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Abstract:
An algorithm for estimation of the amplitudes and phases of composite Continuous

Wave (CW) signals is considered. The signals are contaminated with non-Gaussian
noise. The considered noise model is the most commonly exist in communication
applications. The developed algorithm for estimating the amplitudes and phases of
composite CW signals is based on the Expectation Maximization (EM) algorithm. The
most feature of the developed algorithm is that it reduces the complicated multi-
parameters optimization required when using the ML approach. The complexity of the
algorithm is essentially unaffected by increasing the number of composite signals.
Simulation experiment is performed to illustrate the performance of the developed
algorithm.
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1. Introduction:

The problem of parameters estimation of multiple sinusoids in noise has a great
attention in the signal processing literature. Some methods were published to solve this
problem. Most of these methods are based on the Maximum Likelihood (ML) approach
[1-5]. The basic idea to all of the estimation schemes in above references consists of
obtaining sub-optimal initial estimates of the parameters and then refining them through
maximization of the likelihood function. The sub-optimal initial estimate method and
the maximization step are varying from reference to reference. Some methods use
Prony’s least square estimator which employes the least square to fit an auto regressive
model to the noisy sinusoidal data [6]. James introduced another approach based on the
Extended Kalman Filter (EKF) [7]. This approach is considered an approximate
conditional mean estimator. This estimator is found to be asymptotically efficient for
sufficiently signal to noise ratio.
All the above-described methods do not consider the presence of non-Gaussian noise.
They only consider white Gaussian noise. In this paper, we consider additive non-
Gaussian noise and we develop an algorithm to estimate amplitudes and phases of
composite CW signals based on the Expectation Maximization (EM) approach. The
paper is organized as follows. In section II, the problem statement and noise model are
presented. In section III, the mathematical formulation of the developed algorithm is
introduced in some details. Section IV demonstrates the simulation results of the
developed algorithm. Finally, the paper is concluded in section V.

2. Problem Statement and Noise Model
The received observation, )(tr , of composite CW signals in the presence of non-
Gaussian noise c(t) can be expressed as:
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where ia ; (i=1, 2, …I), is the amplitude of the i-th signals, i  is the angular frequency

of the i-th signal, i  is the phase of the  i-th signal, I is the number of the CW signals
which is assumed to be known and c(t) is a non-Gaussian process, modeling the noise.
The problem can be stated as follows. Given the observation r(t), which consists of a
known number of composite signals plus an additive white non-Gaussian noise, it is

required to estimate the amplitude parameters ia  and the phase parameters i  of each
CW signal. In the following we discuss the considered noise model in some details. The
noise model is a product of a real, non-negative, wide sense stationary process, s(t),
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times a Gaussian process g(t), independent of s(t). Thus, c(t) is given by )()()( tgtstc  .
This model is physically consistent with some important disturbance phenomena, such
as atmospheric noise, scattering from the sea surface and, more generally, from rough
surfaces in remote sensing applications. If the observation time is short with respect to
the coherence time of the modulating process, then s(t) can be approximated by a
random constant s, called auxiliary variate and consequently the non-Gaussian noise
becomes c(t)=s g(t). Then we can say that c(t) is a Gaussian process with stochastic
mean square value or equivalently it is  conditionally Gaussian random process given s.
The process c(t) can be real or complex according to g(t). In this paper, c(t) is
considered real because we deal with real signals. Direct application of the probability
law to the process c(t) leads to the following expression for the probability density

function (pdf) (.)cf  of the noise c(t) [8]

dsSf
s

C

s
Cf s

o

c )(
2

exp
2

1
)(

22

2

22 






 
 



                              (2)

where )(Sfs  is the marginal pdf of s and 2  is the variance of g(t). The noise
representation described above applies if and only if a pdf )(Sfs  satisfying the Fredholm
type-I integral equation (given by (2)) exists. Most distributions of relevant practical
interest satisfying equation (2); among them the Generalized Laplace, the Generalized
Cauchy, the Generalized Gamma and the Contaminated Normal [8]. It is noted that the
above distributions depend on at least two parameters.

3. Mathematical Formulation
The received observation, )(tr , of the composite CW signals using the above non-

Gaussian noise model can be expressed as:
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The likelihood function of the observation ],);([ iiatr   can be written as

 
dsSf

Ns

dtatr

Ns
atr s

o

T

I

i
iii

ii )(
2

cos)(

exp
2

1
],);([

2

2

1

0 0
2























 

 
 


    (4)



Proceedings of the 7th ICEENG Conference, 25-27 May, 2010 EE312 - 4

where oN  is the height of the power spectral density of the Gaussian component of

c(t). The Maximum likelihood approach can be used to estimate ia  and i ; (i =1,
2,…,I) by maximizing (4) with respect to these parameters. Since the integral in the
numerator is a monotonic decreasing function of the argument of the exponential and

)(Sf s  is non-negative function and independent of ia  and i ,  then maximizing (4) is

equivalent to minimize the argument in the numerator with respect to ia  and i . That is:

dttatr
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This minimization step is a complicated multi-parameter optimization problem (2I-
dimensional search minimization problem) that tends to be computationally complex
and time consuming. The Expectation maximization (EM) algorithm is used to solve
this problem and reduce the involved computations. An overview of the EM algorithm
is found in [9]. Since (4) is conditionally Gaussian given s with conditional variance

oNs2 , then ],);([ iiatr   can be written as
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where ),,/(/ SaRf iisr   is the conditional pdf of the observation given ia , i ; (i =1, 2,…,I)

and S. As stated before, since )(Sfs  is a non-negative function and independent of ia

and i , then maximizing (6) is equivalent to maximize the conditional pdf of R given
S=s, that is maximizing ),,/(/ sSaRf iissr   with respect to ia  and i . This problem is
solved using the EM algorithm as follows.

Define x as the complete data which has a pdf (.)xf . In our problem the choice of the
complete data x(t) is given by decomposing r(t) into I signals, that is:

T
I txtxtxtx )](...)()([)( 21                   (7)

where )()(cos)( tctatx iiiii    and )(tci  are chosen to be uncorrelated zero-mean non-

Gaussian noise satisfying 
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)()( . It is clear that )(txi is conditionally Gaussian

given S=s. The relation between the complete data and the incomplete (observed) data is
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where Q consists of I terms and is given by ]1...,,1,1[Q . Since )(txi , (i=1, 2, …, I) are
statistically independent, the log-likelihood of )(tx  is given by:
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where the log-likelihood function of )(txi is given by:
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Where Ni = qi .No and qi ‘s are arbitrary non-negative real-valued scalars satisfying
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1. Substituting of (10) into (9) and carrying out the conditional expectations

required by the EM algorithm, the following algorithm is obtained:

E-step     For i=1, 2,..., I  compute

M-step       For i=1, 2, …, I

 ˆˆcos(ˆmin
)(

,
1)+(n

ii
1)+(n2

i
n

i

T

A ,a|)+tA-(t)x| 

where n denotes the iteration number. The two-parameter minimization required in the
M-step can be carried out in two steps as follow [9]. Define
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Where iE  is given by dttE
T

ii  )cos( . This algorithm can be implemented as follows.

The signal )()( n
iL  can be generated by passing )(ˆ )( tx n

i through a filter matched to )cos( ti
and then search for the hightest peaks of the I matched filters. The algorithm is
illustrated in Fig. 1. The algorithm decreases iteratively the objective function in (5)
without ever going through the indicated multi-parameter optimization. The complexity
of the algorithm is essentially unaffecred by the number of signals. As the number of
signals increases, only the number of matched filters increases in parallel and each
matched filter is maximized separately. Then using this algorithm, the 2I-dimensional
search is reduced to a I dimensional search.

4 Simulation and Results:
In this section, the performance of the estimation algorithm is evaluated. Four CW

signals are generated with amplitudes 2, 1, 3, and 0.5 and phases 5/ , 6/ , 4/ , and
2/ . The generated CW signals are added to the non-Gaussian noise. The probability

distribution function of the random parameter s in the non-Gaussian noise model is
chosen as a Gamma distribution. The estimation algorithm is applied to estimate the
amplitudes and the phases of the four  signals. The steady state value of estimation of
the amplitudes and the phases versus the SNR is shown in Fig.2 and Fig.3 respectively.
These figures show that as the SNR increases, the algorithm converges to the true
values. Finally, we can conclude that the developed algorithm can simultaneously
estimate the amplitudes and phases of composite CW signals in the presence of non-
Gaussian noise.
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Fig. 2: Steady State Value of Estimation of the Amplitudes
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Fig. 3 : Steady State Value of Estimation of the Phases
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Conclusion:
An algorithm for estimation of the amplitudes and phases of composite Continuous
Wave (CW) signals has been developed. The signals are contaminated with non-
Gaussian noise. The developed algorithm is based on the Expectation Maximization
(EM) algorithm and reduces the complicated multi-parameters optimization required by
the ML approach. The complexity of the algorithm is essentially unaffected by
increasing the number of composite signals. Simulation experiment illustrates that the
estimation algorithm can simultaneously estimate the amplitudes and phases of
composite CW signals in the presence of non-Gaussian noise.
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