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Abstract: The growing awareness of the environment's importance and the impact of climate change has led architects and designers 

to adopt sustainable building design approaches for enhancing their buildings quality. Bioclimatic design is one such approach that 

aims to create comfortable and energy-efficient buildings by utilizing natural resources and local climate data. This paper delves into 

the concept of bioclimatic design in detail highlighting different bioclimatic strategies for residential buildings that help in achieving 

bioclimatic design goals. The aim of this paper is to provide a systematic review that explores and categorizes the bioclimatic 

architecture approaches, analysis and assessment methods, and strategies in a clear and concise manner. The methodology employed 

in this study is a literature review of bioclimatic architectural designs in residential buildings to comprehend their design approaches, 

analysis and assessment methods, and strategies. This study focuses on bioclimatic design, thermal comfort, and energy efficiency. 

Future studies on bioclimatic building design should focus on analyzing current strategies in different climate zones, testing new 

technologies and materials, exploring more strategies suitable for the local climate, and evaluating the integration of bioclimatic 

design with other sustainable approaches to create efficient and cost-effective buildings. 
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1. Introduction 

Indoor thermal comfort is crucial for occupant 

satisfaction and productivity, but achieving it comes at a 

cost as it accounts for a significant portion of energy 

consumption in buildings. Energy efficiency is essential for 

reducing operating costs and promoting sustainability [1–4]. 

Improving energy efficiency in buildings involves reducing 

energy demand for HVAC systems, which are the largest 

energy consumers. The residential sector is a major energy 

consumer globally, with Egypt's residential sector 

accounting for 42% of total electricity consumption. 

Therefore, implementing architectural strategies to improve 

indoor environmental quality while reducing energy 

consumption is crucial [1–6] Bioclimatic design is an 

architectural approach that utilizes solar energy and other 

environmental resources to provide human thermal comfort. 

It involves implementing design solutions appropriate for 

the local climate and environment, which can improve 

indoor air quality and building energy performance [7–10]. 

2. BIOCLIMATIC ARCHITECTURE  

Bioclimatic design prioritizes energy conservation and 

integration with the natural environment [11], utilizing 

passive strategies to improve a building's energy efficiency 

and indoor comfort without additional energy consumption. 

Notable proponents include Olgyay, Szokolay, Kristinsson, 

and Yeang  [12,13] Bioclimatic architecture is a design 

approach that adapts buildings to the needs of occupants 

while optimizing energy consumption based on local 

climate conditions, furthermore, ensuring that the building's 

form is appropriate for its intended purpose. This approach 

considers various factors such as form configuration, 

orientation, internal spatial arrangement, facade design, 

vegetation usage, natural ventilation, and building mass 

usage to reduce energy passively and reduce dependence on 

active systems. 

Table 1 summarizes previous research on bioclimatic 

design. 

 

TABLE 1: Bioclimatic design's research summary. 

Year Country Research aim REF 

1996 Argentina 
This study aimed to determine the best bioclimatic design strategies for the city of San Juan, 

Argentina, based on the area's temperature and relative humidity. 
[14] 

1998 Malaysia 

This study aimed to analyze regional climate data from the Klang Valley, Malaysia, to develop a 

set of design strategies based on the bioclimatic chart and Mahoney tables. It highlighted several 

passive design techniques that are suitable for Malaysian buildings. 

[15] 

2001 International 

This study aimed to analyze an adaptive model of thermal comfort and energy conservation in a 

built environment. In several moderate climate zones worldwide, it emphasized the potential for 

optimizing cooling energy by designing for natural or hybrid ventilation. 

[16] 

2006 UK 

This study aimed to investigate the impact of architectural education and prior experience on the 

work of a group of architects. The architects' work exhibited strong bioclimatic integration 

characteristics. 

[17] 
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2007 Italy 

This study aimed to reduce energy consumption while creating a sustainable and comfortable 

indoor environment for buildings in Pieve di Cento, Italy. The Givoni chart and Mahoney table 

were utilized to identify passive design techniques. 

[18] 

2009 Italy 

This aimed to improve the energy efficiency and indoor comfort conditions of residential 

buildings. It achieved this goal through a combination of passive solar elements and traditional 

materials. After conducting a critical analysis of the simulation results, specific recommendations 

were made for achieving these objectives. 

[19] 

2011 Egypt 

This study aimed to investigate the correlation between bioclimatic strategies and outdoor built 

environments in Egypt. Based on these findings, the study made recommendations for 

bioclimatic design in such conditions. 

[20] 

2012 Greece 
This study aimed to implement a computational approach for bioclimatic design purposes in 

urban environments, while also developing strategies for dealing with urban heat islands. 
[21] 

2013 Romania 

This study aimed to provide the essential information needed to comprehend the concept of 

bioclimatic architecture. Additionally, it highlighted several examples, which were inspired by 

vernacular architecture and recognized by modern architecture. 

[22] 

2014 Australia 
This study aimed to investigate the potential of passive cooling techniques in hot and humid 

subtropical climates for natural ventilation in residential buildings. 
[23] 

2014 
Kuala 

Lumpur 

This study aimed to assess thermal comfort and user satisfaction in the residential units of the 

University of Malaya in Kuala Lumpur. The study concluded that implementing bioclimatic 

design strategies in these units would provide residents with improved comfort conditions. 

[24] 

2014 China 
The study aimed to create a comprehensive and sustainable design approach for Shang-gan 

village in western China, using bioclimatic strategies. 
[25] 

2015 Cyprus 
This study aimed to analyze the bioclimatic conditions of three different climatic zones in Cyprus 

and identify passive design techniques that are suitable for buildings in each zone. 
[26] 

2016 Italy 
This study aimed to propose appropriate bioclimatic strategies based on Mediterranean 

vernacular architecture. 
[27] 

2016 Iran 

This study aimed to analyze and compare common architectural examples in Ardabil, Iran, and 

their correlation with the local climate. The study suggested new design recommendations that 

are suitable for this climate. 

[28] 

2017 Algeria 

This study aimed to enhance the energy efficiency of a bioclimatic house in Algeria. 

Experimental and software simulation evaluations demonstrated that bioclimatic strategies can be 

a promising solution, providing thermal comfort in the summer, space heating, energy savings, 

and reduced emissions of environmental pollutants. 

[29] 

2017 Europe 

This study aimed to examine traditional design strategies in some South-Eastern European 

countries. It described and discussed the significant features, differences, and similarities in 

architectural designs of these regions. 

[30] 

2017 Brazil 
This study aimed to examine the thermal comfort conditions in office buildings located in a 

humid subtropical climate in Brazil. 
[31] 

2018 Iran 

This study aimed to analyze the conventional climate-responsive solutions used in ancient Iranian 

buildings. The authors examined appropriate climate solutions in the vernacular architecture of 

the West of Guilan in their study. 

[32] 

2018 Iran 
This study aimed to propose design recommendations for appropriate natural ventilation in Rasht 

city. 
[33] 

2018 Mozambique 
This study aimed to discuss the recent implications of indoor thermal comfort models, 

vernacular/bioclimatic approaches, and the applied strategies in hot and hot-humid climates. 
[34] 

2019 Algeria This study aimed to investigate the bioclimatic potential of climate zones in Algeria. [35] 

2020 India 

This study aimed to develop an analysis tool for evaluating the cooling capabilities of passive 

techniques in various Indian climatic zones. The study included 18 cities that represented four 

distinct climate zones. 

[36] 

2020 Greece 
This study aimed to present examples of the author's work on various passive bioclimatic 

approaches. 
[37] 

2020 France 

This study aimed to propose a new set of indicators that prioritize on bioclimatic design. It 

sought to enhance the decision-making process for designing fully space-conditioned buildings in 

hot and humid climates. 

[38] 

2021 India 
This study aimed to investigate the implications of current and future bioclimatic potential for 

passive heating and cooling design strategies. 
[39] 

2021 China 
This study aimed to review extant studies on bioclimatic architecture. It sought to identify 

potential future research directions that may help in achieving building energy efficiency. 
[40] 
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2.1 Bioclimatic Design Approaches 

Contemporary bioclimatic building design can be 

approached through the replication of vernacular solutions 

or an analytical study of climate characteristics (Figure 1) 

[13]. 

2.1.1 Symptomatic bioclimatic design approach 

 

Fig 1: Bioclimatic design approaches, Ref: The researcher after [18] 

 

Bioclimatic design is the oldest approach to building 

design, with roots tracing back to early human settlements. 

Throughout history, there have been periods of intense 

interest in designing buildings with consideration for the 

climate, interspersed with periods of indifference. The 

historical significance and evolution of bioclimatic design 

can be seen in various examples of vernacular 

architecture[41–47]. Traditional architecture has evolved 

over centuries to adapt to specific climate conditions, and 

contemporary bioclimatic buildings should consider the 

vernacular architecture of the location. Scientifically based 

engineering methods should be used to evaluate the 

performance and validity of design solutions. To achieve 

contemporary climate-adapted buildings, the first step is to 

identify vernacular examples for inspiration, followed by 

identifying bioclimatic measurements used in traditional 

buildings and conceptualizing them into clear Passive Solar 

Architecture (PSA) approaches. However, this approach 

assumes of a static climate and may not be the best solution 

for ongoing anthropogenically induced climate shifts. The 

symptomatic bioclimatic design method is also questionable 

considering accelerated global warming [48,49]. 

2.1.2 Analytical bioclimatic design approach 

According to this approach, Bioclimatic building design 

involves analyzing the climate, identifying constraints and 

opportunities for climate adaptation, and assessing 

bioclimatic potential to estimate shared time of comfort and 

potential design strategies for climate adaptability [70]. 

 

 

Table 2: Adapting the vernacular architecture strategies. 

 

Year Country Research summary REF 

1981 France 
This study aimed to utilize local climate characteristics to minimize heat loss and optimize direct 

gains for various projects in Languedoc, France. 
 [50] 

1983 Saudi Arabia 

This study aimed to investigate the natural resources and bioclimatic techniques of traditional 

communities in Al Tihama and Al Hijaz. Based on the findings, the study recommended a 

potential future direction for architectural designs in this region. 

 [51] 

1994 
Mediterranean 

countries 

This study aimed to explore the current state and trends in using heating, cooling, and solar 

energy for hot water production. Additionally, it examined how the Mediterranean climate 

context affects the potential of bioclimatic architecture. 

 [52] 

1996 Italy 

This study aimed to highlight essential architectural elements for a successful design. These 

include using natural heating/cooling sources, microclimate elements, vegetation, air convection, 

and the thermal mass of materials. 

 [53] 

2001 Nigeria 

This study aimed to examine and analyze the climate of Nigeria, while considering parameters 

such as air velocity, temperature, relative humidity, and solar radiation. It concluded with design 

recommendations for achieving physiological comfort. 

 [54] 

2004 Spain 

This study aimed to review some bioclimatic strategies used in traditional Spanish buildings and 

develop them to contemporary ones. 

 

 [55] 
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2004 Spain 

This study aimed to establish the fundamentals of bioclimatic construction by learning from 

traditional architecture. It sought to identify the design strategies used in vernacular architecture 

and adapt them to the local context. 

[56] 

2006 Iraq 
This study aimed to analyze traditional constructions, with a focus on passive bioclimatic 

strategies and their corresponding effects on Basrah's macroclimate. 
 [57] 

2006 Mexico 
This study aimed to analyze the bioclimatic strategies used in vernacular and historical houses in 

Tecozautla, Mexico. 
[58]  

2006 Brazil 

This study aimed to highlight the development of climate-responsive buildings that can adapt to 

the hot and humid weather of the Amazonian region. It explored various architectural techniques 

that can be used in these buildings. 

 [59] 

2007 Bulgaria 

This study aimed to investigate how ancient Bulgarian houses interact with their surroundings 

and how their design incorporates various solar energy and energy efficiency tools. These tools 

include thermal mass, direct and indirect gains, sunspaces (atrium case), convectional loops, and 

solar chimney. 

 [60] 

2009 Algeria 
This study aimed to conduct a comparative analysis between existing traditional housing and 

typical modern housing. 
 [61] 

2009 Greece 

This study aimed to investigate the environmental characteristics of traditional communities in 

Mt. Verno, Greece. This includes examining their architecture, materials, and bioclimatic 

potential. 

 [62] 

2009 Cuba 

This study aimed to investigate the comfort level of residential buildings in Old Havana through 

field measurements. It also provides some preliminary design recommendations for such 

buildings. 

 [63] 

2010 India 
This study evaluated the various house typologies in a vernacular settlement in Marikal. The goal 

was to establish a set of guidelines that balances vernacular architecture with modernization. 
 [64] 

2011 Greece 
This study aimed to assess the architectural and bioclimatic techniques used in traditional 

buildings located in Florina, northwestern Greece, and evaluate their impact on the environment. 
 [65] 

2011 Iran 
This study aimed to demonstrate that it is possible to achieve thermal comfort in Esfahan city by 

following architecturally authentic principles and utilizing natural energy resources. 
 [66] 

2011 Spain 
This study aimed to showcase the various types of rammed earth structures that have been built in 

Spain in recent years. The authors emphasized that rammed earth has great potential. 
[67] 

2012 India 

This study aimed to explain solar passive techniques for all climatic zones in the northeastern 

region of India. These techniques are related to building form and orientation, envelope design, 

shading, use of natural ventilation, internal space arrangements, and the activities of the residents. 

[68] 

2018 Spain 
This study aimed to investigate and characterize the bioclimatic strategies of vernacular 

architecture in the Valencian region of La Serrana. 
[69] 

 
Table 3: Bioclimatic architecture's experimentation in construction. 

 

Year Country Research summary REF 

1983 Italy 

This study aimed to describe 44 bioclimatic dwelling units in Rignano sull'Arno, Florence. The 

study highlighted the development of emerging passive solar techniques for the construction of 

multifamily residences and facilities, with particular emphasis on achieving low operating costs 

through the utilization of renewable energy systems. 

[71] 

1985 Australia 

This study aimed to present the bioclimatic analysis of Australian climate conditions for the six 

major zones. It discusses the current practice of the built environment and attempts to point out a 

few major trends. 

[72] 

1998 Italy This study aimed to present Nicoletti Studio's experience in constructing a low-energy building. [73] 

2001 Bahrain 
This study aimed to theoretically determine bioclimatic design strategies based on the local 

climatic conditions of Bahrain. 
[74] 

2002 Venezuela 
This study aimed to determine the relationship between outdoor spaces and the energy flows that 

influence human thermal comfort. 
[75] 

2005 
Greece 

 

This study aimed to create a regression model for energy efficiency that considers the building 

characteristics, environmental conditions, and passive solar technology. The study analyzed 77 

bioclimatic buildings, 45 of which were homes, located in Greece, as well as other Mediterranean 

and European countries. 

[76] 

2006 Colombia 
This study presented a naturally ventilated complex commercial building in Colombia. The project 

aimed to balance the integration of architectural features, bioclimatic requirements, cost-benefit 
[77] 
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considerations, and construction needs. 

2007 Canada 

This study demonstrated an integrated approach to the design process, with the main goal of 

achieving thermal and luminous comfort in a new educational building extension at Laval 

University in Canada. 

[78] 

2007 Venezuela 
This study aimed to discuss the predicted energy efficiency results of using an evaporative cooling 

technique in a tropical climate. 
[79] 

2007 
Greece 

 

This study described a process for designing and implementing various techniques based on 

bioclimatic architecture and energy conservation strategies. Its aim was to improve thermal comfort 

conditions in outdoor spaces in the Greater Athens area. 

[80] 

2011 Iran 
This study aimed to explore the vernacular architecture of Iran, specifically the design and function 

of wind catchers throughout history. 
[81] 

2013 
Indonesia 

 

This study aimed to offer a more comprehensive design guide by exploring the bioclimatic 

approach. This approach is particularly valuable for designers who are new to incorporating 

sustainability principles into the design of multi-story buildings in tropical regions. 

[82] 

2017 Malaysia 

This study aimed to evaluate the condition of hostel building (Dayasari RC) and validate the 

effectiveness of the bioclimatic design approach. The evaluation of the building's condition was 

based on temperature and relative humidity. 

[83] 

2017 Spain 

This study aimed to compare the thermal load of two fully occupied buildings in Madrid that were 

constructed with different criteria. The older one (conventional) was built in the 1960s, while the 

newer one (bioclimatic) was built in 2008 using energy efficiency principles. 

[84] 

2018 Slovenia 

This study aimed to assess the bioclimatic potential of five systematically chosen locations. 

Additionally, it presents a simulation of the current and future energy performance of existing 

bioclimatic and non-bioclimatic residential buildings. 

[48] 

2019 
Russia 

 

This study aimed to investigate and assess the bioclimatic comfort of residential buildings to 

improve the environmental quality. 
[85] 

2019 Argentina 

This study aimed to assess the impact of climate change on the energy efficiency of residential 

buildings, and to determine if bioclimatic strategies are appropriate for present and future building 

designs amidst changing climate conditions. 

[86] 

2019 Algeria 

This study aimed to identify the most effective and low-cost local alternatives for a typical four-

person residence in Algeria. The primary objectives are to minimize energy consumption while 

maintaining thermal comfort. 

[87] 

2019 Russia 

This study aimed to identify the zones in Krasnodar Krai that provide optimal bioclimatic comfort. 

The investigated bioclimatic indices consider the impact of temperature, wind speed, atmospheric 

pressure, relative humidity, and solar radiation in different combinations. 

[88] 

2020 Morocco 
This study aimed to optimize the design of a residential building in northern Morocco using the 

bioclimatic approach. 
[89] 

2020 Russia 

This study aimed to identify the environmental control methods used in Melnikov's house. 

Melnikov's house is a historical example of bioclimatic architecture designed for the Russian 

climate. 

[90] 

2020 Panama 
This study aimed to assess the effectiveness of bioclimatic architecture strategies for improving 

thermal comfort performance in three different building typologies in Panama. 
[91] 

2020 Madagascar 

This study aimed to evaluate the bioclimatic potential of several climatic zones in Madagascar. The 

study analyzed and compared energy consumption and carbon emissions in six different building 

categories, which are located across the country's six climatic regions in Sub-Saharan African 

cities. 

[92] 

2020 Iran 

This study aimed to compare the performance of bioclimatic variables in two scenarios between 

2001 and 2017. Scenario I utilized instrumental precipitation and temperature records, while 

scenario II used remote sensing data. 

[93] 

2020 Spain 
This study aimed to present an energy performance analysis of a bioclimatic educational building, 

which has earned the best energy performance label in Spain. 
[94] 

2021 International 

This study aimed to assess, analyze, and compare indoor air quality and energy consumption in a 

multi-family building constructed in eight Sub-Saharan African cities across eight different 

countries. 

[95] 

2021 Egypt 
This study aimed to validate the optimal bioclimatic design strategy based on the Mahoney tables 

method in the hot desert climatic zone, using Minia city as a case study. 
[96] 
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Bioclimatic design is the oldest approach to building 

design, with roots tracing back to early human settlements. 

Throughout history, there have been periods of intense 

interest in designing buildings with consideration for the 

climate, interspersed with periods of indifference. The 

historical significance and evolution of bioclimatic design 

can be seen in various examples of vernacular 

architecture[41–47]. Traditional architecture has evolved 

over centuries to adapt to specific climate conditions, and 

contemporary bioclimatic buildings should consider the 

vernacular architecture of the location. Scientifically based 

engineering methods should be used to evaluate the 

performance and validity of design solutions. To achieve 

contemporary climate-adapted buildings, the first step is to 

identify vernacular examples for inspiration, followed by 

identifying bioclimatic measurements used in traditional 

buildings and conceptualizing them into clear Passive Solar 

Architecture (PSA) approaches. However, this approach 

assumes of a static climate and may not be the best solution 

for ongoing anthropogenically induced climate shifts. The 

symptomatic bioclimatic design method is also questionable 

considering accelerated global warming [48,49]. 

2.2 Analysis & Assessment methods 

The researcher categorized the most significant 

publications on bioclimatic analysis and assessment 

methods into three major categories, which are described in 

the following paragraphs: 

- The first group of studies 

According to this group of studies, the publications 

discussed the earliest examples of using bioclimatic charts 

to analyze climate and provide design recommendations. 

Mollier's chart is the most well-known and widely used, 

while Olgyay's chart was the first to use dry bulb 

temperature and relative humidity to determine the comfort 

zone. Givoni and Milne made significant contributions in 

1979 by combining various bioclimatic design strategies. 

Other notable charts include Mahoney Tables, Dekay and 

Brown's chart, and Košir and Pajek's BCchart. Recent 

research has applied these charts to local contexts and 

incorporated solar radiation effects [46,97–100].  

- The Second group of studies 

According to this group of studies, Designers use 

building performance simulations to evaluate climate 

potential and provide design recommendations. Choosing 

the appropriate combination of design aspects is complex 

and requires a high level of expertise. Building dynamic 

simulation tools can accurately evaluate energy 

performance, but a disparity between simulated and actual 

behavior can be observed. Various studies have used 

software such as TRNSYS, Autodesk Ecotect, Climate 

Consultant, Design Builder, and ArchiCAD to evaluate 

bioclimatic design strategies, passive cooling techniques, 

energy and lighting performance, and indoor comfort and 

energy consumption of different building typologies 

[46,97–100]. 

- The Third group of studies 

According to this group of studies, Designers used 

bioclimatic charts and building performance simulations to 

evaluate climate and provide recommendations. Studies 

analyzed the bioclimatic potential of passive heating and 

cooling design strategies in various locations, including 

India, Slovenia, Algeria, and Morocco. Nematchoua and 

Reiter evaluated thermal comfort, energy consumption, and 

carbon emissions for residential buildings across eight Sub-

Saharan African countries using the ASHRAE 55-2017 

adaptive comfort model and Design-Builder software 

[46,97–100]. 

The mixed approach allows validating design 

recommendations by comparing simulation results with 

bioclimatic potential analysis. Furthermore, validated 

design recommendations are classified based on this 

approach, contributing to the consolidation of bioclimatic 

design knowledge at the national level. 

2.3 Bioclimatic strategies 

The Givoni diagram (Figure 2) is a bioclimatic tool used 

to identify climatic conditions and develop architectural 

strategies for achieving human comfort within a building by 

shifting the environmental conditions into the comfort zone 

[98]Passive strategies are recommended as a priority for 

buildings to reduce energy consumption. To determine 

appropriate bioclimatic architectural strategies, assess the 

building's location on the Givoni diagram based on its 

climatic data. If the building is in the comfort zone, no 

thermal adjustments are needed, but if not, architectural 

strategies can be implemented to bring it back to the 

comfort zone [1,7,36]. 

 

 
Fig 2: Psychrometric chart adapted from Givoni, Ref:[1] 

2.3.1 Comfort and permissible comfort zones 

There are two types of comfort zones: the regular 

comfort zone where 70% of the population can remain 

comfortable with minimal energy expenditure, and the 

permissible comfort zone where 80% of the population can 

adapt with an acceptable minimum expenditure of energy, 

based on various factors such as temperature, humidity, 

gender, metabolism, size, and activity level [1,7,36]. 

2.3.2 Heating internal gains 

In zone 3 of Figure 2, internal heat gain is necessary to 

adjust the temperature to a comfortable range of 13.5°C to 
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20°C. Internal heat gain comes from various sources such 

as lighting, equipment, and metabolic rate, and architects 

need to manage these parameters to achieve the desired 

thermal conditions [1–7,11,101]. 

2.3.3 Passive solar heating 

In zone 4 of Figure 2, Passive solar heating is an 

effective way to convert solar energy into heat energy for 

comfortable indoor temperatures. Techniques include direct 

daylighting, Trombe wall, greenhouse effect through glass 

chambers, atrium, and double skin façade. Building 

openings and specific glass window specifications can 

prevent radiation from escaping [1–7,11,101,102]. 

2.3.4 Active solar heating 

In zone 5 of Figure 2, Active solar heating circulates 

heated fluid through a building to distribute heat, while 

passive systems can help reduce energy consumption. Low-

temperature solar thermal or photovoltaic cells can capture 

energy and produce electricity for conventional thermal 

conditioning systems, distributed through radiant heated 

floors, radiators, and a water heater [1]. 

2.3.5 Humidification 

In zone 6 of Figure 2, Low humidity can cause 

respiratory disorders and dry skin. Designers can increase 

humidity by adding water vapor using passive or active 

methods to improve comfort in specific climate zones 

[103]. 

2.3.6 Conventional heating  

In zone 7 of Figure 2, Passive solar strategies may not 

always provide enough indoor thermal comfort in climate-

sensitive areas, requiring additional heating devices that use 

electricity, gas, oil, or coal to raise the temperature by 20°C. 

Turning off heating at night is sufficient, and heating 

systems should be placed below windows for optimal heat 

radiation. Biomass is a promising renewable source for 

heating, and blocking radiators with furniture is not 

recommended [7,99,100,104]. 

2.3.7 Solar protection 

In zone 8 of Figure 2, To prevent heat gains from solar 

radiation and maintain a comfortable temperature [1], 

shades are a crucial component of architectural design that 

should cover all building openings and the entire building 

envelope. Solar protection can be achieved naturally or 

using exterior blinds, slats, movable louvers, and weather-

sensitive facades [7]. 

2.3.8 Cooling through a high thermal mass 

In zone 9 of Figure 2, The thermal mass of a building 

envelope is crucial for heat absorption and release, and 

night ventilation can reduce cooling demand. Capacitive 

materials can create an energy transmission phase 

difference, and dissipating heat at night can be achieved 

through mobile daytime protection devices, especially in 

mild climates [1,36]. 

2.3.9 Evaporative cooling 

In zone 10 of Figure 2, In hot and dry climates, it is 

recommended to increase comfort levels by lowering 

temperatures through water evaporation and increasing 

relative humidity. Humidification techniques include using 

exterior vegetation, vegetative roof cover, and water 

spraying on the roof, which can also decrease temperature 

and increase relative humidity through an 

evapotranspiration process [1,36,102]. 

2.3.10 Cooling by high thermal mass with nocturnal 

renovation 

In zone 11 of Figure 2, To implement passive cooling 

strategies, buildings should be closed during the day and 

opened at night for dissipation and nocturnal ventilation. 

The building envelope should include capacitive materials 

that transfer energy with the maximum possible phase 

difference [1,7,36,105]. 

2.3.11 Cooling through natural and mechanical 

ventilation 

In zone 12 of Figure 2, To achieve better thermal 

sensation and air purification indoors, various methods such 

as cross ventilation, chimney effect, solar chamber, 

subterranean ventilation, wind towers, evaporative towers, 

vertical spaces, or patios can be used. Mechanical 

ventilation can also be employed to enhance the effect [1]. 

2.3.12 Air conditioning 

To increase comfort, air conditioning units can be 

installed in zone 13 Figure 2, but during summer, it is 

recommended to set the thermostat to 26°C and turn off 

devices when leaving to save energy [1]. 

2.3.13 Conventional dehumidification 

In zone 14 of Figure 2, To create a comfortable 

environment with high temperature and humidity, absorbent 

salts and saline cells can be used, but additional strategies 

are necessary to supplement this method [1,103]. 

3. COMFORT INDOOR ENVIRONMENT 

3.1 Health and comfort in buildings 

According to the World Health Organization, health is 

not just the absence of disease but complete physical, 

mental, and social well-being. Indoor comfort involves 

more than just climate control elements, but also considers 

human well-being from the consumer's perspective [8]. 

3.2 Indoor environmental quality (IEQ) 

The IEQ refers to four environmental categories: 

thermal comfort, indoor air quality, visual comfort, and 

acoustics. Personal user experience is also taken into 

consideration [107].  

3.3 Indoor thermal comfort 

Thermal comfort is influenced by factors such as air 

temperature, movement, humidity, radiation, metabolic rate, 

and clothing insulation. It is important to establish a level of 
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comfort that can satisfy most occupants since it is not 

practical to create a thermal environment that suits every 

individual [4]. 

3.4 Indoor air quality 

It is important for the health, thermal comfort, and 

productivity of occupants, and there is growing concern 

about its impact on well-being. Improving IAQ is a 

challenge for stakeholders, including building owners, 

residents, policymakers, and governments, and it is crucial 

to understand its significance [108,109]. 

3.5 Visual comfort 

Visual discomfort caused by glare or lack of lighting is a 

challenge for indoor environmental quality. Visual comfort 

depends on the physiology of the human eye, physical 

quantities that describe light, and the spectral emission of 

the light source. Factors that affect visual comfort include 

the amount, uniformity, quality of light in rendering color, 

and prediction of occupants' risk of glare [110,111]. 

3.6 Acoustics 

Opening windows for natural ventilation during summer 

can improve thermal and indoor air comfort but can also 

decrease acoustic comfort due to disruptive noise. Acoustic 

comfort refers to a building's ability to protect occupants 

from noise, which can arise from various sources such as 

airborne noise, noise from adjacent spaces, and outdoor 

noise [112,113]. 

3.7 User experience 

The purpose of a home is subjective and shaped by 

personal experience and cultural background. Comfort is 

influenced not only by the building itself but also by its 

surroundings, which can range in size and evolve over time 

in response to trends. Therefore, people have diverse 

comfort requirements for their homes based on how they 

use them [113]. 

4. Energy efficiency of the built environment 

Buildings are a major contributor to global energy use, 

and early design decisions can have lasting impacts 

[4,96,114].Energy efficiency is a top priority, involving 

reducing consumption levels and increasing savings. There 

is a misconception surrounding "energy conservation," but 

energy-efficient architecture can be comfortable, 

environmentally friendly, humane, visually appealing, and 

cost-effective [115]. 

5. CONCLUSION AND RECOMMENDATIONS  

This study highlights the importance of bioclimatic 

design in improving the energy efficiency and thermal 

comfort of residential properties. Key strategies, such as 

internal heat gain, evaporative cooling, and solar protection, 

are discussed. Additionally, the study emphasizes the need 

to understand local climate data and suggests approaches to 

improve the implementation of bioclimatic design. The 

study recommends the following actions to enhance 

awareness of local climate data and its effects on thermal 

comfort: utilizing advanced building technologies, 

conducting research to improve the building design process 

and increase resilience to climate change, and promoting 

bioclimatic strategies for residential buildings.  
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