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FRACTIONAL VARIATIONAL ITERATION METHOD FOR

HIGHER-ORDER FRACTIONAL DIFFERENTIAL EQUATIONS

G. MONZÓN

Abstract. In recent decades, numerous and varied numerical methods have

been proposed and studied to approximate solutions for various classes of frac-
tional differential equations, primarily those involving single-term or multiple-

order equations. However, equations incorporating fractional iterated deriva-

tives have not received widespread attention. In this work we describe a reli-
able strategy to approximate the solution of higher-order fractional differential

equations where both the fractional derivative and the iterated derivatives are

described in the Caputo sense. Specifically, we propose a fractional variational
iteration method (FVIM) where the Lagrange multiplier associated with the

correction term is explicitly determined by means of the Laplace transform.
For the second-order case, we give a sufficient condition -involving the coef-

ficients of the equation and the fractional order of the Caputo derivative- which

guarantees the convergence of the sequence generated by the FVIM. Further-
more, this convergence is independent of the initial function considered for the

iteration.

Finally, some examples are presented in order to illustrate the applicability
of the method and the reliability of the theoretical results obtained. In partic-

ular, for most of them we observe that the FVIM leads to the exact solution
which shows the power of the method in practice.

1. Introduction

Since its appearance in the late 90’s, the variational iteration method (VIM) -a
powerful analytical method based on the Lagrange multiplier technique- has been
widely used to solve multiple and varied problems including initial value problems
of fractional differential equations (see, for instance, [8, 13, 14, 19, 20, 26, 30, 33,
34, 35] and included references). Indeed, a multitude of diverse methods have
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been proposed and thoroughly examined across various disciplines to approximate
solutions for different classes of fractional differential equations. Although the list
of references we give is far from being exhaustive, we recommend consulting the
works [1, 2, 5, 6, 7, 9, 10, 11, 12, 15, 16, 17, 18, 27, 31] to have a comprehensive
understanding of some of them. Among these methods, the variational iteration
method has demonstrated remarkable reliability and efficiency in a wide range of
scientific applications, both linear and non-linear. It was shown by many authors
that this method is more powerful than existing techniques such as the Adomian
method, perturbation method, etc. One of the main advantages of the VIM is
that it provides successive approximations that converge rapidly towards the exact
solution.

To the best of our knowledge, applications of the variational iteration method
to higher-order fractional differential equations (HOFDEs), i.e. fractional differen-
tial equations involving sequential or iterated derivatives, have not been directly
addressed. In [19] the classical VIM was implemented to give approximate solu-
tions for linear (and non-linear) systems of differential equations of fractional order.
Now, since a higher-order linear fractional differential equation can be written as
a linear system of first-order fractional differential equations, we can derive an im-
plementation of the classical VIM for HOFDEs; however, this was not explicitly
mentioned or done. Given the aforementioned advantages of the VIM, exploring its
applications to higher-order fractional differential equations becomes an interesting
area of study.

In the present work we introduce and study a modified version of the VIM for
the following general second-order fractional differential equations

D
2 α
0 u(t) = pDα

0 u(t) + qu(t) + r(t) in (0, a), (1)

where a ∈ R+, p, q ∈ R and r is a bounded function on [0, a], subject to the initial
conditions

u(0) = β0, Dα
0 u(0) = β1, (2)

with β0, β1 ∈ R. Here α ∈ (0, 1), Dα
0 u denotes the Caputo fractional derivative of

u of order α and D
2 α
0 = Dα

0 ◦Dα
0 denotes the iterated derivative.

The introduced approach can be easily generalized and extended to deal with
higher-order linear fractional differential equations, however, we focus on the second-
order case in order to keep our explanation as clear as possible.

In [21] a consistent approximation scheme of the finite-difference type was given
for the problem (1)-(2). Such a method is based on rewriting (1) as an integro-
differential equation and, in a domain discretization, using numerical rules to ap-
proximate the fractional derivative and the Riemann-Liouville integral operator. As
indicated above, in this article we formulate an alternative approximation scheme
according to the VIM approach which offers distinct advantages compared to the
method just described. Unlike the previous approach, our method ensures pointwise
convergence not only at the nodes of the domain discretization but also throughout
the entire domain. Remarkably, our method produces precise approximations with
only a few iterations, whereas achieving a comparable level of accuracy with the
method outlined in [21] demands the consideration of a significantly larger number
of nodes. This reduction in the computational workload translates to a substan-
tially lower implementation cost, making our approach more efficient. Additionally,
in certain cases, our method even yields exact solutions.
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In applications of the VIM to initial value problems of differential equations there
are three essential steps to follow:

(1) establishing the correction functional (which involves a Lagrange multi-
plier);

(2) identifying the Lagrange multiplier;
(3) determining the initial iteration.

Regarding steps 1 and 2 we consider an approach inspired by the one proposed
in [34] which is based (mainly step 2) in properties of the Laplace transform and
the variational theory; on the other hand, for step 3 we essentially consider the
first-order generalized Taylor formula of u at a (c.f. [23]) which, as we will see
later, naturally appears in the process.

For the fractional variational iteration method (FVIM) proposed here, we esti-
mate the error approximation in the L1-norm (see Theorem 4.1 below). Indeed, if
(un)n≥0 denotes the approximating sequence, then

∥un+1 − u∥L1 ≤
(

|p|aα

Γ(α+ 1)
+

|q|a2α

Γ(2α+ 1)

)n

∥u0 − u∥L1 (n ≥ 0).

Therefore, if
|p|aα

Γ(α+ 1)
+

|q|a2α

Γ(2α+ 1)
< 1, the convergence is guaranteed and is

independent of the initial data u0.

In order to illustrate the applicability and convergence of the introduced FVIM
we exhibit numerical examples where the theoretical results are confirmed (c.f.
Section 5); moreover, for most of them we obtain the exact analytical solution that
shows the power of the method in practice.

The organization of the paper is as follows: In Section 2 we introduce definitions,
notations and basic properties related to the Riemann-Liouville integral operator,
the Caputo fractional derivative and the Laplace transform which are essential for
the development of our approach. In Section 3, the fractional variational iteration
method associated to (1)-(2) is derived and, in Section 4, we prove some convergence
results and error estimates. Finally, in Section 5, numerical examples are presented
with the aim to illustrate the applicability and convergence of the method and, in
Section 6, some conclusions are given.

2. Definitions, notations and preliminary results

Let α ∈ (0, 1). The Riemann-Liouville integral operator Iα0 of u ∈ L1[a, b] of
order α is defined as

Iα0 u(x) =
1

Γ(α)

∫ x

0

(x− t)α−1u(t) dt (0 ≤ x ≤ a).

From [4, Theorem 2.1] we know that Iα0 u ∈ L1[0, a], moreover

∥Iα0 u∥L1 ≤ 1

Γ(α)

aα

α
∥u∥L1 =

aα

Γ(α+ 1)
∥u∥L1 .

Remark 1. Last equality in the previous equation is due to

zΓ(z) = Γ(z + 1) ∀z ∈ C. (3)

We will use this well-known property on the Γ function again in Section 5.
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The Caputo fractional derivative Dα
0 of u of order α is given by

Dα
0 u = I1−α

0 u′

where u′ denotes the ordinary derivative of u, i.e.

Dα
0 u(x) =

1

Γ(1− α)

∫ x

0

u′(t)

(x− t)α
dt (x ≥ 0). (4)

In the sequel, we recall the definition of the Laplace transform and some basic
properties which will be useful for our purposes.

Let v be a function defined on [0,+∞), then the Laplace transform L[v] of v is
given by

L[v](s) =

∫ ∞

0

e−stv(t) dt. (5)

We assume that L[v] exists for s > 0 and, as we just did, we skip writing the
variable s unless absolutely necessary.

The operator L is linear, i.e.

L[k1v1 + k2v2] = k1L[v1] + k2L[v2] k1, k2 ∈ R (6)

and also satisfies

L[1] =
1

s
, (7)

L [tα] =
Γ(α+ 1)

sα+1
. (8)

On the other hand, the Laplace transform of the Caputo derivative is given by

L[Dα
0 v] = sαL[v]− sα−1v(0) (9)

while the Laplace transform of the Riemann-Liouville integral operator verifies

L[Iα0 v] =
1

sα
L[v] (10)

(see [4, Theorem 7.1] or [24] for details).
Finally, as usual, we use L−1 to denote the inverse Laplace transform. In par-

ticular, L−1 is a linear operator which satisfies

L−1

[
1

s

]
= 1 (11)

and

L−1

[
1

sα+1

]
=

tα

Γ(α+ 1)
. (12)

3. The fractional variational iteration method

In short, the variational iteration method consists of defining an approximating
sequence (un)n≥0 of the solution u by means of a recurrence relation in which a
correction term is incorporated. As usual, we assume that the correction term is
determined by the fractional differential equation in question -in our case

D
2 α
0 u− pDα

0 u− qu− r = 0 (13)

subject to the initial conditions u(0) = β0, Dα
0 u(0) = β1- and we incorporate it by

means of a Lagrange multiplier λ. In concrete, the iteration formula is given by

un+1 = un + λ
[
D

2 α
0 un − pDα

0 un − qun − r
]

(n ≥ 0) (14)
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where the initial data u0 must be determined as well as the value of λ.
In order to do this we explore an approach based on the Laplace transform L.

This approach has similarities with the one discussed in [34], however, obvious
modifications must be made since the type of equations under consideration here is
different from the one studied in said work (for example, the equations under study
in [34] have integer values as orders for the highest order derivative whereas, in our
case, the highest order derivative is fractional).

We are going to begin by applying L to both sides of (14). Indeed, after doing
this we have

L[un+1] = L[un] + λ
[
L[D

2 α
0 un − pDα

0 un − qun − r]
]

= L[un] + λ
[
L[D

2 α
0 un]− L[pDα

0 un + qun + r]
] (15)

Now, assuming that

un(0) = β0 and Dα
0 un(0) = β1, (16)

and, by repeatedly using the identity (9), it follows that

L
[
D

2 α
0 un

]
= L[Dα

0 (D
α
0 un)] = sαL[Dα

0 un]− sα−1Dα
0 un(0)

= sα
(
sαL[un]− sα−1un(0)

)
− sα−1Dα

0 un(0)
= s2αL[un]− s2α−1un(0)− sα−1Dα

0 un(0)
= s2αL[un]− s2α−1β0 − sα−1β1.

Then, the equation (15) can be written as

L[un+1] = L[un] + λ
[
s2αL[un]− s2α−1β0 − sα−1β1 − L[pDα

0 un + qun + r]
]

= (1 + λs2α)L[un]− λ
[
s2α−1β0 + sα−1β1 + L[pDα

0 un + qun + r]
]
.

(17)
Setting L[pDα

0 un + qun + r] as a restricted variation term, from the stationary
condition it follows that

1 + λs2α = 0.

In this way, λ can be identified as λ = − 1

s2α
. Under this consideration, the equation

(17) reduces to

L[un+1] =
1

s2α
[
s2α−1β0 + sα−1β1 + L[pDα

0 un + qun + r]
]

=
β0

s
+

β1

sα+1
+

1

s2α
L[pDα

0 un + qun + r].

Now, taking into account (6)-(8) we get

L[un+1] = L

[
β0 +

β1

Γ(α+ 1)
tα
]
+

1

s2α
L[pDα

0 un + qun + r].

Therefore, the iteration equation reads as

un+1(t) = β0 +
β1

Γ(α+ 1)
tα + L−1

[
1

s2α
L[pDα

0 un + qun + r]

]
.

At this point it should be noted that the function that appears at the beginning of
the right-hand side of the previous equation is independent of n and can be written
as follows

β0 +
β1

Γ(α+ 1)
tα = u(0) +

Dα
0 u(0)

Γ(α+ 1)
tα
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so it turns out to be the first-order generalized Taylor formula for u at t = 0 (c.f.
[23]). On the other hand, it is immediate to check that such a function satisfies the
conditions imposed in (16). For this reasons we consider it as the initial data u0,
this is

u0(t) = β0 +
β1

Γ(α+ 1)
tα

and therefore

un+1(t) = u0(t) + L−1

[
1

s2α
L[pDα

0 un + qun + r]

]
.

Finally, by using (6) and (9) again, it follows that

un+1(t) = u0(t) + L−1

[
1

s2α
(pL[Dα

0 un] + qL[un] + L[r])

]
= u0(t) + L−1

[
1

s2α
(
p(sαL[un]− sα−1β0) + qL[un] + L[r]

)]
= u0(t) + L−1

[
psα + q

s2α
L[un]−

pβ0

sα+1
+

L[r]

s2α

]
= β0 +

β1 − pβ0

Γ(α+ 1)
tα + L−1

[
psα + q

s2α
L[un] +

L[r]

s2α

]
.

In sum, the proposed fractional variational iteration method reduces to

un+1(t) = β0 +
β1 − pβ0

Γ(α+ 1)
tα + L−1

[
(psα + q)L[un] + L[r]

s2α

]
(n ≥ 0) (18)

with the inital data

u0(t) = β0 +
β1

Γ(α+ 1)
tα. (19)

4. Convergence and the error treatment

In some cases, where the classical version of the VIM was used, the convergence
of the recurrence sequence was studied (see for instance [22, 29, 32]). In this section
we present our main results on the convergence of the recurrence sequence obtained
by the fractional variational iteration method that we propose (see Theorem 4.1
below). In fact, we prove that the sequence given by (18)-(19) converges to the
real solution of the fractional differential equation in the L1-norm under certain
assumption involving the coefficients p and q, the fractional order α and the length
a of the interval domain (c.f. (20)).

Theorem 4.1. Let α ∈ (0, 1), a ∈ R+ and p, q ∈ R be the values involved in (13).
Assume that

γ =
|p|aα

Γ(α+ 1)
+

|q|a2α

Γ(2α+ 1)
< 1, (20)

then the sequence (un)n≥0 given by (18)-(19) is L1-convergent to the solution u of
(13). Moreover, the L1-error estimate verifies

∥un+1 − u∥L1 ≤ γn∥u0 − u∥L1 n ≥ 0. (21)

Proof. From (18) we have

un+1 = ū0 + L−1

[
(psα + q)L[un] + L[r]

s2α

]
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where

ū0(t) = β0 +
β1 − pβ0

Γ(α+ 1)
tα.

On the other hand, if u is the real solution of (13), from the same arguments used
in Section 3 in order to deduce (18), it follows that

u = ū0 + L−1

[
(psα + q)L[u] + L[r]

s2α

]
.

Then

un+1 − u = L−1

[
psα + q

s2α
L[un − u]

]
or, equivalently,

L[un+1 − u] =
psα + q

s2α
L[un − u] .

From this fact and making use of properties (6) and (10) we get

L[un+1 − u] =
1

sα
L[p(un − u)] +

1

s2α
L[q(un − u)]

= L[Iα0 p(un − u)] + L[I2α0 q(un − u)]

= L[pIα0 (un − u) + qI2α0 (un − u)].

Now, thanks to Lerch’s theorem (see, for instance, [3, Theorem 2.1]),

un+1 − u = pIα0 (un − u) + qI2α0 (un − u) (22)

and then, from the triangular inequality, it follows that

∥un+1 − u∥L1 ≤ |p|∥Iα0 (un − u)∥L1 + |q|∥I2α0 (un − u)∥L1 .

Taking into account (2) we have

∥un+1 − u∥L1 ≤ |p| aα

Γ(α+ 1)
∥un − u∥L1 + |q| a2α

Γ(2α+ 1)
∥un − u∥L1 = γ ∥un − u∥L1

where γ is given by (20). Finally, (21) is a direct consequence of this inequality and
the convergence of (un)n follows immediately by combining (21) and (20). □

Remark 2. Thanks to the linearity of the operator Iα0 and the following fact (c.f.
[4, Theorem 2.2])

I2α0 = Iα0 ◦ Iα0 ,
the equation (22) can be written as

un+1 − u = Iα0 [p(un − u) + qIα0 (un − u)] .

Then, making use of (2) again together with the triangular inequality, we get

∥un+1 − u∥L1 ≤ aα

Γ(α+ 1)
∥p(un − u) + qIα0 (un − u)∥L1

≤ aα

Γ(α+ 1)
[|p|∥un − u∥L1 + |q|∥Iα0 (un − u)∥L1 ]

≤ aα

Γ(α+ 1)

[
|p|∥un − u∥L1 + |q| aα

Γ(α+ 1)
∥un − u∥L1

]
=

(
|p|aα

Γ(α+ 1)
+

|q|a2α

Γ2(α+ 1)

)
∥un − u∥L1 .
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In consequence, ∥un+1−u∥L1 ≤
(

|p|aα

Γ(α+ 1)
+

|q|a2α

Γ2(α+ 1)

)n

∥u0−u∥L1 . Therefore,

under the assumption

|p|aα

Γ(α+ 1)
+

|q|a2α

Γ2(α+ 1)
< 1 (23)

we also obtain the L1-convergence of (un)n. However, since

1

Γ(2α+ 1)
≤ 1

Γ2(α+ 1)
∀α ∈ (0, 1)

the assumption (20) made in Theorem 4.1 is slightly weaker than (23).

Remark 3. The L1-convergence of the sequence (un)n given by (18) is independent
of the choice of u0.

As we claim before, our election for u0 in (19) is due that this function naturally
appears in the deduction of un+1 and agrees with the first-order generalized Taylor
formula for u at the point t = 0.

Although the convergence of un to u in the L1-norm does not imply the pointwise
convergence un(t) → u(t), t ∈ (0, a), from Theorem 4.1 and a well-known fact (see
for instance [28, Theorem 3.12]) we have the following result.

Corollary 4.3. Let α ∈ (0, 1), a ∈ R+ and p, q ∈ R be the values involved in (13).
Under the assumption (20) there is a subsequence (unk

)k of the sequence given by
(18)-(19) which converges pointwise almost everywhere to the solution u of (13) on
[0, a] i.e.

lim
k→∞

unk
(t) = u(t) a.e.

Remark 4. Although we have not shown pointwise convergence for the entire se-
quence (un)n, the numerical experiments we consider in Section 5 suggest that
pointwise convergence holds for the entire sequence and is performed at every point
of the interval [0, a]. Moreover, in most cases, the analytical expression of the exact
solution u can be obtained from the proposed approximation scheme.

In the next section we illustrate the applicability of the method and also confirm
the theoretical results obtained here by displaying numerical examples.

5. Numerical examples

In [21] several second-order fractional differential equations were presented and
analyzed to demonstrate the application and convergence of the method proposed
in that study. Interestingly, some of these examples were previously examined in
reference [23], where the generalized Taylor formula was employed to derive the
analytical solution. In this section, we will explore these examples, or slightly
generalized variations of them, to illustrate the application of the FVIM proposed
and studied in the preceding sections. However, before introducing such examples,
we point out an elementary fact about the gamma function related to those terms
involved in (20), namely

1 ≤ 1

Γ(α+ 1)
,

1

Γ(2α+ 1)
≤ 1.13 ∀α ∈ (0, 1). (24)
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Example 5.1. Let 0 < α < 1. Consider the following second-order fractional
differential equation{

D
2 α
0 u(t) = 3−1Dα

0 u(t) + αΓ(2α)(u(t)− 1) in (0, 1),

u(0) = 1, Dα
0 u(0) = 0.

(25)

We start by noting that, in this case, the requirement (20) is satisfied. Indeed,
for any α ∈ (0, 1) and taking into account that a = 1, p = 3−1 and (thanks to (3))
q = αΓ(2α) = Γ(2α+ 1)/2, from (24) it follows that

|p|aα

Γ(α+ 1)
+

|q|a2α

Γ(2α+ 1)
=

1

3Γ(α+ 1)
+

1

2
< 0.88 .

On the other hand, the initial data u0 (c.f. (19)) is given by

u0(t) = 1.

In regards to the iteration formula (18), for n ≥ 0 and thanks to (6) we have

un+1(t) = 1− tα

3Γ(α+ 1)
+ L−1

[
(sα/3 + αΓ(2α))L[un] + L[−αΓ(2α)]

s2α

]
= 1− tα

3Γ(α+ 1)
+ L−1

[
L[un]

3sα
+

αΓ(2α)

s2α
L[un − 1]

]
.

In particular, for n = 0 (making use of (7) and (12)) we obtain

u1(t) = 1− tα

3Γ(α+ 1)
+

1

3
L−1

[
L[1]

sα

]
= 1− tα

3Γ(α+ 1)
+

1

3
L−1

[
1

sα+1

]
= 1.

Additionally, from what has been done it follows that, for any n > 1, un(t) = 1.
Then, for any t ∈ [0, 1]

lim
n→∞

un(t) = 1

and we obtain the exact solution u ≡ 1 of (25).

Example 5.2. Consider the following second-order fractional differential equation{
2D

2 1
2

0 u(t) = u(t) + 4t− t2 in (0, 1),

u(0) = 0, D
1
2
0 u(0) = 0.

(26)

In this case, the parameters a, p, q and α involved in (20) are 1, 0, 1/2 and 1/2
respectively. Moreover, such requirement is fulfilled since

|p|aα

Γ(α+ 1)
+

|q|a2α

Γ(2α+ 1)
=

1

2
.

Therefore, according to Corollary 4.3, pointwise convergence is expected for a sub-
sequence of (un)n given by (18)-(19). In fact, as in the previous example, pointwise
convergence is observed for the entire sequence and the explicit formula is derived
for the real solution u(t) = t2. Indeed, the iteration formula (18)-(19) reads asu0(t) = 0,

un+1(t) = L−1

[
1/2L[un] + L[2t− t2/2]

s

]
=

1

2
L−1

[
L[un]

s
+

4

s3
− 2

s4

]
.

After an straightforward calculation, we get

un(t) = t2 − 1

2n−1

tn+2

(n+ 2)!
n ≥ 1.
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Then, for any t ∈ [0, 1] (due to lim
n→∞

1

2n−1

tn+2

(n+ 2)!
= 0), we have

lim
n→∞

un(t) = t2

which give us the explicit expression of the exact solution u(t) = t2 as we claim
before. Furthermore, the pointwise approximation error is given by

|un(t)− u(t)| = 1

2n−1

tn+2

(n+ 2)!
≤ 1

2n−1(n+ 2)!
∀t ∈ [0, 1]

allowing to conclude that with very few iterations a good approximation is achieved.

Example 5.3. Let 0 < α < 1. Consider the following second-order fractional
differential equationD

2 α
0 u(t) =

α+ 1

2
Dαu(t)− Γ(α+ 2)

2
in (0, 1),

u(0) = 0, Dα
0 u(0) = Γ(α+ 1).

(27)

We start by noting that the condition (20) is also satisfied in this case since the

parameters a, p and q involved are 1,
α+ 1

2
and 0 respectively, and holds

|p|aα

Γ(α+ 1)
+

|q|a2α

Γ(2α+ 1)
=

α+ 1

2Γ(α+ 1)
< 1 ∀α ∈ (0, 1).

Moreover, the behavior of the approximating sequence (un)n given by (18)-(19) is
similar to that observed in Example 5.1 since its terms are equal to each other and
equal to the real solution at the same time. In this way the pointwise convergence
of the entire sequence to the real solution is obviously guaranteed and it is reached
at every point of the interval [0, 1]. Indeed, from (19) we have

u0(t) = tα

and, according to (18), for any n ≥ 0,

un+1(t) = tα + L−1

 α+1
2 sαL[un] + L

[
−Γ(α+2)

2

]
s2α


= tα +

1

2
L−1

[
α+ 1

sα
L[un]−

Γ(α+ 2)

s2α+1

]
.

In particular, for n = 0 and thanks to (8) we have

u1(t) = tα +
1

2
L−1

[
α+ 1

sα
L[tα]− Γ(α+ 2)

s2α+1

]
= tα +

1

2
L−1

[
α+ 1

sα
Γ(α+ 1)

sα+1
− Γ(α+ 2)

s2α+1

]
= tα.

In short, we have seen that u0(t) = tα implies u1(t) = tα. From this, and given the
recurrence that defines un, we conclude that un(t) = tα for all n ≥ 1.

Finally, for any t ∈ [0, 1]

lim
n→∞

un(t) = tα

which agrees with the exact solution of (27).
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Example 5.4. Let 0 < α < 1. Consider the following second-order fractional
differential equation

{
D

2 α
0 u(t) = 0.5Dα

0 u(t) + 0.5u(t) in (0, 1)

u(0) = 1, Dα
0 u(0) = 1.

(28)

As usual, we will denote by Eα the Mittag-Leffler function of order α, that is

Eα(z) =

∞∑
k=0

zk

Γ(αk + 1)
.

Taking into account that the Mittag-Leffler function of order α verifies (c.f. [4,
Theorem 4.3])

Dα
0Eα(z

α) = Eα(z
α),

it follows that u(t) = Eα(t
α) =

∞∑
k=0

tαk

Γ(αk + 1)
is the exact solution of (28).

Unlike the previous examples, the application of our method in this specific
case does not yield the exact solution, at least not in a straightforward manner.
Nevertheless, even after a limited number of iterations, our approach enables us to
obtain highly accurate approximations of the solution. This holds true, particularly
within the range of α where the condition (20) is satisfied.

In this regard, it should be noted that the condition (20) can be expressed as
1

Γ(α+ 1)
+

1

Γ(2α+ 1)
< 2 and is valid for any α ∈ (0.625, 1).

On the other hand, the iteration formula (18)-(19) reduces to


u0(t) = 1 +

1

Γ(α+ 1)
tα,

un+1(t) = 1 +
0.5

Γ(α+ 1)
tα + 0.5L−1

[
sα + 1

s2α
L[un]

]
, n ≥ 0,

and, after an straightforward calculation, for any n ≥ 1 we get

un(t) =

n+1∑
k=0

tkα

Γ(kα+ 1)
+

2n+1∑
k=n+2

an,k
tkα

Γ(kα+ 1)
(29)

where

a1,3 =
1

2
and an,k =

an−1,k−1 + an−1,k−2

2
with an−1,n = 1 and an−1,2n = 0

(notice that the first term in the right-hand side of (29) is a truncation of the real
solution).
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In particular,

u1(t) =

2∑
k=0

tkα

Γ(kα+ 1)
+

1

2

t3α

Γ(3α+ 1)

u2(t) =

3∑
k=0

tkα

Γ(kα+ 1)
+

3

4

t4α

Γ(4α+ 1)
+

1

4

t5α

Γ(5α+ 1)

u3(t) =

4∑
k=0

tkα

Γ(kα+ 1)
+

7

8

t5α

Γ(5α+ 1)
+

1

2

t6α

Γ(6α+ 1)
+

1

8

t7α

Γ(7α+ 1)

u4(t) =

5∑
k=0

tkα

Γ(kα+ 1)
+

15

16

t6α

Γ(6α+ 1)
+

11

16

t7α

Γ(7α+ 1)
+

5

16

t8α

Γ(8α+ 1)
+

1

16

t9α

Γ(9α+ 1)

In Figure 1, the graph on the left displays the real solution u and the approximat-
ing function u4 for α = 0.63, represented by solid and dashed lines respectively. On
the right side, the graph shows the real solution u and the approximating function
u4 for α = 0.9, also distinguished by solid and dashed lines respectively.

In accordance with our findings (see Theorem 4.1 and Corollary 4.3) and ob-
serving that α = 0.63 and α = 0.9 fall within the interval (0.621, 1) (as previously
observed, the condition (20) is satisfied over this interval) we anticipate a good ap-
proximation of u through the terms of the sequence un across the domain [0, 1]. In
fact, as we can see from the overlap of the curves, the approximation is remarkably
satisfactory with just a few iterations. Furthermore, consistent with expectations
derived from (21), better performance is observed as α approaches 1 because the

quantity γ =
1

2Γ(α+ 1)
+

1

2Γ(2α+ 1)
decreases as α increases.

0 0.2 0.4 0.6 0.8 1

1

1.5

2

2.5

3

3.5

4

4.5

α = 0.63

0 0.2 0.4 0.6 0.8 1

1

1.5

2

2.5

3

α = 0.9

Figure 1. The function u(t) = Eα(t
α) is represented by a solid

line, while the function u4 is represented by a dashed line (the
Mittag-Leffler function values were obtained from [25]).

On the other hand, in Figure 2, we depict the real solution u and its correspond-
ing approximating function u4 for α = 0.4 on the left, using solid and dashed lines



JFCA-2024/15(1) FVIM FOR HIGHER-ORDER FRACTIONAL DIFFERENTIAL EQUATIONS13

respectively. Similarly, on the right side, we present the real solution u and its
approximating function u4 for α = 0.1, also represented by solid and dashed lines
respectively.

In this case, for both values of α, condition (20) is not satisfied. Consequently,
the approximation of u using the sequence terms is not guaranteed within the
domain [0, 1]. In fact, for these specific values of α, it is evident from the graphical
representation that u4 does not provide a reliable approximation of u, unlike what
we observe when α ∈ (0.625, 1). Moreover, it is noteworthy that the behavior

deteriorates as α decreases, since γ =
1

2Γ(α+ 1)
+

1

2Γ(2α+ 1)
> 1 increases as α

approaches 0.
Additionally, note that the condition (20) is satisfied for these α values if the

interval [0, a], where a << 1, is under consideration instead of [0, 1]. In other words,
the approximation property holds on [0, a] with a = a(α) << 1 (but not necessarily
on [0, 1]) when α does not belong to (0.625, 1).

0 0.2 0.4 0.6 0.8 1

1

2

3

4

5

6

7

α = 0.4

0 0.2 0.4 0.6 0.8 1

0

5

10

15

20

25

α = 0.1

Figure 2. The function u(t) = Eα(t
α) is represented by a solid

line, while the function u4 is represented by a dashed line (the
Mittag-Leffler function values were obtained from [25]).

6. Conclusions

A fractional variational iteration method, which can be easily generalized and
extended to higher-order fractional differential equations, is proposed and studied
in detail for the second-order case. In this approach, the Lagrange multiplier cor-
responding to the correction term is explicitly determined by means of the Laplace
transform.

The convergence of the approximating sequence is proved under the assumption
(20) involving the coefficients of the equation, the fractional order and the length
of the interval domain. On a first reading, condition (20) may seem too restrictive,
however, Example 5.4 shows that it is not really so. Indeed, this example illustrates
that if the requirement (20) is not verified, the approximation to the real solution
is not guaranteed, or at the very least, it deteriorates considerably. Furthermore,
associated with this example, the following two significant observations can be
made: First, for the domain interval [0, 1], a good approximation is achieved when
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α falls within (0.625, 1) which is in accordance with the fact that the condition (20)
is satisfied. Second, if α does not belong to (0.625, 1), then convergence is observed
over a considerably smaller subinterval [0, a] ⊂ [0, 1] which is in accordance with
the fact that the condition (20) is satisfied for a << 1.

Finally, the applicability of the method, as well as the confirmation of the the-
oretical results obtained, is observed in the study of the proposed numerical ex-
amples. In particular, exact analytical solutions were obtained for most of them,
demonstrating the practical effectiveness of the method.
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