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Abstract:

Registration of 3D point clouds is an important task for many different applications
today, like reverse engineering, medical imaging, remote sensing, robotics and
automation in general. In this paper we explore a new algorithm for rough registration
by using the genetic algorithm (GA) which has showed acceptable results in a
reasonable amount of computational time. The algorithm is based on the Median
Squared Error (MSE) as the fitness function for the GA, and a threshold that defines the
maximum distance between corresponding pair of points to be considered inliers. One
of the contributions in this paper is a new scheme for adaptable boundary constrains in
the algorithm, which makes the global minimum detection faster than the traditional
GAs implementations. Another contribution is the separation of the chromosome
parameter, i.e. for the first steps of the algorithm we have separated the chromosome
encoding into two groups; three genes representing the translation vector (7x, 7y and 7%)
and three genes representing the rotation matrices (Rx, Ry and Rz). Finally, experimental
results are presented and discussed using this algorithm.
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1. Introduction:

For reverse engineering in general, the most common 3D scanning process consists on
taking point clouds from several viewpoints without knowing the exact positions of the
scanner, so finally several data sets are produced but not aligned in a common
coordinate system, the next step should be alignment of the point clouds, and then to
generate 3D information, like surfaces or solids, which can be utilized later in a
CAD/CAM/CAE system, for simulation, redesign, inspection or manufacturing.
Registration is the process of matching different point clouds or range images that are
misaligned, i.e. finding the rigid transformations to match a point cloud a with a point
cloud b. This process is mostly thought as having two main stages; rough or crude
registration and fine registration. Fine registration is today accomplished using ICP
variations [1-14]. The challenge in crude registration lies in performing it automatically
and consistently even when there is small overlap [15].

There are many authors that describe what is the basic principle of the GA [16-18], in
this paper we first give a background of the implementations of GAs for the registration
problem that were found in a recent literature search, and then we introduce a new
procedure implementing GAs for finding a rough registration and an adaptable
boundary constraints scheme (reducing each time the search space) in the process and
separating the chromosome encoding for the first part of the algorithm; 3 parameters at
a time are implemented, the rotation parameters and translation parameters. Our
experiments have shown a very good convergence and reasonable computing time for
the data sets tried in this research, which will be showed in section 5.

2. Related work:

GAs are not new in the registration of 3D shapes, there are many works that have
implemented this algorithm for pairwise and multi-view alignment, in this section we
describe what we consider the most important advances in this regard. As mentioned
earlier, GAs have shown good results in terms of accuracy and robustness for the
registration problem. Perhaps one of the most thorough works in this field is the one
presented in [20] and [21], that used the MSE (Median Square Error) function but also
introduced the SIM (Surface Interpenetration Measure), which is a metric aimed to
quantify the interpenetration between two different range images. Furthermore, an early
study in the implementation of GA for solving the registration problem can be found in
[22], where it is investigated the performance of such an approach for finding the initial
guess of the transformation (translation and rotation), between the object and the model
surface and then refine the registration using a local gradient descent method such as
ICP. Another study was proposed in [23], that introduced the use of the grid closest
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point technique (GCT), that basically consists of superimposing a 3D fine grid on the
3D space such that the two surfaces a and b lie inside the grid. Once the marching
process is complete, they used the genetic search algorithm to minimize the registration
objective function.

In the 3D medical image registration, there are some contributions as well, the work
presented in [24] focused particularly on the problem of extraction of the optimal
solution among the final genetic population. Another study in this direction was
proposed in [25], which was mainly focused in reverse engineering cases, they
introduced a robust system for free-form surface registration based on GA and
oversampling the point clouds, which has been tested using several data sets. A hybrid
approach for automatic registration applied to free-form shapes was proposed in [26],
which employs an asynchronous data communication between an Artificial Neural
Network (ANN) and GA. Another interesting approach was introduced in [27], that
formulated a robust system for free-form surface registration, based on a GA. Due to the
characteristics of GA, the developed system does not depend on a good initial guess of
solution. As most of the GA approaches, it doesn’t need prior information on
correspondences or feature points, and it is insensitive to noise and data occlusion. A
fully automatic, robust and precise alignment of measured 3D surfaces for arbitrary
orientations was introduced in [28], which combines the precision and robustness of
TrICP [13], [29] with the generality of GAs. Another study was introduced in [30], here
the point matching problem was addressed employing a method based on nearest-
neighbor.

3. GA’s for 3D data registration:

As we’ve seen in the preceding section many research works have applied the GA to
solve the rough or crude registration problem, and still today there is research in
development to improve this achievements mostly to find a better computing time
improvements without sacrificing the accuracy. The only drawback of evolutionary
methods, like GAs is the computing time, which is generally longer than other methods,
but it has been shown very accurate and robust when implemented in the registration
problem, as will be discussed later. An advantage for the GAs on the other hand, is that
pre-alignment between views is not necessary to guarantee a good result [20]. Another
advantage is the fact that it doesn’t depend on specific features or landmarks on the
surface, and this aspect is especially important for reverse engineering applications,
since today’s engineering products, like automobiles, ships, aircrafts and spacecrafts are
designed using very complex surfaces that don’t necessary have symmetric patterns as
previous designs and it is expected that in the future this complex and organic shapes
will be used even more in other kinds of daily products.
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4. Proposed GA-based algorithm and theoretical analysis:

When working with GAs, it is necessary to define the chromosome encoding for the
problem, as stated earlier the goal is to find the transformation that align two 3D data
sets (a and b) in a common coordinate system, this transformation can be defined as:

T=ar+t (1)
Where,
r= (1) (2)
t = (ty ty, tz) 3)
And,
1 0 0
Ty = [0 cosf, —sin 9\.] 3)
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Here, r represents the rotation matrix around the Euler angles (6,.6,.6.) and ¢ the
translation vector for a point cloud a. So, we can define the chromosome string by 6
genes (three representing the 3 rotational parameters, and the other 3 representing the
translational parameters). In order to relate the point cloud a with point cloud b it is
necessary to define the fitness function, which will be based on the MSE (mean squared
error) equation:

fl = %Z‘;ll b: —ra; — tl : (6)

Where N is the number of points in the image a, with a = {a;}. This is the fitness
function utilized in steps 3 and 5 of our algorithm (see algorithm below)

The fitness function implemented in step 8 of our algorithm is also based on the sum of
squared distances between corresponding points of two registered images, but this
function uses an inlier/outlier classification based on the MSAC robust estimator [20,
31]. The MSAC is an improved robust estimator based on the RANSAC estimator [20,
32]. The fitness value is obtained by the cost function f>.
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f, =

= |-
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And the robust residual term g is denoted by:

p(n) = [ M <d (8)

ld otherwise

Where d is a defined threshold (approximately 10% of z-values of the point clouds) and
n, is defined as the norm:

n, = b, — ra, — tl|? 9)

And b; 1s the closest point in image b to the point a;, with b = {b;}. r is the rotation
matrix and ¢ the translation vector, as given by the chromosome's genes. The threshold
defines the maximum distance between a corresponding pair of points to be considered
inliers. Figure 1 shows a simplification of what should be the real case, note that the
point clouds in this case are represented instead by two curves a and b in a two
dimensional space. The inliers are generally those points in the overlapping area of the
aligned views [20].

Inlier boundaries

False closest areas Corresponding closest areas

Figure (1): Threshold for MSAC estimator
Boundary constrains scheme and procedure:

1. Enter two misaligned point clouds (a and b)
2. Sample original clouds a and b uniformly (using approximately 2% of the total

points)
3. Apply GA with registration3t (pop = 24. gen = 60, 8c1 = [~z.z])
4. Transform (translate) cloud a: a, =a +¢,
5. Apply GA with registration3r (pop = 24. gen =60, Bc2 = [-180° ,180°])
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Transform (rotate) cloud a;: a- = ra,

Apply GA registration6d (pop = 80, gen =100, Be3 =t & [-Bel/2 .Bc1/2] re [-23°,237)
Transform cloud a;: a. = a, +¢.

Sample original clouds a and b uniformly (using approximately 10% of the total
points)

10.Apply GA registration6d

(pop = 80, gen =100, Be¢ =t € [-0.1=B¢c3,0.1=Bc3.] re [-5°.57])

ORI

Because it is a very rough registration in the first steps of the algorithm point clouds a
and b don’t need to be too dense, for this reason we can apply a very strong sampling,
so just 1% of the point clouds is actually used in steps 3, 5 and 7 (this of course will
depend on how dense the point clouds are). Then for step 10, because it is a semi-fine
registration process we used denser data sets (10 % of the data is actually used). In step
3, registration3t means that we apply the GA using only 3 genes representing the
translation vector (7x, Ty and 7z) and similarly in step 5, three genes representing the
rotation matrices (Rx, Ry and Rz). For both step 7 and 10 we have used the MSAC
estimator with all the rotation and translation parameters and a threshold of
approximately 0.1-1% of z-biggest values in the point clouds for the robust residual
term (equation 8).

Boundaries constraints description:

e Bcl is the biggest z-value in clouds a or b.

e Bc2 is the maximum angles, so the point cloud can rotate 180° with respect to
each axis.

e Bc3 is a fraction of Bel for the translation parameters and -23° to 23° degrees for
the rotational parameters.

e Bc4 is the final boundary constraint which is a fraction of Be3 for translation and
approximately -5° to 5° for rotation.

6. Experimental results:

When implementing GA we consider trying the settings in different configurations, so at
the end we can get the best combination for an efficient optimization process. The most
important settings in the GA are the population size, chromosome encoding, selection
function, mutation function, crossover function and the stopping criteria (mainly the
number of maximum generations and function tolerance). In our practice we have used
the MATLAB environment, for our scheme phases we have used almost the same
parameters, except those explicit in the algorithm above. For the selection function we
used stochastic uniform, the crossover function used was scattered and the stopping
criteria was established as the maximum generations defined in the algorithm above.
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The 3D data sets used for the experimentation in this paper were downloaded from the
Stanford 3D scanning repository [33]. We used two partial pairwise data sets,
corresponding to the Stanford Bunny (Figure 2) and the Happy Buddha (Figure 3). After
having applied our algorithm, we can say that it does the job pretty well for the cases we
have studied, however we still think it is necessary to improve and test it with more data
sets. Besides the sampling in the algorithm we didn’t do any pre-processing to the point
clouds.

Experiment 1: Stanford Bunny partial data sets

Figure (2): Stanford bunny point clouds rendering before (a) and after registration (b)
Experiment 2: Happy Buddha partial data sets

a b

Figure (3): Happy Buddha point clouds rendering before (a) and after registration (b)
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6. Conclusions:

In this paper a new scheme for boundary constraints was presented, which has showed
satisfactory results for rough registration of point clouds. The algorithm presented is
GA-based and uses the MSE estimator and the MSAC robust estimator, the latter was
difficult to define as a fixed percentage, because for each experiment it was different,
1.e. for the bunny we have used 1% of z-biggest values but for the happy Buddha we set
it to 0.1%, which means it is greatly problem-dependent. Another contribution in this
paper is the separation of the chromosome parameter, i.e. for the initial steps of the
algorithm we have separated the chromosome encoding into two groups; three genes
representing the translation vector (7x, 7y and 7Zz) and three genes representing the
rotation matrices (Rx, Ry and Rz). After the experimentation we have found that it does
work with different data sets, the sampling scheme was also very useful and did reduce
the computation time while avoiding outliers at the same time. Although we haven’t
tried too many data sets, future work will be focused on testing the algorithm with other
data and improve the algorithm’s speed and accuracy. Because this is a rough
registration algorithm, for fine registration it is possible to implement the ICP or other
faster fine registration methods.
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