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in ground alignment with Bar-Itzhack and Berman’s error model is presented. It is shown that the 
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1. Introduction:
Initial misalignment is one of the major error sources of inertial navigation systems (INS). For 
terrestrial navigation, the initial alignment errors will affect the system error not only in the attitude 
indication but also in the velocity and position information [1-3]. Therefore, prior to normal 
navigation, alignment process must be performed to determine the orientation of the platform axes 
with respect to the navigation coordinate frame. One method for obtaining the initial angular 
orientation is through the use of an external reference by optical means. However, this method is very 
limited to operational environment. Alternatively, for most ground-based applications, a self-contained 
alignment method known as gyro-compassing [2-7] provides another operational approach. As a 
general rule, gyro-compassing consists of two phases, that is, leveling and azimuth alignment. The 
basic principle of gyro-compassing consists of feeding signals proportional to the accelerometer 
outputs and/or velocity error outputs to the appropriate level gyros and azimuth gyro.
The purpose of initial alignment process is to drive the misalignment angles to zero. Unfortunately, 
this goal can never be achieved in a practical system. This drawback is deduced from the sensor errors, 
which cannot be compensated ideally. Theoretically, the basic difficulty associated with the self-
alignment technique is that the system is not completely observable. The determination of 
unobservable states during initial alignment process is very important in consideration of system 
performance. Generally, the system state variable can be transformed into the observable canonical 
form. It means that the observable part and unobservable part can be separated intentionally. However, 
the choice of observable (unobservable) states is certainly not unique since the numbers of 
transformations are innumerable [8]. This problem is analyzed by different approaches as the methods 
presented in [2, 3], and results are obtained. 
In the literature, it has been showed that the determination of unobservable states was a part of physical 
judgments. This interesting problem of selection of the suitable unobservable states motivates us to 
investigate the observability of INS during ground alignment phase of operation.
In this paper, the observability of a linearized SDINS error model of a stationary vehicle is examined. 
The horizontal velocity outputs of INS are the system measurements. It has been found that the 
unobservable states, which are distributed in two decoupled subspaces, can be systematically 
determined. Moreover, the leveling errors can be estimated from the system measurements and their 
first derivatives. However, to estimate the azimuth error, the second derivatives of system 
measurement are needed. It is equivalent to state that the estimation of azimuth error can be obtained 
from the estimates of leveling error and leveling error rate.
This phenomenon may facilitate the designing of filters for leveling and azimuth alignment 
simultaneously, without using gyro outputs explicitly. On the other hand, the error covariance matrix 
of the Kalman filter could be a good performance index for the degree of observability of a system. If 
the estimation of a state by Kalman filter is convergent, the state will be observable. If the estimation 
of a state is dis-convergent, the state will be unobservable. The faster the convergence rate is the higher 
the degree of observability of the state.

2. Ground Alignment Error Model:

In order to look into the behavior of an inertial navigator, a proper error model is derived. It is well 
known that the description of the INS error propagation using a linearized error model is quite a good 
approximation. The characteristics of SDINS can be derived from the linear model. Many different 
error models can be found in the literature. For analyses purposes, Bar-Itzhack and Berman’s [9] 
derivation of the error model for INS in ground alignment is adopted. 
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In this study, the navigation frame is the local-level East (E), North (N), and Up (U) coordinate system. 
Since the coupling of the vertical channel with the horizontal channels is very weak, the vertical 
channel can be ignored. When the initial alignment process is accomplished at a fixed ground base 
where the geographic position is known precisely then the gravity error and the position error state can 
be ruled out. Moreover, the system is nearly stationary and hence the coriolis acceleration can also be 
ignored. Under these assumptions, the error dynamics including the horizontal velocity errors and the 
attitude errors can be made considerably simple. In this case, the INS ground alignment error model 
can be written as [10]
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Where v and   represent the velocity error and attitude error, respectively;   and 
represent, respectively, the generalized accelerometer error and the generalized gyro drift rate [10]; g

is the local gravity;   represent the Earth rate;   is the local geographic latitude angle. The subscripts 
x y and z denote the corresponding components in the East-North-Up navigation coordinate system.
Where;

0,cos  ,sin EN  U .

Rewrite (1) in compact notation

bxAx 
.

(2)

Where variables x , A , and b  are identified with their counterparts in (1). It is reasonable and 
practical to assume the generalized accelerometer errors and gyro drift rates as constant in ground 
alignment phase. Hence the sensor errors can be modeled as:
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Where  Tyx  , represents the generalized accelerometer error vector and  Tzyx  ,,
represents the generalized gyro drift rate vector.
Combing (2) and (3) yields:
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Where I  is the identity matrix. This linear dynamic error model can also be expressed in 
compact notation as:

Axx 
.

(5)
Where  TT xx ,, and the definition of A is obvious from (4)
Finally, we consider the outputs of INS horizontal velocity components as the system 

measurements, namely,

   Tyx
T vvzzz  ,, 21  (6)

Then the relationship between the measurements and the system A in (2) can be written as:
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xCz  (7) 
Where 
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Similarly, the relationship between the measurements and the system A in (5) can be written as:
Cxz  (9)
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Now, the observability of the system A and the system A can be analyzed.
3. Observability Test

The necessary condition for the observable system is that the observability test matrix is full 
rank. If the rank of the observability test matrix is equal to the order of the system then the system is 
completely observable. On the contrary, if the system is not completely observable, the number of the 
unobservable states is the difference between the order of the system and the rank of the observability 
test matrix. 

In general, the observability test matrix for the system matrix A  with measurement C can be 
expressed as:
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Where n is the order of the system. The observability test matrix for the system A with 
measurement matrix C  can be written as:
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It is easily seen that the rank of Q is 5, which is equal to the order of the system A . Thus the 
matrix Q is full rank. So, the system A is completely observable. It implies that if the sensor errors are 
fully compensated, the estimation problem during alignment process can be automatically solved [8].

For the system A with measurement matrix C , the observability test can be written as:
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It can be found that the rank of Q  is 7 which, is smaller than the system order 10. Thus the 
matrix Q  is not full rank. So, the system A  is not completely observable and the estimation becomes 
an unsolvable problem with three unobservable states. It is clear that the observability loss in system 
A is generated by augmentation from (2)-(5). It implies that the system can be made observable if the 
dynamics of the sensor errors are ignored. However, this assumption is practically weak. The 
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determination of the unobservable states is now a key problem for estimation in alignment and 
calibration phase of operation.
Since the system measurements are observable by definition, states xv  and yv are undoubted 

observable. For convenience, let’s define the following:

 Tyx vvx  ,1  (14) 

 Tzyyxx  ,,,2  (15) 

 Txxzyx  ,,,3  (16)
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Since the rank of a matrix is invariant under elementary row operation, the observability 
associated with the matrix Q , (13) is equivalent to the solvability of the following:
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Where I is the identity matrix.
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From equation (20), the observability of the system can be determined by the solvability of 
three decoupled matrix equations. It is obvious that 1x is observable. Hence the three unobservable 
states must reside in 2x and 3x  which are, respectively, governed by:
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222 xQy  (23) 

333 xQy  (24) 

It is easily found that when the system is not at the Earth pole, 0N .
We can notice that the first column of 2Q is a linear combination of other three columns. Then, from 
Equ. (21), the rank of 2Q  is 3 which is one less than the order of 2Q . Therefore, only one unobservable 
state can be chosen from the components of 2x .
Similarly, because the first column of 3Q  is a linear combination of the third and fourth columns, the 
second column of 3Q  is equal to the fourth column times N .  From Equ. (22), the rank of 3Q is 2. 

Thus, there are two unobservable states contained in 3x . By observation, z and Nx /  have the same 

effect on the measurement derivatives 3y . Therefore, Equ. (24) Can be written as:
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Which shows that only one of z and x can be observed at a time. However, they can be chosen as 
unobservable states simultaneously. Thus y  and x  must be observable. Note that when the system is 

located at the Earth pole, 0N , both the fourth column of 2Q  and second column of 3Q  are zero. 
Then both z and z  are definitely unobservable. That is why the INS cannot be self-aligned at the 
pole. In this case, the rank of 2Q is reduced to 2 and the rank of 3Q is unchanged.

4. Estimation of Misalignment Angles

The objective of initial alignment is to drive the misalignment angles yx  ,  and z to zero or 

as small as possible. It is necessary that these states be all observable. From the above analysis we 
found that x and x in 3x  are inevitable unobservable. Then, only one unobservable state can be 
chosen from the components of 2x . Theoretically, the choice is arbitrary except x . However, in order 
to achieve better accuracy, the unobservable state must be selected carefully. Intuitively, from the first 
two columns of 2Q , it is obvious that x and gy /  are strongly coupled. Besides, if we do not choose 

y  as the unobservable state, more time derivatives of measurements are needed to compute the 

estimation which of x . That causes poor estimation, which should be avoided in practice. Therefore, 
the best choice of the unobservable states are yx  ,  and x for the system in ground alignment

process. In this case, both y and z can also be estimated for the purpose of calibration. Once the 

unobservable states have been selected, we can engage in designing an estimation algorithm for 
computing the estimates of misalignment angles.

Combing the first equation of (23) and the first two equations of (25), we have
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Substituting (6) into the above equations and solving for misalignment angles, yields:
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Since we have chosen yx  , and x as unobservable states, the best estimates can be obtained 

by sitting these unobservable states to zero, i.e.,
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These equations show that the leveling errors, E and N , can be estimated from the system 
measurements and their first time derivatives, and the azimuth error, U , can be estimated from the 
measurements and their time derivatives up to second order.

It is evident, from (32-34) and (29-31) that the errors in the estimation are:
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This result is identical with the accuracy that is often shown in the self-alignment schemes [2, 7, 9]. 
The above equation shows that the leveling estimation errors are caused by the accelerometer errors. 
The east gyro drift rate and the north leveling error cause the azimuth estimation error. Both of them 
are latitude dependent [8]. 
Finally, differentiating (33), yields:
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Substituting (32) and (36) into (34), it can be found that:
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Which shows that the azimuth error can be computed from the estimates of the leveling error about 
north axis and the leveling error rate about east axis. Note that the estimation of azimuth error dose not 
explicitly depend on gyro output signal. This phenomenon can be used in an alternate filter design for 
leveling and azimuth alignment simultaneously [11-13]. 
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5. Kalman Filter Design

In this work we have modified Bar-Itzhack and Berman’s inertial navigation system error 
model [14]. The SDINS stationary error model augmented with sensor errors can be written as:
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Where I is the identity matrix with the order as in (35), and the state vectors are construct as follows:
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the observation model as follows:
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In terms of the error model and the observation model of SDINS, the discrete Kalman filtering 
equations are formulated as follows:

11,1,ˆ   kkkkk xAx

]ˆ[ˆˆ 1,1,   kkkkkkkk xCzKxx
1

1,1, ][ 
  k
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kkkkkkk QAPAP
T
kkk

T
kkkkkkk KRKCKIPCKIP   ][][ 1,

Where 1, kkA  is the discrete state transformation matrix (system matrix), 1, kkP is the covariance 

matrix representing errors in the state estimates, kP  is a covariance matrix representing errors in the 
state estimates (i.e., diagonal elements represent variance of true state minus estimated state)after an 
update, kQ  is the discrete process-noise matrix, kR is the measurement process-noise matrix and kK is 
the Kalman filter gains.  
The initial value )0(x of state x is chosen as zero. QP ),0(1 and R for a medium accuracy SINS are 

chosen. The initial misalignment angles yx  ,  and z  is chosen as 01 , respectively. The constant and 
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random biases of each accelerometer are chosen as g100 and g10 , respectively, and the constant and 

random drifts of each gyro are chosen as h/. 0020 and h/01.0 0 , respectively. The measuring of two 
horizontal error velocities v is m/s5.0 and measuring process-noise chosen as smv /.05 . The local 

geographic latitude of SDINS place is 030 .
6. Simulation Results

Simulation results illustrate that among three misalignment angles, the two leveling misalignment 
angles x  and y  can be estimated effectively, the estimation error of x  and y  converge quickly, 

but the estimation error of state z  is found to converge slowly. The alignment time of z  is about 260
sec, but the convergence of estimation errors of x  and y  only needs about sec50 , respectively. Table 

(1) shows the different convergence rates of yx  , and z . Also, it shows how the Kalman filter work 

precisely after discarding the three unobservable states xyx ,, .

Figs. (1, 2) show the different convergence rates of yx  , and z . In accuracy of estimation, the steady 

state value of z is about 3-6.047  . It is due to unobservable state x , but the estimation accuracy of x

and y  is very high about 02   approximately.

Table (1)

x [sec] y [sec] z [sec]

10 states 19.7717 -20.6612 -362.8407
7 states 20.3962 -21.4587 -348.0337
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Fig (2) Estimation of gyro drift             Fig (1) Estimation of Attitude Error

    

Figure (2): Estimation of gyro drift            Figure (1): Estimation of Attitude Error
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6. Conclusions:

Based upon Bar-Itzhack and Berman’s SINS error model, the observability of INS operating in ground 
alignment phase is analyzed. It is realized that the unobservable states are induced by the augmentation 
of sensor errors. In general, there are three unobservable states with one contained in 

 Tzyyxx  ,,,2  and two contained in  Txxzyx  ,,,3  . The selection of unobservable states 

from 2x is arbitrary. However, the unobservable states in  3x cannot be observed at the same time.
When the system is located at the Earth pole, the number of unobservable states becomes 4 among 
which z and x  is definitely unobservable states.  The determination of the unobservable states is 
dependent upon mission requirements. For the purpose of alignment, the best choice of unobservable 
states are yx  , and x . An estimation algorithm has been derived for aligning the SINS on ground 

stationary base. It shows that the leveling errors can be estimated from the measured velocity outputs 
and their first derivatives. While the second time derivative of North-velocity component is needed in 
estimating the azimuth misalignment angle.  Furthermore, the estimated azimuth misalignment has 
been found proportional to the estimates of the leveling error about the north axis and the leveling error 
rate about the east axis. This property is useful for designing alternate filter algorithm for leveling and 
azimuth alignment.
In addition, the major motivation for the observability analysis was the correspondence between this 
analysis and the prediction of the estimability of the system. The estimability of the SINS during 
ground alignment was checked using appropriate Kalman filter design for the system. That is, we 
considered the real SINS error model, which is stochastic. That model is obtained when we add to the 
deterministic model of the SINS error, accelerometer and gyro white noise components. In addition, 
we add some white measurement noise to the measured velocity components. In accuracy of 
estimation, the stable value of z is about 6 . It is due to unobservable state x , but the estimation 
accuracy of x and y is very high. In order to accelerate the initial alignment, the convergence rate of 

z must be increased. 
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