

Vol. 15(1) Jan 2024, No. 6
Online ISSN: 2090-5858
Print ISSN: 2090-584X
http://jfca.journals.ekb.eg/

A STUDY OF N-FRACTIONAL CALCULUS FOR THE GENERALIZED HURWITZ-LERCH ZETA FUNCTION AND MITTAG-LEFFLER FUNCTION

MEENA KUMARI GURJAR ${ }^{1}$, LAXMI RATHOUR ${ }^{2 *}$, LAKSHMI NARAYAN MISHRA ${ }^{3}$ AND PREETI CHHATTRY ${ }^{4}$

Abstract

In present paper, the investigation of generalized Hurwitz-Lerch Zeta function and generalized Mittag-Leffler function by applying N-fractional calculus has been discussed. Further, we establish the product of N-fractional calculus involving the generalized Hurwitz - Lerch Zeta function and MittagLeffler function. The main results provide useful extension and unification of a number of results for various types of functions. Further, several special cases are established at the end of the paper.

1. Introduction

We will be use some following definitions for our further investigation:
Definition 1.1. [11] The generalized Hurwitz-Lerch Zeta function is introduced by Gupta and defined as

$$
\begin{align*}
\Phi_{\left(\lambda_{q}, \mu_{q}, \beta\right)}^{\left(\alpha, \rho_{p}, \sigma_{q}\right)}(z, s, a, b) & =\frac{1}{\Gamma(s)} \sum_{m=0}^{\infty} \frac{(-b)^{m} \Gamma(s-\alpha m)}{m!} \\
& \times \sum_{n=0}^{\infty} \frac{\prod_{j=1}^{r}\left(\lambda_{j}\right)_{\rho_{j n}}}{\prod_{k=1}^{s}\left(\mu_{k}\right)_{\sigma_{k} n}} \frac{z^{n}}{(a+n \beta)^{s-\alpha m} n!} \tag{1}
\end{align*}
$$

where $\beta, s, z, \lambda_{j} \in \mathbb{C}(j=1, \ldots, p), \mu_{k} \in \mathbb{C} / Z_{0}^{-}(k=1, \ldots, q), \rho_{j}, \sigma_{k} \in R^{+}(j=$ $1, \ldots, p ; k=1, \ldots, q), p, q>0, \operatorname{Re}(b) \geq 0$.

If we substitute $b=0$ and $\alpha=\beta=1$ in (1), we get multi-parameter HurwitzLerch Zeta function is given by Srivastava [26].

2010 Mathematics Subject Classification. 11M35, 26A33, 33E12.
Key words and phrases. N-fractional calculus, Hurwitz-Lerch Zeta function, Mittag-Leffler function.

Submitted 25 Sept 2023, Revised 2 Nov 2023.

On substituting $q=b=0, \alpha=\beta=1, \rho=\rho_{1}=\lambda_{1}=1$ and $q=\sigma_{1}=\mu_{1}=1$ in (1), the function reduces to the extended Hurwitz-Lerch Zeta function given by Lin and Srivastava [16. Further, it reduces to the generalized Hurwitz-Lerch Zeta function given by Podlubny [20] when $\rho=1, \sigma=1$ and $\lambda=1$. which further reduces to the Hurwitz-Lerch zeta function given by Garg et. al. [10] if $\mu=1$.

Definition 1.2. [15] The generalized Mittag-Leffler function is introduced by Salim [23] (see also) and defined as

$$
\begin{equation*}
E_{\theta, \vartheta}^{\gamma, \delta}(z)=\sum_{n=0}^{\infty} \frac{(\gamma)_{n}}{\Gamma(n \theta+\vartheta)} \frac{z^{n}}{(\delta)_{n}} \tag{2}
\end{equation*}
$$

where $z, \theta, \vartheta, \delta \in \mathbb{C}, \mathcal{R} e(\theta)>0, \mathcal{R} e(\vartheta)>0, \mathcal{R} e(\gamma)>0, \mathcal{R} e(\delta)>0$.
On setting $\delta=1$ in (2), we get another form of generalized Mittag-Leffler function, which is given by Prabhakar [21]. It reduces to Mittag-Leffler function introduced by Wiman [32] if $\gamma=1$. Further, it reduces to the generalized Mittag-Leffler defined by Mittag-Leffler [17] when $\vartheta=1$.

Recent work on Mittag-Leffler function and fractional calculus have been studied in references to its significance and applicability in various fields [1]-9], [12]-[15], [18], 22], 24], 27]-28].
Definition 1.3. 19 The N-fractional calculus is introduced by Nishimoto and defined in the following manner:

Let $D=\left\{D_{-}, D_{+}\right\}, C=\left\{C_{-}, C_{+}\right\}, C_{-}$be a curve along the cut joining two points z and $-\infty+i \operatorname{Im}(z), C_{+}$be a curve along the cut joining two points z and $\infty+i \operatorname{Im}(z) . D_{-}$and D_{+}are domains surrounded by C_{-}and C_{+}respectively. D_{+} contains two points over the curve C_{+}.

Further, let $f=f(z)$ be a regular function in $D(z \in D)$. Then

$$
\begin{align*}
f_{n}=(f)_{n} & =\frac{\Gamma(n+1)}{2 \pi i} \int_{C} \frac{f(\zeta)}{(\zeta-z)^{n+1}} d \zeta,\left(n \neq Z^{-}:=\{-1,-2,-3 \ldots . .\}\right) \tag{3}\\
(f)_{-r^{\prime}} & =\lim _{n \rightarrow-r^{\prime}}(f)_{n},\left(r^{\prime} \in Z^{+}:=\{1,2,3 \ldots\}\right) \tag{4}\\
\left(z^{s}\right)_{n} & =e^{-i \pi n} \frac{\Gamma(n-s)}{\Gamma(-s)} z^{s-n}\left[0 \neq\left|\frac{\Gamma(n-s)}{\Gamma(-s)}\right|<\infty\right] \tag{5}
\end{align*}
$$

where $-\pi \leq \arg (\zeta-z) \leq \pi$ for $C_{-}, 0 \leq \arg (\zeta-z) \leq 2 \pi$ for $C_{+}, \zeta \neq z, z \in C$ and $n \in C$, then for $\operatorname{Re}(n)>0,(f)_{n}$ is derivative of arbitrary order n and for $\operatorname{Re}(n)<0$, integral of arbitrary order $-n$ with respect to z of the function $f(z)$.

$$
\begin{equation*}
(1+z)^{-\lambda}=\sum_{k=0}^{\infty} \frac{(\lambda)_{k}(-z)^{k}}{k!}|z|<1 \tag{6}
\end{equation*}
$$

2. Main Results

We assess four theorems for N-fractional calculus including the generalized Hurwitz - Lerch Zeta function and generalized Mittag-Leffler function in this part.

Theorem 2.1. Let the following conditions are satisfied:
(i) $0 \neq\left|\frac{\Gamma(v-p-n)}{(-p-n)}\right|<\infty$
(ii) $\left|\frac{n \beta}{a}\right|<1$.
(iii) The conditions defined with (1) are fulfilled. Then, the outcomes holds as under

$$
\begin{align*}
& \left(z^{p} \Phi_{\left(\lambda_{q}, \mu_{q}, \beta\right)}^{\left(\alpha, \rho_{p}, \sigma_{q}\right)}(z, u, a, b)\right)_{v} \\
& =\frac{(-1)^{v}}{a^{s} \Gamma(s)} \sum_{m=0}^{\infty} \sum_{n, k=0}^{\infty} \frac{\Gamma(s-\alpha m) \Gamma(v-n-p)(-b)^{m}(a+n \beta)^{\alpha m}}{\Gamma(-n-p) m!n!k!} \frac{\prod_{j=1}^{r}\left(\lambda_{j}\right)_{\rho_{j n}}}{\prod_{k=1}^{s}\left(\mu_{k}\right)_{\sigma_{k} n}} \\
& \times(s)_{k}\left(-\frac{n \beta}{a}\right)^{k} z^{n+p-v} \tag{7}
\end{align*}
$$

Proof. For convenience, the left hand side of (7) assumes \mathcal{L}_{1} and to prove this, first we express the generalized Hurwitz lerch zeta function in terms of series form by using (1), we have
$\mathcal{L}_{1}=\left(\frac{a^{-s}}{\Gamma(s)} \sum_{m=0}^{\infty} \frac{(-b)^{m} \Gamma(s-\alpha m)}{m!} \sum_{n=0}^{\infty} \frac{\prod_{j=1}^{r}\left(\lambda_{j}\right)_{\rho_{j n}}}{\prod_{k=1}^{s}\left(\mu_{k}\right)_{\sigma_{k} n}} \frac{(a+n \beta)^{\alpha m}\left(1+\frac{n \beta}{a}\right)^{-s} z^{n+p}}{n!}\right)_{v}$.
Using the result (6) in above result, we get

$$
\begin{aligned}
\mathcal{L}_{1} & =\left(\frac{a^{-s}}{\Gamma(s)} \sum_{m=0}^{\infty} \frac{(-b)^{m} \Gamma(s-\alpha m)}{m!} \sum_{n, k=0}^{\infty} \frac{\prod_{j=1}^{r}\left(\lambda_{j}\right)_{\rho_{j n}}}{\prod_{k=1}^{s}\left(\mu_{k}\right)_{\sigma_{k n}}} \frac{(a+n \beta)^{\alpha m}(s)_{k}\left(-\frac{n \beta}{a}\right)^{k} z^{n+p}}{n!k!}\right)_{v .} \\
& =\frac{a^{-s}}{\Gamma(s)} \sum_{m=0}^{\infty} \sum_{n, k=0}^{\infty} \frac{(-b)^{m}(a+n \beta)^{\alpha m} \Gamma(s-\alpha m)}{m!} \frac{\prod_{j=1}^{r}\left(\lambda_{j}\right)_{\rho_{j n}}}{\prod_{k=1}^{s}\left(\mu_{k}\right)_{\sigma_{k} n}} \frac{(u)_{k}\left(-\frac{n \beta}{a}\right)^{k}}{n!k!}\left(z^{n+p}\right)_{v}
\end{aligned}
$$

Now, applying the result (5), we have

$$
\begin{gathered}
\mathcal{L}_{1}=(-1)^{v} \\
\frac{a^{-s}}{\Gamma(s)} \sum_{m=0}^{\infty} \sum_{n, k=0}^{\infty} \frac{(-b)^{m}(a+n \beta)^{\alpha m} \Gamma(s-\alpha m)}{m!n!k!} \frac{\prod_{j=1}^{r}\left(\lambda_{j}\right)_{\rho_{j n}}}{\prod_{k=1}^{s}\left(\mu_{k}\right)_{\sigma_{k} n}} \frac{(s)_{k}\left(-\frac{n \beta}{a}\right)^{k}}{\frac{\Gamma(v-n-p)}{\Gamma(-n-p)} z^{n+p-v}}
\end{gathered}
$$

We obtain the necessary outcome (7) after a little rearrangement.

Theorem 2.2. Let the following conditions are fulfilled:
(i)

$$
\begin{aligned}
& \text { (i) } 0 \neq\left|\frac{\Gamma\left(v+v^{\prime}-n-\rho\right)}{\Gamma(v-n-\rho)}\right|<\infty, 0 \neq\left|\frac{\Gamma\left(v+v^{\prime}-n-\rho\right)}{\Gamma\left(v^{\prime}-n-\rho\right)}\right|<\infty, 0 \neq\left|\frac{\Gamma\left(v+v^{\prime}-n-\rho\right)}{\Gamma(-n-\rho)}\right|< \\
& \text { (ii) } \quad\left|\frac{n \beta}{a}\right|<1
\end{aligned}
$$

(iii) The condition defined above (2.2) are satisfied the result hold as under

$$
\begin{align*}
\left(\left(z^{p} \Phi_{\left(\lambda_{q}, \mu_{q}, \beta\right)}^{\left(\alpha, \rho_{p}, \sigma_{q}\right)}(z, s, a, b)\right)_{v}\right)_{v}^{\prime} & =\left(\left(z^{p} \Phi_{\left(\lambda_{q}, \mu_{q}, \beta\right)}^{\left(\alpha, \rho_{p}, \sigma_{q}\right)}(z, s, a, b)\right)_{v^{\prime}}\right)_{v} \\
& =\left(z^{p} \Phi_{\left(\lambda_{q}, \mu_{q}, \beta\right)}^{\left(\alpha, \rho_{p}, \sigma_{q}\right)}(z, s, a, b)\right)_{v+v^{\prime}} \tag{8}
\end{align*}
$$

Proof. In order to prove (8), from (7), we have

$$
\begin{align*}
& \left(\left(z^{p} \Phi_{\left(\lambda_{q}, \mu_{q}, \beta\right)}^{\left(\alpha, \rho_{,}, \sigma_{q}\right)}(z, s, a, b)\right)_{v}\right) v^{\prime} \\
& =\frac{(-1)^{v}}{a^{s} \Gamma(s)} \sum_{m=0}^{\infty} \frac{(-b)^{m} \Gamma(s-\alpha m)}{m!} \\
& \times \sum_{n=0}^{\infty} \frac{\prod_{j=1}^{p}\left(\lambda_{j}\right)_{\rho_{j n}}}{\prod_{k=1}^{q}\left(\mu_{k}\right)_{\sigma_{k n}}} \frac{(a+n \beta)^{\alpha m}(s)_{k}}{n!k!}\left(\frac{-n \beta}{a}\right)^{k} \frac{\Gamma(v-n-\rho)}{\Gamma(-n-\rho)}\left(z^{n+\rho-v}\right)_{v^{\prime}} \tag{9}
\end{align*}
$$

Using (6) in (9), we get

$$
\begin{aligned}
& =\frac{(-1)^{v+v^{\prime}}}{a^{s} \Gamma(s)} \sum_{m=0}^{\infty} \frac{(-b)^{m} \Gamma(s-\alpha m)}{m!} \\
& \times \sum_{n=0}^{\infty} \frac{\prod_{j=1}^{p}\left(\lambda_{j n}\right) \rho_{j n}}{\prod_{k=1}^{q}\left(\mu_{k}\right)_{\sigma_{k} n}} \frac{(a+n \beta)^{\alpha m}(s)_{k}}{n!k!}\left(\frac{-n \beta}{a}\right)^{k} \frac{\Gamma\left(v+v^{\prime}-n-\rho\right)}{\Gamma(-n-\rho)} z^{n+\rho-v-v^{\prime}}
\end{aligned}
$$

Similarly, we obtain

$$
\begin{aligned}
& \left(\left(z^{p} \Phi_{\left(\lambda_{q}, \mu_{q}, \beta\right)}^{\left(\alpha, \rho_{p}, \sigma_{q}\right)}(z, s, a, b)\right)_{v^{\prime}}\right)_{v}=\frac{(-1)^{v+v^{\prime}}}{a^{s} \Gamma(s)} \sum_{m=0}^{\infty} \frac{(-b)^{m} \Gamma(s-\alpha m)}{m!} \\
& \times \sum_{n=0}^{\infty} \frac{\prod_{j=1}^{p}\left(\lambda_{j}\right)_{\rho_{j n}}}{\prod_{k=1}^{q}\left(\mu_{k}\right)_{\sigma_{k} n}} \frac{(a+n \beta)^{\alpha m}(s)_{k}}{n!k!}\left(\frac{-n \beta}{a}\right)^{k} \frac{\Gamma\left(v+v^{\prime}-n-\rho\right)}{\Gamma(-n-\rho)} z^{n+\rho-v-v^{\prime}}
\end{aligned}
$$

Replacing v by $v+v$ in (7), we get

$$
\begin{aligned}
& \left(z^{p} \Phi_{\left(\lambda_{q}, \mu_{q}, \beta\right)}^{\left(\alpha, \rho_{p}, \sigma_{q}\right)}(z, s, a, b)\right)_{\nu+v^{\prime}} \\
& =\frac{(-1)^{v+v^{\prime}}}{a^{s} \Gamma(s)} \sum_{m=0}^{\infty} \frac{(-b)^{m} \Gamma(s-\alpha m)}{m!} \\
& \times \sum_{n=0}^{\infty} \frac{\prod_{j=1}^{p}\left(\lambda_{j}\right) \rho_{j n}}{\prod_{k=1}^{q}\left(\mu_{k}\right)_{\sigma_{k} n}} \frac{(a+n \beta)^{\alpha m}(s)_{k}}{n!k!}\left(\frac{-n \beta}{a}\right)^{k} \frac{\Gamma\left(v+v^{\prime}-n-\rho\right)}{\Gamma(-n-\rho)} z^{n+\rho-v-v^{\prime}} .
\end{aligned}
$$

Theorem 2.3. Let the following conditions are fulfilled:
(i) $0 \neq\left|\frac{\Gamma(\nu-n-\rho-\varepsilon n)}{(-n-\rho-\epsilon n)}\right|<\infty$
(ii) $\left|\frac{n \beta}{a}\right|<1$.
(iii) The condition defined above (2.3) are satisfied the result hold as under

$$
\begin{aligned}
& \left(z^{p} \Phi_{\left(\lambda_{q}, \mu_{q}, \beta\right)}^{\left(\alpha, \rho_{p}, \sigma_{q}\right)}(z, s, a, b) E_{\theta, \vartheta}^{\gamma, \delta}\left(\eta z^{\varepsilon}\right)\right)_{v}=\frac{(-1)^{v}}{a^{s}} \frac{1}{\Gamma(s)} \sum_{m=0}^{\infty} \frac{(-b)^{m} \Gamma(s-\alpha m)}{m!} \\
& \times \sum_{n, k, s=0}^{\infty} \frac{\prod_{j=1}^{p}\left(\lambda_{j}\right)_{\rho_{j n}}}{\prod_{k=1}^{q}\left(\mu_{k}\right)_{\sigma_{k} n}} \frac{(a+n \beta)^{\alpha m}(s)_{k}(\gamma)_{n}\left(\eta z^{\varepsilon}\right)^{n}}{n!k!\Gamma(n \theta+\vartheta)(\delta)_{n}}\left(\frac{-n \beta}{a}\right)^{k} \\
& \times \frac{\Gamma(v-n-\rho-\varepsilon n)}{\Gamma(-n-\rho-\varepsilon n)} z^{n+\rho-v} .
\end{aligned}
$$

Proof. The theorem can be easily be derived from Theorem 2.1 So, the details are omitted.

Theorem 2.4. Let the following conditions are fulfilled:
(i) $0 \neq\left|\frac{\Gamma\left(v+v^{\prime}-n-\rho-\varepsilon n\right)}{\Gamma(v-n-\rho-\varepsilon n)}\right|<\infty, 0 \neq\left|\frac{\Gamma\left(v+v^{\prime}-n-\rho-\varepsilon n\right)}{\Gamma\left(v^{\prime}-n-\rho-\varepsilon n\right)}\right|<\infty, 0 \neq\left|\frac{\Gamma\left(v+v^{\prime}-n-\rho-\varepsilon n\right)}{\Gamma(-n-\rho-\varepsilon n)}\right|<$
(ii) ${ }^{\infty}\left|\frac{n \beta}{a}\right|<1$.
(iii) The condition defined above (2.4) are satisfied the the result hold as under

$$
\begin{aligned}
\left(\left(z^{p} \Phi_{\left(\lambda_{q}, \mu_{q}, \beta\right)}^{\left(\alpha, \rho_{p}, \sigma_{q}\right)}(z, s, a, b) E_{\theta, \vartheta}^{\gamma, \delta}\left(\eta z^{\varepsilon}\right)\right)_{v}\right)_{v^{\prime}} & =\left(\left(z^{p} \Phi_{\left(\lambda_{q}, \mu_{q}, \beta\right)}^{\left(\alpha, \rho_{p}, \sigma_{q}\right)}(z, s, a, b) E_{\theta, \vartheta}^{\gamma, \delta}\left(\eta z^{\varepsilon}\right)\right)_{v^{\prime}}\right)_{v} \\
& =\left(z^{p} \Phi_{\left(\lambda_{q}, \mu_{q}, \beta\right)}^{\left(\alpha, \rho_{p}, \sigma_{q}\right)}(z, s, a, b) E_{\theta, \vartheta}^{\gamma, \delta}\left(\eta z^{\varepsilon}\right)\right)_{v+v^{\prime}}
\end{aligned}
$$

Proof. The theorem can be easily be derived from Theorem 2.1 So, the details are omitted.

3. Special Cases

Corollary 3.0. [26] In Theorem 2.1, If we put $b=0$ and $\alpha=\beta=1$, we get the following result contains multi-parameter Hurwitz-Lerch Zeta function as under:

$$
\begin{equation*}
\left(z^{p} \Phi_{\left(\lambda_{q}, \mu_{q}\right)}^{\left(\rho_{p}, \sigma_{q}\right)}(z, s, a, b)\right)_{v}=\frac{(-1)^{v}}{a^{s}} \sum_{n, k=0}^{\infty} \frac{\prod_{j=1}^{p}\left(\lambda_{j}\right)_{\rho_{j n}}}{\prod_{k=1}^{q}\left(\mu_{k}\right)_{\sigma_{k} n}} \frac{1}{n!k!}\left(\frac{-n \beta}{a}\right)^{k} \frac{\Gamma(v-n-\rho)}{\Gamma(-n-\rho)} z^{n+\rho-v} \tag{10}
\end{equation*}
$$

Corollary 3.0. [20] If we substitute $q=b=0$ and $\alpha=\beta=1, p=\rho_{1}=\lambda_{1}=$ $1, q=\sigma_{1}=\mu_{1}=1, \rho=\sigma=1$ and $\lambda=1$ in Theorem 2.1, then we get the following result contains generalized Hurwitz-Lerch Zeta function as below:

$$
\left(z^{p} \Phi_{\mu}^{*}(z, s, a)\right)_{v}=\frac{(-1)^{v}}{a^{s}} \sum_{n, k=0}^{\infty} \frac{(\mu)_{n}}{n!k!}\left(\frac{-n}{a}\right)^{k} \frac{\Gamma(v-n-\rho)}{\Gamma(-n-\rho)} z^{n+\rho-v}
$$

Corollary 3.0. [10] If we substitute $b=0$ and $\alpha=\beta=1, p=\rho_{1}=\lambda_{1}=1, q=$ $\sigma_{1}=\mu_{1}=1, \rho=\sigma=\lambda=1$ and $\mu=1$ in Theorem 2.1, then we get the following result contains HurwitzLerch Zeta function as follow:

$$
\left(z^{p}(z, s, a)\right)_{v}=\frac{(-1)^{v}}{a^{s}} \sum_{n, k=0}^{\infty} \frac{1}{k!}\left(\frac{-n}{a}\right)^{k} \frac{\Gamma(v-n-\rho)}{\Gamma(-n-\rho)} z^{n+\rho-v}
$$

Corollary 3.0. 21] If we take $\delta=1$ in Theorem 2.3, then we get the following result contains generalized Mittag-Leffler function as under:

$$
\begin{aligned}
& \left(z^{p} \Phi_{\left(\lambda, \mu_{q}, \beta\right)}^{\left(\alpha, \rho_{p}, \sigma_{q}\right)}(z, s, a, b) E_{\theta, \vartheta}^{\gamma}\left(\eta z^{\varepsilon}\right)\right)_{v}=\frac{(-1)^{v}}{a^{s}} \frac{1}{\Gamma(s)} \sum_{m=0}^{\infty} \frac{(-b)^{m} \Gamma(s-\alpha m)}{m!} \\
& \quad \times \sum_{n, k, s=0}^{\infty} \frac{\prod_{j=1}^{p}\left(\lambda_{j}\right)_{\rho_{j n}}}{\prod_{k=1}^{q}\left(\mu_{k}\right)_{\sigma_{k} n}} \frac{(a+n \beta)^{\alpha m}(\gamma)_{n}(s)_{k}\left(\eta z^{\varepsilon}\right)^{n}}{n!^{2} k!\Gamma(n \theta+\vartheta)}\left(\frac{-n \beta}{a}\right)^{k} \frac{\Gamma(v-n-\rho-\varepsilon n)}{\Gamma(-n-\rho-\varepsilon n)} z^{n+\rho-v}
\end{aligned}
$$

Corollary 3.0. 32] In Theorem 2.3, if we take $\delta=\gamma=1$ then we get the following result contains generalized Mittag- Leffler function as follow:

$$
\begin{aligned}
& \left(z^{p} \Phi_{\left(\lambda_{q}, \mu_{q}, \beta\right)}^{\left(\alpha, \rho_{p}, \sigma_{q}\right)}(z, s, a, b) E_{\theta, \vartheta}\left(\eta z^{\varepsilon}\right)\right)_{v}=\frac{(-1)^{v}}{a^{s}} \frac{1}{\Gamma(s)} \sum_{m=0}^{\infty} \frac{(-b)^{m} \Gamma(s-\alpha m)}{m!} \\
& \quad \times \sum_{n, k, s=0}^{\infty} \frac{\prod_{j=1}^{p}\left(\lambda_{j}\right)_{\rho_{j n}}}{\prod_{k=1}^{q}\left(\mu_{k}\right)_{\sigma_{k} n}} \frac{(a+n \beta)^{\alpha m}(s)_{k}\left(\eta z^{\varepsilon}\right)^{n}}{n!k!\Gamma(n \theta+\vartheta)}\left(\frac{-n \beta}{a}\right)^{k} \frac{\Gamma(v-n-\rho-\varepsilon n)}{\Gamma(-n-\rho-\varepsilon n)} z^{n+\rho-v}
\end{aligned}
$$

Corollary 3.0. [17] In Theorem 2.3, if we put $\delta=\gamma=\vartheta=1$, then we get the following result contains generalized Mittag- Leffler function as follow:

$$
\begin{aligned}
& \left(z^{p} \Phi_{\left(\lambda_{q}, \mu_{q}, \beta\right)}^{\left(\alpha, \rho_{p}, \sigma_{q}\right)}(z, s, a, b) E_{\theta}\left(\eta z^{\varepsilon}\right)\right)_{v}=\frac{(-1)^{v}}{a^{s}} \frac{1}{\Gamma(s)} \sum_{m=0}^{\infty} \frac{(-b)^{m} \Gamma(s-\alpha m)}{m!} \\
\times & \sum_{n, k, s=0}^{\infty} \frac{\prod_{j=1}^{p}\left(\lambda_{j}\right)_{\rho_{j n}}}{\prod_{k=1}^{q}\left(\mu_{k}\right)_{\sigma_{k} n}} \frac{(a+n \beta)^{\alpha m}(s)_{k}\left(\eta z^{\varepsilon}\right)^{n}}{n!k!\Gamma(n \theta+1)}\left(\frac{-n \beta}{a}\right)^{k} \frac{\Gamma(v-n-\rho-\varepsilon n)}{\Gamma(-n-\rho-\varepsilon n)} z^{n+\rho-v} .
\end{aligned}
$$

A number of several other results can also be obtained by putting some specific value of parameters.

4. CONCLUSION

We have established four theorems following to N -fractional calculus of product of generalized Mittag-Leffler function and generalized Hurwitz -Lerch Zeta function. The major outcomes of the work is to explore useful extension and unification of number of results for various types of functions. Also, we mentioned some corollaries as special cases of the main results.

References

[1] B.Ahmad, A. Alsaedi, M. Kirane, R. Tapdigoglu, An inverse problem for space and time fractional evolution equations with an involution perturbation, Quaestiones Mathematicae 40(2), 151-160, DOI: http://dx.doi.org/10.2989/16073606.2017.1283370, April 2017.
[2] N.K. Ajudia, J.C. Prajapati, V.N. Mishra, On Generalized Sequence of Functions $B_{q n}^{(\alpha, \beta, \gamma, \delta)}(x ; a, k, s)$, Thai J. Math., Vol. 19, (No. 1), 221-231, 2021,
[3] M. Altıntaş, M. Gürdal and R. Tapdigoglu, Duhamel Banach algebra structure of some space and related topics, Publications De L'Institut Mathématique Nouvelle Série, Tome 112(126) (2022), 83-93, Doi: https://doi.org/10.2298/PIM2226083A.
[4] K.G. Bhadana, A.K. Meena, V.N. Mishra, Some Properties of k-Generalized Mittag Leffler Function Related to Fractional Calculus, J. Math. Comput. Sci., Vol. 12, Article ID 90, DOI: https://doi.org/10.28919/jmcs/7111, 2022.
[5] A.H. Ansari, X. Liu, V.N. Mishra, On Mittag-Leffler function and beyond, Nonlinear Science Letters A, Vol. 8, No. 2, 187-199, June 2017.
[6] A. Chandola, R. M. Pandey , R. Agarwal , L. Rathour, V.N. Mishra, On Some Properties and Applications of the Generalized m-Parameter Mittag-Leffler Function, Advanced Mathematical Models \& Applications Vol.7, (No.2), 130-145, 2022.
[7] A. Erdélyi, W. Magnus, F. Oberhettinger and F. G. Tricomi, Higher Transcendental Functions, Vol. I, McGraw-Hill Book Company. New York, Toronoto, London, 1953.
[8] G. Farid, V.N. Mishra, S. Mehmood, Hadamard And Fejér-Hadamard Type inequalities for convex and relative convex functions Via an extended Generalized Mittag-Leffler function, International Journal of Analysis and Applications, Vol. 17, (No. 5), pp. 892-903. DOI: 10.28924/2291-8639-17-2019-892, 2019.
[9] G. Farid, A.U. Rehman, V.N. Mishra, S. Mehmood, Fractional Integral Inequalities of Gruss Type via Generalized Mittag-Leffler Function, Int. J. Anal. Appl., Vol. 17, (Issue 4), 548-558, 2019.
[10] M. Garg, K. Jain and S. L. Kalla, A further study of general Hurwitz-Lerch zeta function. Algebras Groups Geometries, 25(3): 311-319, 2008.
[11] J. Gupta, Investigation in generalized special functions and fractional calculus with application to univalent and multivalent functions, Ph.D. Thesis. Univ. of Kota, India.
[12] M.K. Gurjar, P. Chhattry and S. C. Shrivastava, Fractional Calculus of the Generalized Mittag-Leffler (p, s, k)-Function, Journal of Rajasthan Academy of Physical Sciences, Vol.20, (No. 1 \& 2), January-June, 73-82, 2021.
[13] M.K. Gurjar, P. Chhattry and S. C. Shrivastava, Fractional Kinetic Equations Involving the Mittag-Leffler (p, s, k) Function via Sumudu Transform, Jñãnabha, Vol. 51(2), 113-119, 2021.
[14] M.K. Gurjar, P. Chhattry and S. Shukla, Pathway Fractional Integral Operator Associated with the J-Generalized $p-k$ Mittag-Leffler Function, J. Math. Comput. Sci. 11 (No. 6), 7062-7071, https://doi.org/10.28919/jmcs/6519, 2021.
[15] M.K. Gurjar, J.C. Prajapati and K. Gupta, A Study on Generalized Mittag-Leffler Function via Fractional Calculus, J. of Ineq. and Special Functions,5 (3):6-13, 2014.
[16] S. D. Lin and H.M. Srivastava, Some families of the Hurwitz-Lerch zeta functions and associated fractional derivative and other integral representations, Applied Mathematicsand Computation. 154(3): 725-733, 2004.
[17] G. M. Mittag-Leffler, Sur la nonvelle function $E_{\alpha}(x)$, C.R. Acad. Sci. Paris. 137: 554558, 1903.
[18] V.N. Mishra, D.L. Suthar, S.D. Purohit, Marichev-Saigo-Maeda Fractional Calculus Operators, Srivastava Polynomials and Generalized Mittag-Leffler Function, Cogent Mathematics, 4:1320830. DOI: 10.1080/23311835.2017.1320830, 1-11, 2017.
[19] K. Nishimoto, Fractional Calculus, Descartes Press, Koriyama, Japan, 1: 1984.
[20] I. Podlubny, Factional Differential Equations: An introduction to fractional derivatives, fractional differential equations, to methods of their solution and some of their applications, Academic Press New York,1999.
[21] T. R. Prabhakar, A singular integral equation with generalized Mittag-Leffler function in kernel, Yokohama Math. J.,19: 7-15, 1971.
[22] L. Rathour, V.N. Mishra, N. Sahni, F.Y. Ayant, V. Yadav, On fractional q - derivative integral formulae of Prasad's I-function I, Journal of Fractional Calculus and Applications, Vol. 14, (No. 1), 55-65, 2023.
[23] T. O. Salim, Some properties relating to the generalized Mittag-Leffler function. Advances in Applied Mathematical Analysis, 4: 21-30, 2009.
[24] S.P. Singh, L.N. Mishra, V. Yadav, Elliptic Well-Poised Bailey Lemma and its Applications, Journal of Fractional Calculus and Applications, Vol. 10, (No. 2), 31-39, 2019.
[25] H. M. Srivastava, Generating relations and other results associated with some families of the extended Hurwitz-Lerch zeta functions. Springer Plus. 2(1): 1-14, 2013.
[26] H. M. Srivastava, A new family of the λ-generalized Hurwitz-lerch zeta function with application. Applied Mathematics and Information Science, 8(4): 1485-1500, 2014.
[27] R. Tapdigoglu, On the Uniqueness of Solutions of Duhamel Equations, Filomat 36:11, 3891-3898, https://doi.org/10.2298/FIL2211891T, 2022.
[28] R. Tapdigoglu, B.T. Torebek, Global existence and blow-up of solutions of the time-fractional space-involution reaction-diffusion equation, Turkish Journal of Mathematics, 44(3), 960 969, DOI: http://dx.doi.org/10.3906/mat-1909-65, 2020.
[29] R. Tapdigoglu, B.T. Torebek, Inverse source problems for a wave equation with involution, Bulletin of the Karaganda University, Mathematics Series, N3(91), 75-81, DOI: http://dx.doi.org/10.31489/2018M3/75-82, 2018.
[30] R, Tapdigoglu, N. Altwaijry, On Some Applications of Duhamel Operators, 72(5), 1375-1381, DOI: $10.1515 / \mathrm{ms}-2022-0093,2022$.
[31] B.T. Torebek, R. Tapdigoglu, Some inverse problems for the nonlocal heat equation with Caputo fractional derivative, Mathematical Methods in the Applied Sciences 40(1) 1-12, DOI: http://dx.doi.org/10.1002/mma.4468, 2017.
[32] A. Wiman, Über den fundamental satz in der theorie der funktionen $E_{\alpha}(x)$, Acta Math., 29:191-210, 1905.

Meena Kumari Gurjar
Department of Mathematics and Statistics, J.N.V. University, Jodhpur, Rajasthan, IndiA-342011

Email address: meenanetj@gmail.com

Correspondance Author
Laxmi Rathore : Department of Mathematics, National Institute of Technology, Chaltlang, Aizawl-796012, Mizoram, India

Email address: laxmirathour817@gmail.com

Lakshmi Narayan Mishra
Department of Mathematics, School of Advance Sciences, Vellore Institute of Technology, Vellore 632014, Tamil Nadu, India

Email address: lakshminarayanmishra04gmail.com, lakshminarayan.Omishra@vit.ac.in
Preeti Chhattry
Dr. C. V. Raman University Kota, Bilaspur (C.G.)-495113, India.
Email address: preetichhattry@gmail.com

