively, and c is the light velocity. Here a
linear approximation is used for djk for simplicity.

In general, dispersion and non-linearity act together along the fiber. However, in an
infinitesimal fiber section dz , it can be assumed that dispersive and non-linear effects act
independently, the same idea as used in the split-step Fourier method1. Substituting

 ),(exp zTiEE kkk  in equation (3) gives
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dzzzdTPizTd jkjkk )'exp()0,'(2)',(                                                                                     (4)

The Fourier transformation of this phase variation gives
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zdi
jkk
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)0,(2)',(
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Neglecting the intensity fluctuations of the probe channel, this phase change
corresponds to change in electrical field,    )',(1)',(exp zTidEzTidE kkk    or in Fourier
domain    )',(1)',(exp zidEzidE kkk   Due to chromatic dispersion of the fiber, this
phase variation generated at z=z’ is converted into an amplitude variation at the end of
the fiber  z=L. Taking into account only the dispersion and source term of the phase
perturbation at z=z’, the Fourier transform of equation (3) becomes
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Where the Kronecker delta )'( zz  is introduced to take into account the fact the source
term exists only in the infinitesimal fiber section at z=z’. Therefore at z=L the probe
field becomes
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The optical power variation caused by non-linear phase modulation created in the short
section dz at z=z’ is thus
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where linearization has been made considering that kd  is infinitesimal.

Using )2/exp(),/(),( zzvzTAzTE kkk  and equation (5) and integrating all self phase
modulation and cross phase modulation contributions along the fiber, gives the total
intensity fluctuations at the end of the fiber.
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Where 2
kk AP   and L

jkjk eLaLs   ),(),(  represents fluctuations of kA .Which on
integration gives
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where )0(kP and )(LPk are probe optical power at input and output of the fiber.

Under the assumption that 1)exp(  z and that modulation bandwidth is much smaller
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than the channel spacing, ie, 2/2  kjkd  gives a simpler frequency domain description
of the intensity fluctuations in the probe channel by the pump channel.
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In the time domain, the probe output optical power with XPM induced crosstalk is,
),()(),( LtsLpLtP jkkjk                                                                                     (12)

),( Lts jk  is the inverse Fourier transform of ),( Ls jk   and )(Lpk  is the probe output
without XPM. After the square law detection of photo diode, the electrical power
spectral density is the Fourier transform of the correlation of the time domain optical
intensity waveform. Therefore,
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where η is the photodiode responsivity.

For Ω > 0, the XPM induced electrical power spectral density in the probe channel,
normalized to its power level without this effect can be expressed as
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),( LPjk  is defined as the normalized XPM power transfer function.
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3. Results and Discussion

To verify the theoretical expressions developed earlier, numerical solutions have been
achieved by means of Matltab simulations to run the calculations and to produce the
graphic relations that appear in the Fig.1 to Fig. 7. Different system parameters are
shown in Table 1.

The plots for power transfer function against modulation frequency are shown in Fig. 1
and Fig. 2. Figure 1 shows the response for first- order GVD for DSF Fiber and it is
found that the spectral characteristics depend on the channel spacing. Fig. 2 indicates
the impact second order GVD in totally absence of first- order GVD and it is found that
second order GVD plays a important roles at high bit rate. The plots for power transfer
function against modulation frequency are shown in Fig. 3. Fig. 3 indicates the impact
second order GVD in totally absence of first- order GVD and it is found that second
order GVD plays a important roles at high bit rate.
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Modulation frequency for DSF fiber is shown in Fig.6 and the plots for power transfer
function against modulation frequency for various no of channel are shown in Fig. 7.
The results shown in Fig. 6 and Fig. 7 are that XPM crosstalk penalty increased with
increasing the no of channel as well as modulation frequency.

Figure(1): Power Transfer Function against Frequency with First order GVD for DSF
Fiber.

Figure (2): Power Transfer Function against Frequency with Second order GVD for
DSF Fiber

Figure (3): Power Transfer Function against Frequency with Second order GVD for
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SSMF Fiber

The plots for power transfer function against modulation frequency with first- order
GVD and second order GVD are shown in Fig. 4 and Fig. 5 respectively where DSF
and SSMF XPM crosstalk penalty are compared. . The results shows that XPM crosstalk
penalty due to first- order GVD is 23 dB and second order GVD is 16 dB more in DSF
than that of SSMF at 10 GHz modulation frequency and 0.8nm channel spacing.

The plots for power transfer function against modulation frequency with first- order
GVD and second order GVD respectively where DSF and SSMF XPM crosstalk penalty
are compared. . The results shows that XPM crosstalk penalty due to first- order GVD is
23 dB and second order GVD is 16 dB more in DSF than that of SSMF at 10 GHz
modulation frequency and 0.8nm channel spacing. The plots for power transfer function
against no of channel for various

Fig. 4: Power Transfer Function against Frequency with first order GVD for DSF&
SSMF

Fig. 5: Power Transfer Function against Frequency with Second order GVD for DSF &
SSMF
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Fig. 6: Power Transfer Function against no of channel for various frequencies

Fig. 7: Power Transfer Function against Frequency for various no of Channel

Table 1: Different system parameters

Parameter (unit) SSMF DSF
Probe wavelength (

nm)

1559 1559
Channel spacing

(nm)

0.4, 0.8,

1.6

0.4, 0.8,

1.6
Zero dispersion

slope ( ps/nm2/nm)

0.095 0.075
Effective Area (m2) 8.0X10-

11

5.5X10-

11
Attenuation

parameter (dB/km)

0.25 0.25
Dispersion

Parameter (

ps/nm/km)

17 3.5
First order GVD

(ps2/nm)

0.206 0.4515
Second order

GVD(ps3/nm)

0.192295 0.1995
Fiber Length (km) 100 100
Input pump power

(dBm)

11.5 11.5
Input Probe Power

(dBm)

11.5 11.5

6. Conclusions:

A detailed analysis is carried out to evaluate the impact of XPM in WDM system in
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presence of first- and second order GVD. Results are evaluated and compared for two
types of commercially available fiber SSMF and DSF respectively. We observed that
XPM has more impact on DSF fiber than that of SSMF. It is also found that the second
order GVD has less impact on intensity fluctuation on the probe channel on WDM
system, however at high bit rate if the first order GVD is zero then there is significant
impact of second order GVD on optical transmission system.
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